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1. Introduction 

Fluid-structure interaction (FSI) problems are of great 

important in fluid dynamics[1]. It is also used in biomechanics 

problems [2,3]. The immersed boundary method (IBM) is the 

most appropriate approach for solving such problems taking the 
advantage of a fixed uniform computational grid [4,5]. Therefore, 

the IBM can be easily used to simulate the medical and 

pharmaceutical contexts including red blood cells motion, and 

blood flow in vessels and heart valves. IBM is both a 

mathematical formulation and a numerical scheme. The 

mathematical formulation uses a combination of Eulerian and 
Lagrangian parameters. Theses parameters are linked together via 

interaction equations where the Dirac delta function plays an 

important role. In numerical implementation of IBM, the 

Eulerian variables are defined on a fixed Cartesian grid and the 

Lagrangian variables are defined on a curvilinear grid moving 

freely through the Eulerian grid. The basis of IBM is to add a 
forcing term as a source term to the Navier-Stokes or lattice 

Boltzmann equations [6]. In recent years, the lattice Boltzmann 

method (LBM) has developed into a promising numerical method 

for the simulation of complex fluid flows. Unlike conventional 

numerical schemes, which are based on discretization of 

macroscopic continuum equations, the LBM is based on 
microscopic models and mesoscopic kinetic equations. The LBM 

is a reliable alternative to the conventional computational fluid 

dynamics methods for the simulation of complex problems 

including incompressible fluid flows, porous media flows, multi-

phase flows and blood flow. When Mach number and Knudsen 
number are small enough, the LBM equation is a good 

approximation for Navier-Stokes (N-S) equations. In LBM, fluid 

is considered as a combination of virtual particles, which can 

move in a finite number of directions. This method comprises 

two steps: streaming and collision. In the streaming step, the 

particles move to the neighbor body lattice points. In the collision 
step, the particles arriving at the points, interact one another and 

change their velocity directions according to scattering rules.  

LBM has been found to recover the N-S equation using 

Chapman-Enskog expansion [7]. The most important features of 

the LBM are: explicit updating, algebraic operation and easy 

implementation on curved boundaries. There have been many 
researchers who have combined the IBM-LBM to solve the fluid 

flows involving rigid/elastic interfaces. Feng and Michaelides [8] 

were the first to combine the LBM with the IBM and simulated 

suspensions of rigid disks in 2D.  Le and Zhang [9] used in their 

work a hybrid LBM-IBM and noticed that the computed velocity 

profiles can deviate greatly from theoretical ones even for very 
simple flow situations, both in the immersed boundary layer and 

the bulk region. Dupuis et al. [10] studied how the coupling 

method of the forcing term between the Eulerian and Lagrangian 

grids could affect the results for the flow over an impulsively 

started cylinder at moderate Reynolds (Re) number.Wu and Shu 
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[11] proposed a new version of IBM-LBM, which could well 

consider the effect of external force on the momentum flux as 

well as the discrete lattice effect. JiSeok and SangHwan [12] 
presented a numerical scheme for fluid-structure interaction, 

especially for elastic structures. They employed a hybrid LBM-

IBM using an improved direct forcing scheme for the fluid, and a 

finite element method with Euler beam elements for the elastic 

plate. Zhang et al. [13, 14] also used a combination of the IBM 

and the LBM to investigate the microscopic hemodynamic and 
hemorheological behaviors of discrete RBCs in shear flow. They 

noted that three-dimensional simulation of RBCs is required to 

attain accurate results. Cheng et al. [15] proposed a model to 

properly simulate the fast boundary movements and steep 

pressure gradient occurring in the fluid–body interaction. They 

simulated the mitral valve jet flow considering the interaction of 
leaflets and fluid. The combination of the Lattice-Boltzmann and 

the immersed boundary method has been used extensively in 

recent years in modeling biomechanics problems [16-19]. 

Recently, this method has been used to simulate the flow around 

rigid bodies [20-22], and to simulate the motion and deformation 

of the flexible membrane (fluid-structure interaction problem) 
[23-26]. Also recently, Boltzmann's method has been used for 

multiphase flows [27-31], non- Newtonian fluid [32] and solution 

of differential equations [33,34]. 

In the present work, the effect of elastic modulus changing 

and the initial location of the membrane and increasing the 

microchannel stenosis diameter on the dynamic behavior of the 
flexible boundary are investigated using combination of lattice 

Boltzmann and the immersed boundary methods. 

2. Mathematical formulations 

The discretized LBM equation is written in the form of Eq. 

(1). 
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where  is the density distribution function of a 

particle with speed
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located at  position  at time . t  is the 

time step,  is the equilibrium distribution function,  

indicates the relaxation time and  is the body force of the 

immersed body in the LBM equation. It should be noted that, the 
LBM equation can recover the N-S equations by the so-called 

Chapman-Enskog expansion. The velocities of the particles can 
be written in the form of Eq. (2): 
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In Eq. (2),  and x  is the distance between two 

adjacent nodes in the Eulerian grid. The equilibrium distribution 
function defined as follows, 
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However, the elastic force in LBM is defined as Eq. (5), 
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Macroscopic fluid density is obtained by the following 
relation,  
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In addition, the macroscopic velocity field  is defined as:  
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The Lagrangian force density  comprises two components of 

stretching/compression force  and bending force  defined as 
[23]: 
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The Lagrangian force density is related to the elastic energy 

density using the virtual work theorem: 
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Therefore, the elastic energy density consists of 
stretching/compression  and bending  components, which 

are given in discretized form as: 
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The discretized form of the Lagrangian force density 
components is given by the following relations:  
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In Eqs. (10) to (13),  (  is the total number 

of Lagrangian nodes on the body),  and  are 

Lagrangian force density components associated with the node  

on the body and  is the Kronecker delta function. Interaction 

between the fluid and body can be achieved by obtaining a proper 
relationship between the Lagrangian parameters associated with 

the cell and Eulerian parameters associated with the fluid. In this 
section, it is shown how to transfer the Lagrangian force to the 

Eulerian frame and also how to interpolate velocities from 
Eulerian to Lagrangian coordinates. The Eulerian force density 

 is obtained by integrating the Lagrangian force density 

: 
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

 f x t L s t x X s t ds   (14) 

where  represents the immersed elastic boundary and 

 is the Dirac delta function. 

To enforce the no-slip condition on the fluid-body interface, 

the velocity of the body wall should be set equal to the adjacent 

fluid velocity, i.e., 
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It should be noted that in the present work, the fluid velocity 

 is obtained using the LBM.  

Mathematically the Dirac delta function  is discontinuous 

and has to be smoothed for numerical implementation. There are 
different methods of smoothing this function. The following 

smoothed delta function is proposed by [6]:  
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where  is the distance between two Eulerian grid points 
and  denotes the distance between any two Eulerian and 
Lagrangian points.  

3. Results  

3.1. Validation 

In this section, the motion of a circular elastic body in shear 

flow is studied. Length and width of the microchannel is 

considered to be 16 times of the original radius of the body. The 

body is positioned at the center of microchannel and 160 

Lagrangian points have been used. In Fig.1a, capsule 

deformation and tank-treading movement are observed. where G 

and EB are 0.04 and 0-0.4 respectively. which are calculated by 

the equations   and . G is dimensionless shear 

rate, k is shear rate (1/s), a is initial capsule radius,  is elastic 

modulus (N/m),  is bending modulus (N.m) and  is 

dimensionless bending modulus. Taylor deformation parameter 

is defined as . In Fig. 1b, the introduced variables are 

shown. By increasing the bending modulus, the deformation of 

the body decreased. In Figs.1c and 1d present results have been 

compared with Sui and et.al [35] results. By increasing bending 

modulus, Taylor deformation parameter is decreased, which 

represents less deformation of capsule. In addition,  it can be seen 

from Fig. 1 (d), by decreasing bending modulus, dimensionless 

angle  is decreased. The result that is obtained from this section 

is that: by decreasing bending modulus, deformation of body 

increased and orientation of the body to the horizon decreased 

and its shape becomes oblique. In fact, the circle has become 

ellipse, and with the further decreasing of the bending modulus, 

the ellipse becomes more elongated. Present results are in good 

agreement with Sui et al. [35] results. 

3.2. The behavior of a flexible body in passing through stenosis 

A circular body with a diameter of H=30 µm is considered in 

the poiseuille flow. Length and height of microchannel are L= 

300 µm and D= 60 µm and in stenosis section (half oval in the 

middle of microchannel) is d= 20 µm (d/D=1/3). Reynolds 

number is Re= 0.5 (Fig. 2). The bounce-back and periodic 

boundary conditions have been used on the walls and on the inlet 

and exit of the microchannel and the boundary condition BFL has 

applied on curvilinear boundaries [36]. First, the dynamics of the 

circular body which located at the center of the microchannel, in 

two case of high and low flexibility are examined with elastic and 

bending 14×10-19 N.m, 1×10-19 N.m and 5×10-5 N.m, 19×10-19 

N.m respectively.   

In Figs. 3 and 4, motion of the body, with high and low 

flexibilities at different times, is observed while passing the  

stenosis. Pressure is considered in grid unit. One can see in Fig. 3 

that body with high flexibility is stretched more and reaches the 

end of microchannels in less time. The low-flexible body (Fig.4), 

reduces somewhat the effective cross-sectional area of the fluid 

behind the body due to its high hardness. In fact, it is similar to 

blocking a greater amount of flow path (relative to the body with 

high flexibility), which reduces the flow velocity behind the body 

and increases the flow pressure behind the immersed body 

according to Figs. 3b and 4b. In both cases, since the boundary is 

located in the center of the microchannel and the axial flow is 

symmetrical, a balance is occurred between the upper and lower 

lift forces acting on the body. Thus, the body is not displaced 

vertically. The difference in pressure created behind and in front 

of the body causes it to move in the longitudinal direction of the 

microchannel. The greater pressure on the back side relative to 

front, makes the rear side form concave shape, while the front is 

stretched more and in after. Therefore, it’s shape become convex 

before stenosis. 
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Figure 1. a) The effect of bending modulus on deformation of circular body (present result) ; b) represent L, B, θ; c) Taylor deformation parameter changes for 
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different times; d) θ/π change for different times. 
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Figure 2: The initial position of the immersed body located at the center of the microchannel 

 

Figure 5 shows that a body with a high elasticity modulus has 

a lower rate of velocity than the body with a low elastic modulus. 

This matter is also observed in the results of others researches 

[37, 38]. It should be noted that the acceleration or deceleration 

movement of biological membranes than the normal state, results 

in the lack of proper exchange of materials between the 

membrane wall and the surrounding flow and interferes with its 

most important task, ie, the exchange of materials with tissues. 

The body with high flexibility, reaches the end of the 

microchannel at a shorter time due to its faster velocity. In both 

cases, the body appears to be faster when it comes to stenosis due 

to increased flow velocity in this area. 

Figure 6 shows that the A/B ratio is higher for more 

deformable body due to its low elasticity modulus. When the 

immersed body reaches to stenosis, it is most deformed due to the 

increase in speed in this area. In this case, the body in the 

moment of passing thorough stenosis is more stretched and 

passes through the stenosis more easily with less energy from the 

fluid. After exiting from stenosis, the body reaches convex at 

front and reaches concave at behind it (Fig. 3d) due to its high 

flexibility. While the body with low deformability, maintains its 

circular shape after exiting from stenosis. 

In Fig. 7, the initial location of the body is placed under the 
center of the microchannel. The body's rotation (tank-treading) is 

caused by the shear force of the fluid around it. Due to the 
rotational phenomenon, a lifting force is applied to the deformed 

membrane and directs it towards the center of the microchannel. 
In the rotational movement, after a change in the initial shape, the 

shape and the movement direction of the body remain constant 
during the movement (after the stenosis); because the flow inside 

the microchannel is viscous, so it has shear layers. The shear is 
caused by horizontal component of the fluid velocity. It means 

that, the velocity in the vertical axis varies within the shear 
layers. Therefore, when fluid collides to the boundary, the upper 

part of the boundary is affected by higher velocity than the lower 
part. This difference in momentum on the body causes it to 

rotate. As a result of this rotation, an upward lift force from the 
fluid to the body is applied and directs it to the center of the 

microchannel.  
In this case, the maximum deformation of the body is 

observed when it passes through the stenosis. The body with high 
elasticity (Fig. 7a) is more stretched when passing through the 

stenosis compared to the body with low elasticity (Fig. 7b), while 
the body with low elasticity blocks a greater pass of flow that 
reduces the velocity and increases the pressure around the body. 

The red solid points are related to the rotation of the body (tank-

treading movement). This type of motion has been observed in 

the experimental and numerical results [39-41]. In Figs. 7c and 
7d, the velocity vector of Lagrangian points of immersed body 

with high and low elasticity are observed at the exit of stenosis. 
The body with high elasticity adapts itself to the flow path and 

passes stenosis with less energy. A body with low elasticity 
blocks the outlet span of stenosis for a moment. The velocity 

vector of the Lagrangian points in comparison to the previous 
one cannot easily fit itself with the streamline. In this case, a 

higher pressure is applied to the back of the body so that the flow 
can pass the body from the stenosis. This behavior of body in the 

passing the stenosis leads to slowing down its motion. 

Figure 8 shows the effects of decreasing the height of the 

stenosis for the body with low flexibility (Fig. 4). Figure 8a 

shows deformation of body with low flexible for case d/D = 2/3. 

Reducing the stenosis causes reduction in the deformability of 

the body. The body has the least deformation in the case 

without stenosis )Figure 8b). It is seen from the Figure 8c that 
the velocity of the body increases with decreasing stenosis 

height. By creating stenosis, the loss due to obstruction 

increases and as a result, the body velocity decreases. Stenosis 

causes the body to slow down before and after the stenosis 

and increases its velocity value when crossing the stenosis. 

4.  Conclusion 

In the present study, the combination of the lattice Boltzman 

method and the immersed boundary method was used to simulate 
the motion and deformation of a flexible body in a viscous flow. 

By increasing the elasticity modulus, the deformation and 
velocity of the body decreased. In this case, the pressure of the 

flow around the body increasesd. In addition, by decreasing the 
size of stenosis of the microchannel, the body was less deformed 

and had higher velocity, resulting in less time to reach at the end 
of microchannel. Also, the results of the simulation were in good 

agreement with the available results. By performing this 
numerical study and study of a number of different parameters, 

one can study the physics of flow and the effect of solid and fluid 
interaction on each other. Each individual behavior of these 
parameters gives the reader a view that does not feel the vacuum 

of experimental works in this field. Investigating various 
parameters affecting fluid flow and immersed membrane helps to 

understand biological systems.It is also possible to observe the 
lattice Boltzmann-immersed boundary method’s ability to model 

the dynamic behavior of biological membranes, red blood cells, 
and other deformable particles in the flow and compare the 

simplicity of programming and convergence rate of this method 
with other CFD methods.  
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Figure 3. Motion of the body with a high flexibility passing stenosis at the times a) t = 1.5ms, b) t = 2ms, c) t = 2.5ms, d) t = 3.5ms and e) t = 6ms  

 



A. Falavand Jozaei, A. Alizaeh and A. Ghafouri 

 

234 

 

0.3321 0.3333 0.3342 0.3346p:

t= 1.8 ms

Frame 001  30 Jul 2017  | | | | | | | | |Frame 001  30 Jul 2017  | | | | | | | | |

 

0.3320 0.3330 0.3342 0.3347p:

t= 2.4 ms

Frame 001  30 Jul 2017  | | | | | | |Frame 001  30 Jul 2017  | | | | | | |

 
(a)                                                                                                                              

 

(b)   

0.3320 0.3324 0.3332 0.3348p:

t= ms3

Frame 001  30 Jul 2017  | | | | | | | | | | |Frame 001  30 Jul 2017  | | | | | | | | | | |

 

0.3322 0.3324 0.3326 0.3340p:

t= 4 ms

Frame 001  30 Jul 2017  | | | | | | | | |Frame 001  30 Jul 2017  | | | | | | | | |

 
(c) 

 

(d) 

 

0.3322 0.3329 0.3331 0.3343p:

t= 7 ms

Frame 001  30 Jul 2017  | | | | | | | | |Frame 001  30 Jul 2017  | | | | | | | | |

 
(e) 

 
Figure 4. Motion of the body with a low flexibility passing stenosis at the times a) t = 1.8ms, b) t = 2.4ms, c) t = 3ms, d) t = 4ms and e) t = 7ms. 
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Figure 5. Comparison of velocity between high flexibility and low flexibility bodies. 

 

t

A
/

B

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

High flexible body

Low flexible body

(ms)

Frame 001  30 Jul 2017  | | | | |Frame 001  30 Jul 2017  | | | | |

AB

Frame 001  16 May 2017 Frame 001  16 May 2017 

 
Figure 6. Comparison of A / B ratio of high elasticity body and low elasticity body 
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Figure 7. a) Tank -treading motion of immersed body with high flexibility; b) Tank -treading motion of immersed body with low flexibility; c) Lagrangian points 

velocity vector of immersed body with high flexibility at the threshold of stenosis; and d) Lagrangian point velocity vector of immersed body with low flexibility 

at the threshold of stenosis 
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Figure 8. a) Deformation of body with low flexible for case d / D = 2/3, b) Deformation of body with low flexible for case without stenosis and d / D = 1, and c) 

comparison velocity for various sizes of stenosis. 
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6. Appendix 

The used Nomenclature in the manuscript is as follow as  

               particle streaming speed 

              discrete particle speeds 

              elastic modulus 

             bending modulus  

               density distribution function 

            equilibrium distribution function 

                force density of the fluid 

                Lagrangian force density 

             external force 

 elastic energy density 

               total number of Lagrangian nodes 

                Lagrangian coordinate 

                fluid velocity 

                body velocity 

                position on the membrane 

                Eulerian coordinate 

                fluid density 

              weight coefficients in direction i 

                 relaxation time 

                 delta function 

               lattice time step 

              lattice spacing 
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