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1. Introduction 

In recent times, the study of thermal performance of fin as a 

passive approach of enhancing heat dissipation from hot primary 

surfaces is gaining intense attention in the research community. 

For many engineering applications of fin, the thermal conductivity 

and the coefficient of heat transfer are temperature-dependent. 

Therefore, in the analysis of thermal performance of fin, the 

thermal conductivity is often modelled either by power law or by 

its linear dependence on temperature, whilst the heat transfer 

coefficient is often expressed as a power law for which the 

exponents represent different phenomena as reported in [1, 2]. In 

either case, such dependence of thermal conductivity and heat 

transfer coefficient on temperature renders the problem highly 

non-linear and difficult to solve analytically. The highly non-linear 

differential equations resulting from thermal and the heat transfer 

coefficient is solved in the literature by different authors using 

different methods such as regular perturbation expansion [3, 4], 

method of successive approximation [5], Adomian decomposition 

method [6, 7], homotopy perturbation method [8-12], homotopy 

analysis method [13, 14], variational iteration method [15-17], 
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Galerkin’s method of weighted residual [18, 19], and differential 

transformation method [20-23] to solve the nonlinear fin problem. 

Most of these approximate analytical methods usually involve a 

large number of terms which in practice, are not convenient for use 

by designers and engineers. In addition, other numerical methods 

such as finite difference method (FDM) finite element methods 

(FEM) and finite volume method (FVM) have been used to 

analyze the nonlinear heat transfer problem in fin. Nevertheless, 

the fact that some of these numerical methods, such as FEM, does 

not enforce the conservation principle in its original form, they 

however, come with increased computational time and cost. 

Therefore, to reduce the computational cost and time in the 

analysis of nonlinear problems, different wavelet collocation 

methods such as Legendre, Haar, Chebyshev, Leibnitz-Haar, cubic 

B-spline, symplectic, multi-symplectic, adaptive, multi-level, 

interpolating, rational, spectral, ultraspherical, first split-step, sine-

cosine and semi-orthogonal B-spline wavelet collocation methods 

have adopted to solve the nonlinear heat transfer equations [24-

27].  The ease of application, simplicity and fast rate of 

convergence exhibited by these methods has resulted in their 

increased popularity for nonlinear analysis of most engineering 
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systems, including nonlinear heat transfer problems of fins [28-

33]. In addition, wavelet collocation method exhibits several 

desirable characteristics including the ease of handling periodic 

boundary conditions to solve the nonlinear differential equations 

directly without simplification, linearization, and perturbation. 

Furthermore, the need for Taylor’s series expansion, mesh 

independent study, determination of auxiliary parameters, 

functions, Lagrange multiplier, Adomian polynomials and 

recursive relations as carried out HAM, VIM, ADM, VIM, DTM, 

for the analysis of nonlinear problems is not a requisite using 

wavelet collocation methods. Thus, wavelet collocation methods 

offer relative simplicity, high accuracy, orthogonal and 

normalization, possession of close support, the possibility of 

implementation of standard algorithms. Hence, in this paper, we 

applied the Haar wavelet collocation method (HWCM) to 

numerically analyse the thermal performance and thermal stability 

of longitudinal rectangular fin with temperature-dependent 

thermal properties and heat generation under multi-boiling heat 

transfer modes. The numerical solutions established are used to 

investigate the effects of nonlinear thermal conductivity, 

convective and porosity parameters on the thermal conductivity of 

the fin.  

 

2. Model Development 

Consider a rectangular longitudinal fin of length l that is 

exposed on both faces to a convective environment at temperature, 

T and with temperature-dependent heat transfer coefficient, 

h(T), thermal conductivity, K(T) and internal heat generation, qint. 

(T) shown in Fig.1. Assume there is no contact resistance where 

the base of the fin joins the prime surface, and that the fin thickness 

is negligible compared with its height and length.   

 
 

Fig.1 The geometry of straight rectangular fin [30] 

 

The governing differential equation for the fin can therefore be 

expressed as:   
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The boundary conditions are 
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The temperature-dependent thermal properties and internal heat 

generation of the fin are given respectively as: 

 

  )](1[  TTkTk a            

                                                  (3)

 

 

 
n

w

b
TT

TT
hTh 


















                                                                    (4) 

 

  )](1[int  TTqTq a           

                                                  (5) 

In the literature, the exponential constant n (multi-boiling heat 

transfer mode constant) often varies between -6.6 and 5. However, 

in most practical applications, n lies between -3 and 3 [32, 33]. The 

value of n varies under different conditions. n represents laminar 

film boiling or condensation when n= -1/4, laminar natural 

convection when n= 1/4, turbulent natural convection when 

n=1/3, nucleate boiling when n=2, radiation when n=3 and n=0, 

which implies a constant heat transfer coefficient.  

substituting Eqs. (3-5) into Eq. (1), we have 
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However, to achieve a non-dimensionalise Eq. (6), we introduce 

the following dimensionless parameters; 
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Therefore, the dimensionless form of the governing differential 

Eq. (6) and the boundary conditions can be expressed as: 
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which can be rewritten as 
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The dimensionless boundary conditions are 
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. 

3. Haar Wavelet 

Haar wavelet is a system of square wave where the first curve 

is marked up as h0(t) and the second curve is marked up as h1(t) as 

defined by:   
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 where h0(t) and h1(t) are the scaling function and mother 

wavelet, respectively.      
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To carry out wavelet transform, Haar wavelet use dilations and 

translations of functions, such that for x ϵ [0,1], the Haar wavelet 

function is defined as; 
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where 2 jm   indicates the level of the wavelet.   

Here, 0,1,...,  1i m   and 0,1,..., 2 1jk    
 represents the 

translation parameters, whilst 0,1,...,j J  is the dilatation 

parameter, and J is the maximum level of resolution. The index i, 

represents a number of wavelets is given by 

1 2 1ji m k k       where the maximum value of i is  given 

as 12 2Ji M   . It is assumed that i = 1 corresponds to the scaling 

function for which hi ≡ 1 in [0,1]. Thus, the collocation  points are 

defined as: 
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and discretizing the Haar function hi (x), the Haar coefficient 

matrix H(i, j) = hi(x), which is of 2M×2M dimension. In addition, 

the operational matrix of integration is obtained by integrating Eq. 

(12) as  
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           On evaluating these integrals by using Eq. (12), we have; 
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               Assume that 
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             re-writing Eq. (9), we get 
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the Haar wavelet method for the nonlinear problem of Eq. (9) 

subject to the conditions is now discussed; 
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 where ia  is the Haar coefficient to be determined.   

Integrating Eq. (21) from 0 to X, the solution of
 
 X  is expressed 

in terms of the Haar functions and their integrals.  

Therefore, integrating Eq. (21) and using the given boundary 

conditions, the derivative  ' X can be expressed as; 
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               Putting 1X   in Eq. (22) and using the second boundary 

condition, the value of  
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               Again, integrating Eq. (20) from 0 to X and using the first 

boundary condition; we arrived at 
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               Substituting the values of  X ,  ' X and  '' X  in Eq. (16) 

and discretising using the collocation points given in Eq. (15), 

a nonlinear system of equation is arrived at as;
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 Solving the above 2M×2M system using inexact Newton’s 

method, we obtained the unknown Haar coefficient ' ,ia s 1,i 

2, , 2M and then substituting these values in Eq. (25), we get 

the Haar wavelet collocation method which is used to find the 

approximate solution of the given nonlinear problem in Eq. (9). 
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4. Fin efficiency and Optimisation 

Here, we analyse fin efficiency as a performance indication 
parameter. Fin efficiency is defined as the ratio of the fin heat 
transfer rate to the rate that would be if the entire fin were at the 
base temperature or is the amount of heat dissipated from the entire 
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fin to the maximum heat dissipated obtained if the fin base 
temperature is kept constant throughout the fin and is given by: 
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 After non-dimensionalising Eq. (28), we have the dimensionless 
form of the efficiency as: 
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The optimization of the fin could therefore be achieved by either 
minimizing the volume (weight) for any required heat dissipation 
or maximizing the heat dissipation for any given fin volume. Thus, 
in this work, we adopt the latter by maximising the heat dissipated 
for any given fin volume. The constant fin volume is defined as 
V=Acb.  

The heat dissipation per unit volume can be written as:  
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The dimensionless form of Eq. (29) is given as 
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 Eq. (31) could be written as;  
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The maximum heat dissipation value occurs at the condition 

when the optimum fin characteristics have been achieved. 

Therefore, the fin dimensions in this situation represent the 

optimum fin configuration per unit volume. With the volume 

constant, the optimization procedure is also carried out to fix the 

profile area Ap by first expressing fQ


 as a function of the 

thermo-geometric parameter, M (or fin length b) and then 

searching for the optimum value of M or b. 

5. Results and Discussion 

As earlier pointed out, the exponent n represents the different 

transfer modes, such that when n = -1/4, it represents the laminar 

film boiling or condensation, it is laminar natural convection when 

n = 1/4, turbulent natural convection when n = 1/3, nucleate 

boiling when n =2, and radiation when n = 3. However, when n = 

0, it implies a constant heat transfer coefficient. Therefore, Fig. 2a 

and b shows the effects of boiling conditions on the dimensionless 

temperature of the fin. From Fig. 2a and b, it is shown that the 

dimensionless temperature distribution fall monotonically along 

the length of the fin at various boiling condition parameter, n. At 

lower boiling condition parameter, more heat convects from the 

fin through its length and therefore more energy is efficiently 

transferred through the length of the fin. It can therefore be implied 

that the performance of the fin is enhanced as the boiling condition 

parameter or the exponent decreases.  

 

 

 

 
 

Fig. 2. Dimensionless temperature distribution in the fin at 

when: (a) M=1, β=0, Q=0, γ=0, (b) M=1, β=1, Q=0.8, γ=0.5 

 

 

 

 
(a) (b) 

 
(c) (d) 

Fig.3 Dimensionless temperature distribution in the fin when 

(a) β=0.3, Q=0.2, γ=0.5 (b) β=0.9, Q=0.2, γ=0.5 (c) β=0.9, 

Q=0.2, γ=0.8 (d) β=0.3, Q=0.1, γ=0.2 

 

 
Figs. 3(a) - (d) shows the effects of thermogeometric parameter, 

M (the ratio of convective heat transfer to conductive heat transfer 

at the base of the fin (hb/kb)) on the straight fin under different 

nonlinear and internal heat generation conditions. As the 

thermogeometric parameter increases, the rate of heat transfer (the 

convective heat transfer) through the fin increases as the 

temperature in the fin drops faster as depicted in the figures. This 

is because as convective heat transferred at the base increases (or 

the base thermal conductivity decreases), M increases and 

consequently the temperature along the fin, especially at the tip of 

the fin decreases. Thus, it can be implied that; as the fin convective 

heat transfer increases, more heat is transferred by conduction 

through the fin thereby increasing the temperature distribution in 

the fin and consequently the rate of heat transfer.  
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Fig. 4. Dimensionless 

temperature distribution in 

the fin parameter when 

β=0.2, M=2, γ=0.2 

Fig. 5. Dimensionless 

temperature distribution in 

the fin parameters when 

M=2, β=0.3, Q=0.3 

 

The effects of internal heat generation parameter on the 

temperature distribution are depicted in Figs. 4 and 5 while Fig. 6 

shows the effects of internal heat generation on the fin thermal 

performance at different thermogeometric parameters. From these 

figures, internal heat generation parameter increases, as the 

temperature distribution of the fins decreases. Also, from Fig. 7, 

the effect of internal heat generation on the thermal efficiency of 

the fin is shown. 

 
Fig. 6. Dimensionless 

temperature distribution in the 

fin parameters 

Fig. 7. Effects of internal 

heat generation on fin 

efficiency when β=0.1, 

γ=0.8 

 
From Fig. 7, it can be seen that as M increases to a certain value, 

the dimensionless temperature distribution result in a negative 

value (i.e. thermal instability) at x=0, which contradicts an earlier 

assumption [19]. Maintaining the value of nonlinear thermal 

conductivity parameter, β while varying the value of the thermo-

geometric parameter, M produces inaccurate characteristic for 

larger values of the thermo-geometric variable.  As earlier 

established in the literature [19, 33], the increasing values of the 

thermo-geometric parameter tends towards negative values at the 

tip of the fin. The numerical solutions for the heat transfer in the 

fin, based on the assumption of the one-dimensional steady-state, 

heat conduction equation are not only inaccurate but are also 

thermally unstable as the fin thermo-geometric parameter, M 

exceeded a specific value [33]. Moreover, the thermal stability in 

the solution depicts that the adiabatic condition at the fin tip is not 

always maintained depending on the chosen parameter values as 

an investigation of their stability holds huge significance.  

Moreover, the decreasing value of M for thermal instability of the 

fin with constant thermal properties without internal heat 

generation is found to be around √2 [19]. Furthermore, the thermal 

instability value for any particular value of the thermogeometric 

parameter decreases with increasing values of the thermal 

conductivity and internal heat generation parameter. Fig. 8 shows 

the limiting/critical values of the thermo-geometric parameter, M 

for each value of n under different multi-boiling heat transfer 

models.  From Fig. 8, it can be seen that the critical values of M 

and n are also the values for which the no-flux flow boundary 

condition is satisfied at the tip of the fin, and for which accurate 

solutions may be found. These thermal stability criteria as pointed 

out in this study are very important and of practical importance in 

the design of fins. 

 
Fig. 8. Variation of thermogeometric parameter with multi-

boiling heat transfer mode parameter 

Table 1: Limiting values of thermo-geometric parameter, M for 

thermal stability of different multi-boiling heat transfer modes 

n Numerical method 

(NM) 

Present study 

(HWCM) 

-4 1.2540 1.2549 

-3 1.2398 1.2398 

0 1.6634 1.6634 

1/3 1.6883 1.6832 

½ 1.6950 1.6951 

1 1.589 1.5892 

2 1.458 1.4583 

3 1.341 1.3412 

 

 
 

Fig. 9   Effects of non-linear 

thermal conductivity and 

thermo-geometric parameters 

on the dimensionless heat 

transfer, Qf/ζ 

Fig. 10.  Effects of non-linear 

thermal conductivity 

parameter on the optimum 

thermo-geometric parameter 

 

Finally, to achieve optimum design parameter and criteria for the 

fin, Fig. 9 shows the dimensionless heat transfer Q/ζ, for a unit fin 

volume, with varying M from 1 and 2 for specified values of non-

linear thermal conductivity terms. β for the case of n=0, under a 

given profile area, Ap, the heat transfer first rises and then falls as 

the fin length increases. From the figure, it can be seen that the 

optimum fin length (i.e. when Q/ζ reaches a maximum value) 

increases as the non-linear thermal conductivity term, β increases. 

This also shows that the optimum value of M can be obtained 

based on the value of the non-linear term. Therefore, from the 

analysis, the optimum dimensions of the convection fin with 

variable thermal conductivity are established and the relative 

values of optimum M and β are shown in Fig. 10. 

 

Table 2: Comparison of results of fin-tip temperature 

    β           M                NM                HWCM 

0.00      0.00          1.000000          1.000000 
0.50      0.25          0.921090           0.921111 
0.60      2.00          0.566280           0.566280 
0.00      2.00          0.459098           0.459098 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

D
im

e
n
s
io

n
le

s
s
 t

e
m

p
e
ra

tu
re

, 

 

Dimensionless lenght, X

Q = 0.3

Q = 0.5

Q = 0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

D
im

e
n
s
io

n
le

s
s
 t

e
m

p
e
ra

tu
re

, 

 

Dimensionless lenght, X

= 0.1

= 0.3

= 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

D
im

e
n
s
io

n
le

s
s
 t

e
m

p
e
ra

tu
re

, 

 

Dimensionless lenght, X

 

 
 = 0.00

 = 0.20

 = 0.40

 = 0.60

 = 0.80

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
in

 e
ff

ic
ie

n
c
y
, 


 

Thermogeometric parameter, M

Q = 0.0

Q = 0.1

Q = 0.3

-3 -2 -1 0 1 2 3
1.2

1.3

1.4

1.5

1.6

1.7

1.8

Multi-boiling heat transfer mode parameter, n

M
a
x
im

u
m

 T
h
e
rm

o
-g

e
o
m

e
tr

ic
 p

a
ra

m
e
te

r,
 M

m
a
x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
f /

 
 

M

 

 
= -0.6

= -0.2

= 0.2

= -0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
1.1

1.2

1.3

1.4

1.5

1.6

1.7

 M
O

p
tim

u
m





G. Oguntala, R. Abd-Alhameed, G. Sobamowo and I. Danjuma 

42 

 

 

Table 3: Comparison of results of temperature gradient at the fin 

base 

    β           M                NM                HWCM 

0.00      0.00          0.000000           0.000000 
0.50       0.25         -0.158000          -0.157900 
0.60       2.00         -0.886849          -0.886832 

 0.00       2.00         -1.256367          -1.256366 
 

Tables 2 and 3 show comparison of results using a numerical 

method (NM) and Haar wavelet collocation method (HWCM) for 

the fin-tip temperature and temperature gradient at the fin base, 

respectively when n=1 and Q=0. From the computational results, 

as shown in the tables, it is established that there is good agreement 

between HWCM and the standard NM. 

 

6. Conclusion 

In this work, Haar wavelet collocation method is used to 

investigate the thermal performance, thermal stability and 

optimum design analyses of a longitudinal rectangular fin with 

temperature-dependent thermal properties and internal heat 

generation under multi-boiling heat transfer. The effects of the key 

controlling parameters on the thermal performance is investigated, 

established and discussed. The study establishes that the 

dimensionless temperature distribution falls monotonically along 

fin length for various boiling condition parameter, n. The study 

also establishes that as M increases to a certain value (x=0), the 

dimensionless temperature distribution results in a negative value 

indicating thermal instability. In addition, we establish that as the 

convective heat transfer at the fin base increases, the 

thermogeometric parameter, M increases, which subsequently 

decreases the temperature along the fin, especially at the tip of the 

fin. Furthermore, the computational results obtained in this study 

are found to be in good agreement with the standard numerical 

solutions. The results of this work will enhance the optimum 

design of the fin for thermal performance. 

 

Nomenclature 

ar       aspect ratio 

A    cross-sectional area of the fins, m2 

Bi    Biot number 

h      heat transfer coefficient 

hb    heat transfer coefficient at the base of the fin 

H    dimensionless heat transfer coefficient at the base of the fin  

j       geometric parameter 

k      thermal conductivity of the fin material 

kb    thermal conductivity of the fin material at the base of the fin 

K     dimensionless thermal conductivity of the fin material 

L     Length of the fin,   

M    dimensionless thermo-geometric fin parameter 

M2   thermo-geometric fin parameter  

n     convective heat transfer power 

P     perimeter of the fin,   

T    Temperature 

T∞   ambient temperature 

Tb   Temperature at the base of the fin 

x     fin axial distance 

X    dimensionless length of the fin 

Q    dimensionless heat transfer 

qi    the uniform internal heat generation 

 

 

Greek Symbols 

β      thermal conductivity parameter or non-linear parameter 

δ      thickness of the fin, m 

δb    fin thickness at its base. 

γ      dimensionless internal heat generation parameter 

θ     dimensionless temperature 

θb    dimensionless temperature at the base of the fin 

η     efficiency of the fin 

ε     effectiveness of the fin       
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