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 The development and production of high performance equipment necessitate the use of 
passive cooling technology. In this paper, heat transfer study of convective-radiative 
straight fin with temperature-dependent thermal conductivity under the influence of 
magnetic field is carried out using Legendre wavelet collocation method. The numerical 
solution is used to investigate the effects of magnetic, convective and radiative parameters 
on the thermal performance of the fin.  From the results, it is established that increase in 
magnetic, convective and radiative parameters increase the rate of heat transfer from the 
fin and consequently improve the thermal performance of the fin. The results obtained are 
compared with the results established results in literature and good agreements are found. 
The analysis can help in enhancing the understanding and analysis of the problem. Also, 
they can provide platform for improvement in the design of extended surfaces in heat 
transfer equipment under the influence of magnetic field. 
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1. Introduction 

The ultimate goals of improving the design of various thermal 

systems such as heat exchangers, economizers, super heaters, 

conventional furnaces, gas turbines, etc. have been to achieve 

high thermal performance with reduced size and cost. These goals 

are often meant by the use of passive components such as fins 

and spines. The study of thermal behaviors, the effects of various 

parameters on the thermal performance and the nonlinearities in 

the developed thermal models of the passive devices have 

attracted a large number of research works. The past few decades 

have witnessed the development of different solution techniques 

for the nonlinear equations arising in the heat transfer analysis of 

the devices. Aziz and Enamul-Huq [1] applied regular 

perturbation expansion to study a pure convection fin with 

temperature dependent thermal conductivity. Aziz [2] extended 

the previous analysis to include a uniform internal heat 

generation in the fin. A few years later, Campo and Spaulding [3] 

applied method of successive approximation to predict the 

thermal behaviour of uniform circumferential fins. Chiu and 

Chen [4] and Arslanturk [5] adopted the Adomian decomposition 

Method (ADM) to obtain the temperature distribution in a pure 

convection fin with variable thermal conductivity. The same 

problem was also solved by Ganji [6] with the aid of the 

homotopy perturbation method originally proposed by He [7]. 

Chowdhury and Hashim [8] applied the Adomian decomposition 

method to evaluate the temperature distribution of straight 

rectangular fin with temperature dependent surface flux for all 

possible types of heat transfer. In the following year, Rajabi [9] 

employed homotopy perturbation method (HPM) to calculate the 

efficiency of straight fins with temperature-dependent thermal 

conductivity. A year later, Mustapha [10] adopted homotopy 

analysis method (HAM) to find the efficiency of straight fins with 

temperature-dependent thermal conductivity. Also, Coskun and 

Atay [11] utilized variational iteration method (VIM) for the 

analysis of convective straight and radial fins with temperature-

dependent thermal conductivity while Languri et al.[12] applied 

both variation iteration and homotopy perturbation methods for 

the evaluation of efficiency of straight fins with temperature-

dependent thermal conductivity. Coskun and Atay [13] applied 

variational iteration method to analyze the efficiency of 

convective straight fins with temperature-dependent thermal 

conductivity. In the same year, Atay and Coskum [14] employed 

variation iteration and finite element methods to carry out 

comparative analysis of power-law-fin type problems. Domairry 

and Fazeli [15] used Homotopy analysis method to determine the 

efficiency of straight fins with temperature-dependent thermal 

conductivity.  Hosseini et al. [16] applied homotopy analysis 

method to provide approximate but accurate solution of heat 
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transfer in fin with temperature-dependent internal heat 

generation and thermal conductivity. Joneidi et al. [17], Moradi 

and Ahmadikia [18] Moradi [19], Mosayebidorcheh et al. [20], 

Ghasemiet al. [21], Sandri et al. [22], Ganji and Dogonchi [23] 

presented analytical solution for fin with temperature dependent 

thermal coefficient using differential transform method (DTM). 

The above reviewed approximate analytical methods solve 

nonlinear differential equations without linearization, without 

restrictive assumptions or any perturbation, without 

discretization or approximation of the derivatives. However, 

most of the approximate methods give accurate predictions only 

when the nonlinearities are weak and they fail to predict accurate 

solutions for strong nonlinear models. Also, when they are 

routinely implemented, they can sometimes lead to erroneous 

results [24-26]. Additionally, some of them require more 

mathematical manipulations and are not applicable to all 

problems, and thus suffer a lack of generality.  For example,  

DTM proved to be more effective than most of the other 

approximate analytical solutions as it does not require many 

computations as carried out in ADM, HAM, HPM, and VIM [27]. 

However, the transformation of the nonlinear equations and the 

development of equivalent recurrence equations for the nonlinear 

equations using DTM proved somehow difficult in some 

nonlinear system such as in rational Duffing oscillator, irrational 

nonlinear Duffing oscillator, finite extensibility nonlinear 

oscillator. Moreover, the determination of Adomian polynomials 

as carried out in ADM, the restrictions of HPM to weakly 

nonlinear problems as established in literatures, the lack of 

rigorous theories or proper guidance for choosing initial 

approximation, auxiliary linear operators, auxiliary functions, 

and auxiliary parameters in HAM and the search Langrange 

multiplier as carried in VIM, and the challenges associated with 

proper construction of the approximating functions for arbitrary 

domains or geometry of interest as in Galerkin weighted residual 

method (GWRM), least square method (LSM) and collocation 

method (CM) are some of the difficulties in applying these 

approximate analytical methods [27]. Therefore, the quest for 

comparatively simple, flexible, generic and highly accurate 

analytical solutions continues. In other to reduce the computation 

cost and time in the analysis of nonlinear problems, different 

wavelet collocation methods such as Legendre, Haar, Chebyshev, 

Leibnitz-Haar, cubic B-spline, sympletic, multi-sympletic, 

adaptive, multi-level, interpolating, rational, spectral, 

ultraspherical, first split-step, sine-cosine and semiorthogonal B-

spline wavelet collocation methods have adopted to solve 

different nonlinear equations.  The ease of use, simplicity and fast 

rate of convergence have in recent times made these methods gain 

popularity in nonlinear analysis of systems and they have been 

applied to nonlinear problems in heat transfer analysis of fins [28-

32]. Also, the ability of these wavelet collocation methods to 

solve the nonlinear differential equations directly without 

simplification, linearization, perturbation, Taylor’s series 

expansion, mesh independent study, determination of auxiliary 

parameters, functions, Lagrange multiplier, Adomian 

polynomials and recursive relations as carried out HAM, VIM, 

ADM, VIM, DTM etc. Therefore, in this paper, effects of magnet 

field on the thermal performance of convective-radiative straight 

fin with temperature-dependent thermal conductivity using 

wavelet collocation method. The wavelet collocation method is 

mathematically very simple, easy and fast.  It is an efficient and 

powerful in solving wide class of linear and nonlinear differential 

equations. In recent times, the method has gained the popularity 

and reputation of being a very effective tool for many practical 

applications. From the computational simulation point of view, it 

has been established that the numerical approximate solution 

provided by the method is much closer to the exact solutions in 

many practical applications of the method. The results of 

obtained by LWCM are in excellent agreements with exact 

analytical solutions (for the linear model) and the direct 

numerical solutions (for the nonlinear model). 

2. Problem formulation 

Consider a convective-radiative straight fin of temperature-

dependent thermal conductivity k(T), length L and thickness δ 

that is exposed on both faces to a convective environment at 

temperature aT and with heat transfer co-efficient h and subjected 

to magnetic field as shown in Fig.1, assuming that the heat flow 

in the fin and its temperature remain constant with time, the 

temperature of the medium surrounding the fin is uniform, the fin 

base temperature is uniform, there is no contact resistance where 

the base of the fin joins the prime surface, also the fin thickness 

is small compared with its width and length, so that temperature 

gradients across the fin thickness and heat transfer from the edges 

of the fin may be neglected. The dimension x pertains to the 

length coordinate which has its origin at the tip of the fin and has 

a positive orientation from the fin tip to the fin base.  Based on 

Darcy’s model and following the above assumptions, the thermal 

energy balance could be expressed as stated in Eq. (1) 
 

 

 

.  

Fig. 1 Schematic of the convective-radiative longitudinal 

porous fin with magnetic field 
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Further simplification of Eq. (10) gives the governing differential 

equation for the fin as  
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After substitution of Eq. (12) into Eq.(10), taking the magnetic 

field term as a linear function of temperature, we have 
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 The case considered in this work is a situation where small 

temperature difference exists within the material during the heat 

flow. This actually necessitated the use of temperature-invariant 

physical and thermal properties of the fin. Also, it has been 

established that under such scenario, the term T4can be expressed 

as a linear function of temperature. Therefore, we have 
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On substituting Eq. (14) into Eq. (13), we arrived at 
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On introducing the following dimensionless parameters in Eq. 

(16) into Eq. (16),  
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we arrived at the dimensionless form of the governing Eq. (13) 

as  
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and the dimensionless boundary conditions 
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For conveniences, the asterisk will be removed in the subsequent 

analysis 

 

3. Method of Solution: Legendre Wavelet Collocation 

Method 

There is a difficulty in developing an explicit exact 

analytical/closed-form solution for the above non-linear Eq. (19). 

Therefore, in this work, we apply Legendre wavelet collocation 

method. The wavelet algorithm is based on collocation method 

and the procedures for applications are described as follows.  

 

Wavelets: Continuous wavelet are defined by the following 

formula 
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Where a and b are dilation and translation parameters, 

respectively. 

 

The Legendre wavelets defined on the interval [0, 1] is given by  
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Where m=0,1,…,M-1 and n=1,2,...2k-1. Pm(x) is the Legendre 

polynomial of order m 
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A function f(x) defined in domain [0, 1] can be expressed as 
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inner product 

Taking some terms in infinite series, we can write Eq. (25) as  
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(i) Property of the product of two Legendre 

wavelets 

 

If E is a given wavelets vector, then we have the property 
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3.1 Legendre Wavelet Collation Method 
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On expanding Eq. (36), we have 

 

    

    

 

    
 

2 2

2

2

2 2

1 2

1 1 1

1 1

, , ,.....,

T T

T T

T T

n

C P C P X

C X C P X

M Ha N

C P C P X

R X c c c

  

  

 





  

   
 



 
   
 

 



 

 

 

(37) 

 

 

Choosing n collocation points i.e. xi, i =1,2,3,...,n in the interval 

(0,1), at which residual R(x, ci) equal to zero. The number of such 

points gives the number of coefficient ci, i=1,2,3,..,n.  
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Thus, we get R(X, c1,c2,c3,...,cn)=0, i =1,2,3,...,n.  

 

The above Eq. (37) gives system of nonlinear equations which 

are solved simultaneously using Newton-Raphson method and 

the values of C are obtained. Substituting the values of C in Eq. 

(20), the approximate solution of  X is found. 

 

4. Results and Discussion 

 

Effects of thermo-geometric term, radiation number and 

magnetic number (Hartmann number) on the dimensionless 

temperature distribution and by extension on the thermal 

performance of the fin are shown in Figs 2 and 3. From the 

figures, as the magnetic parameter increases, the temperature 

decreases rapidly and the rate of heat transfer (the convective-

radiative heat transfer) through the fin increases as the 

temperature in the fin drops faster (becomes steeper reflecting 

high base heat flow rates) as depicted in the figures. The rapid 

decrease in fin temperature due to increase in the magnetic 

parameter is because as Hartmann number increases, the 

magnetic force increases and this in turn increases the magnetic 

field strength which consequently decreases the temperature of 

the fin as shown in the figures. Therefore, the thermal 

performance of the fin is increased by the presence of the 

magnetic field. This is in agreement with the deduction from 

works of Hoshyar et al. [33]. Also, the figures depict the effects 

of nonlinear parameter or temperature-dependent thermal 

conductivity term on the thermal performance of the fin. From 

the figures, it could be deducted that the nonlinear thermal 

conductivity parameter has direct and significant effects on the 

rate of heat transfer of the fin.  
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Figs. 2 Effects of radiation and Hartmann numbers on the 

temperature distribution in the fin when β=0.5 

 
Figs. 3 Effects of radiation and Hartmann numbers on the temperature 

distribution in the fin when β=1.5 
 

Figs. 4 and 5 show the effects of non-linear thermal conductivity 

on the fin thermal performance under different thermo-geometric 

parameter, radiation number and Hartmann number. The results 

show that performance of the fin temperature decreases with 

increase in the nonlinear term or the thermal conductivity 

number. Also, the figures depict that as the thermo-geometric 

parameter increases, the rate of heat transfer through the fin 

increases as the temperature in the fin drops faster (becomes 

steeper reflecting high base heat flow rates). The profile has 

steepest temperature gradient at lower value of the thermo-

geometric parameter, but its much higher value gotten from the 

lower value of thermal conductivity than the other values of M in 

the profiles produces a lower heat-transfer rate.  

 
Figs. 4 Effects of non-linear parameter on the temperature 

distribution in the fin when M=0.50, N=0.25, H=0.50 

 
Figs. 5 Effects of non-linear parameter on the temperature 

distribution in the fin when M=1.50, N=0.75, H=1.00 

 

Table 1: Comparison of results 

X LWCM NUM 

0.00 0.863499240 0.863499231 

0.05 0.863828561 0.863828568 

0.10 0.864817079 0.864817090 

0.15 0.866465751 0.866465743 

0.20 0.868776255 0.868776261 

0.25 0.871751107 0.871751104 

0.30 0.875393406 0.875393404 

0.35 0.879707016 0.879707010 

0.40 0.884696498 0.884696500 

0.45 0.890367175 0.890367181 

0.50 0.896725092 0.896725096 

0.55 0.903777057 0.903777060 

0.60 0.911530656 0.911530658 

0.65 0.919994252 0.919994259 

0.70 0.929177055 0.929177056 

0.75 0.939089074 0.939089079 

0.80 0.949741206 0.949741203 

0.85 0.961145186 0.961145189 

0.90 0.973313762 0.973313764 

0.95 0.986260543 0.986260549 

1.00 1.000000000 1.000000000 

 

5. Conclusion 

In this work, thermal analysis of convective-radiative fin with 

thermal conductivity under the influence of magnetic field has 

been carried out using Legendre wavelet collocation method. The 

numerical solution is used to investigate the effects of magnetic, 

convective and radiative parameters on the thermal performance 

of the fin.  From the results, it is established that increase in 

magnetic, convective and radiative parameters increase the rate 

of heat transfer from the fin and consequently improve the 

thermal performance of the fin. The results obtained are 

compared with the results established results in literature and 

good agreements are found. The analysis can serve as basis for 

comparison of any other method of analysis of the problem and 

they also provide platform for improvement in the design of fin 
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in heat transfer equipment where the surrounding fluid is 

influenced by a magnetic field. 

 

 
Nomenclature 

  Acr     cross sectional area of the fins 

  Ap    profile area of the fins 

 b     Length of the fin 

B     magnetic induction 

Bo    magnetic field intensity 

E     electric field 

h      heat transfer coefficient 

H     Hartmann number 

J      total current intensity 

Jc     conduction current intensity 

k      thermal conductivity of the fin material 

ka     thermal conductivity of the fin material at ambient temperature   

M    dimensionless thermo-geometric fin parameter 

m2   thermo-geometric fin parameter  

N    dimensionless radiation number 

q     total rate of heat transfer  

qc   rate of heat conduction transfer 

qr    rate of heat radiation transfer 

 

Ra   Modified Rayleigh number 

Rd   radiation-conduction number 

P     perimeter of the fin 

t      thickness of the fin 

T    Temperature 

Ta   ambient temperature 

Tb   Temperature at the base of the fin 

V    Voltage 

x     fin axial distance, m 

X    dimensionless length of the fin 

 

Greek Symbols 

λ      non-linear thermal conductivity parameter  

β      dimensionless non-linear thermal conductivity parameter  

βR    Rosseland extinction coefficient  

θ     dimensionless temperature 

ε      emmisivity of the fin 

σ       Electric conductivity 

σst      Stefan-Boltmann constant 
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