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Abstract 

In this paper, a new virtual leader following consensus protocol is introduced to perform the internal 

(asymptotic) stability analysis of longitudinal platoon of vehicles under generic network topology. In all previous 

studies on multi-agent systems with generic network topology, the control parameters are strictly dependent on 

eigenvalues of network matrices (adjacency or Laplacian). Since some of these eigenvalues are complex, the 

stability analysis with the presented methods is very hard or even impossible for large scale or time-varying 

networks. A new approach is introduced in this paper to decouple the large dimension closed-loop dynamics to 

individual third-order linear differential equations. A new spacing policy function assuring safety and increasing 

the traffic capacity is introduced to adjust the inter-vehicle spacing. The stable regions of communication and 

parasitic delays are calculated by employing the cluster treatment characteristic roots (CTCR) method. It will be 

shown that the presented approach assures the internal stability of large-scale platoon of vehicles with generic 

network topology. The most important privilege of the presented method compared with the previous approaches, 

is that the control gains are independent on network structure. This new finding, simplifies the stability analysis 

and control design specially for large scale platoons and time-varying networks. Several simulation results are 

provided to show the effectiveness of the proposed approaches.   
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1.   Introduction 

Traffic congestion imposes an intolerable burden on 

urban inmates. Increasing in traffic density will cause the 

traffic congestion on the highways which reduce the 

traffic safety, increasing air pollution, traveling time, and 

fuel consumption [1-3]. Vehicular platooning is a useful 

solution for reducing the impact of traffic congestion [4, 

5]. The control theory community has put much attention 

into developing new approaches for vehicular platoon 

control [6-9]. This regard is due to the important role of 

platoons on traffic congestion. Adaptive cruise control 

(ACC) is a prevalent approach for vehicular platoon 

control. This approach as a powerful tool in vehicular 

platooning has received much attention in recent decades 

[7, 10, 11]. 

  For vehicular platoons, in addition to internal 

stability (asymptotic stability), the string stability should 

be investigated [12, 13]. A vehicular platoon is string 

stable if the spacing errors are not propagated along the 

group when external disturbances are applied to lead 

vehicle [14, 15]. The string stability analysis has been 

widely investigated in control design of vehicular 

platoons [7, 8, 12, 13, 15]. There is a direct relation 

between string stability and spacing policy. In general, 

there are two policies for spacing control of vehicular 

platoons: constant spacing policy (CSP) and constant 

time headway policy (CTHP). In CSP, the distance 

between successive vehicles is controlled to be constant 

and independent of velocity [16-18]. Whereas in CTHP, 

it varies linearly with velocity [19-21]. 

  The control structure of a vehicle consists of two 

main parts: upper level control and lower level control 

[11, 12, 22]. The upper level control calculates the 

desired acceleration and lower level control calculates 

the appropriate inputs for throttle and brake actuators to 

produce the desired acceleration. Lower level dynamics 

and the vehicle itself, plays the role of node dynamics for 

upper level controller [10]. In a platoon, each vehicle is 

in communication with its neighbors and by using a 

suitable control law, certain objectives such as internal 

stability, string stability and small inter-vehicles spacing 

are achieved. The control design of vehicular platoons 

has a hierarchical structure [10]. 1) Individual vehicle 

dynamics, 2) Communication structure between 

vehicles, 3) Centralized or decentralized control scheme 

and 4) Inter-vehicular spacing strategy. A platoon is 

homogeneous if all vehicles have identical dynamics, 

otherwise it is called heterogeneous [10, 12]. 

  In recent years, a large amount of research works 

have been accomplished on stability analysis and control 

design of vehicular platoons. In [22-24] several control 

protocols are presented assuring safety during 

emergency braking. Robust control against un-modeled 

dynamics and undesirable effects such as parameter 

uncertainties, data losing, and external disturbances is 

studied in [16] and [17]. Adaptive control is employed to 

estimate the parameter uncertainties such as vehicle 

mass, air drag force, and drag coefficient [17, 18]. Model 

predictive control (MPC) is considered in [14] to provide 

the internal and string stability of 1-D homogeneous 

platoons. The effect of communication time delay on 

performance of stability is studied in [9, 11, 12, 20, 23, 

25, 26]. In [20, 23, 25] delay is assumed to be 

homogenous whereas in [9, 12, 22, 27] it is assumed to 

be heterogeneous. PDE-based approaches for formation 

control of vehicular platoons are investigated in [28, 29]. 

Second order and third order models are used to describe 

the longitudinal motion of platoon in [9, 19, 25, 30] and 

[22, 23, 28], respectively. 

  To the best of our knowledge, the problem of 

internal stability of large scale vehicular platoons with 

generic network topology under time delay has not been 

considered so far. Very few works have been carried out 

on small dimension platoons with generic network 

topology [9, 12, 22, 27, 30]. None of these approaches 

are robust against changing the length of platoon and 

usual maneuvers such as split, merge, leave, etc. In all of 

these studies, the length of platoon should be exactly 

known without any changes. In the presented methods, 

the control parameters are strictly dependent on 

eigenvalues of network matrices (adjacency or 

Laplacian). Therefore, the stability analysis of large scale 

platoons under generic communication topology with the 

existing methods is very hard or even impossible. 

  In this paper, due to large length of platoon, a new 

virtual leader following protocol is introduced to provide 

the necessary conditions on control parameters satisfying 

internal stability. Afterwards, by presenting a new 

approach, the closed-loop dynamics of platoon is 

decoupled to individual third-order linear differential 

equations. It will be shown that the proposed consensus 

algorithm, guarantees the stability of generic vehicular 

networks with finite and infinite dimensions. Due to 

physical considerations, both communication and 

parasitic delays are involved in system modeling and 

control design. The stable regions of delay are calculated 

by employing the cluster treatment characteristic roots 

(CTCR) method. To adjust the inter-vehicle spacing, a 

new spacing policy function which is the combination of 

CSP and CTHP is introduced. 

The most important contributions of this paper are as 

follows: 1- introducing a new virtual leader following 

consensus protocol assuring internal stability of large 

scale vehicular networks in presence of time delay, 2- 

presenting a new decoupling approach which converts 

the infinite dimension closed-loop dynamics to 

individual third-order linear differential equations, 3- 

presenting a new spacing policy function to adjust the 
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inter-vehicle spacing which increases safety and traffic 

capacity. 

       The rest of paper is organized as follows. In section 

2, a brief review of longitudinal model of vehicle is 

presented.  In section 3, the internal stability analysis of 

large-scale vehicular networks is presented. In section 4, 

the simulation studies are provided to show the 

effectiveness of the proposed methods. Finally, this 

paper is concluded in section 5. 

2.   Longitudinal Model of Platoon 

Consider a group of N+1 vehicles moving in 1-D motion 

as shown in Fig. (1). The following differential equation 

describes the longitudinal motion of vehicle [10, 22, 28] 

( , ) ( )i i i i i i ia h v a q v r 
 

(1) 

where , ,i ix v  and 
ia  are position, velocity, and 

acceleration of ith vehicle, respectively and 
ir  is the 

input of engine. Also ih
 and iq

are defined as follows 

21
( , )

2

1
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i i i i i

i i i i
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i i
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(2) 

where


is the mass density of air, , , , ,i i i iT H c R and 
iM

are engine time constant, cross sectional area, air drag 

coefficient, rolling resistance and mass of vehicle. By 

taking the following lower level control 

21
,

2
i i i i i i i i i i i ir u M H c v R T H c v a    

 
(3) 

where iu
is the additional control input, the following 

third-order linear model is obtained [10, 22, 28] 

i i i iT a a u 
 

(4) 

The control architecture of a vehicle is composed of two 

levels [13]: the lower level control
( )ir which 

compensates the nonlinear vehicle dynamics and the 

upper level control
( )iu

which calculates the desired 

acceleration of vehicle. In this paper, only upper level 

control is designed and it is assumed that lower level 

control has already been designed. Fig. (2) depicts the 

relationship between upper level control and lower level 

control. 

Figure 2. Relation between upper level and lower level 

controllers. 

3.   Internal Stability Analysis of Vehicular Networks 

with Generic Topology 

In the platoon network, it is assumed that each vehicle is 

in communication with its neighbors through vehicle to 

vehicle communication (V2V) and with virtual leader 

through vehicle to infrastructure (V2I). The following 

virtual leader following scheme is considered for each 

vehicle 
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(5) 

 

where
1 2 3, ,c c c are control parameters,

0 0,v a are velocity 

and acceleration of virtual leader, 
iN is the number of 

neighbors of vehicle i, 
i is the in-degree of vehicle i, 

,i iv a are velocity and acceleration of each vehicle, 
0, 

are V2V and V2I communication delays and ( )t is 

defined as follows 
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Figure 1. A 1-D homogeneous vehicular platoon with non-uniform and directed (generic) network topology 
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0 0

1
( ) ( )

i

i j v t  


    
 

(6) 

where ,k kL D and h are length, inter-vehicle spacing and 

time constant headway. Also, the spacing function

 ( )iF t which is a combination of CSP and CTHP is 

defined as follows 

  max 1 2

2 1

( ) ( ) / 2
( ) 1 tanh 2

2
i

v t R R
F t

R R


 

   
      

 
 

(7) 

where
1 2 max, ,R R v are positive constants. Fig. (3) shows 

the range policy function (.)F for 1 220, 40R R  and 

max 50.v  This policy function has two main profits: 1) 

increasing the traffic capacity and 2) assuring safety. 

When 1( ) ,i t R  the lead vehicle tends to stop for safety 

reasons and when 2( ) ,i t R  tends to reach to maximum 

velocity to increase the traffic capacity. 

The tracking error and its time derivative for each 

vehicle is defined as follows 

0 0(0), , ,i i i i i i i i ie x v t x e v v e a e a        (8) 

By considering that  0 0( ) ,ijv F t the control protocol (5) 

in terms of tracking error can be represented as follows 

 1 1 0

1

2

3

1 1

( )

1
( ) ' ( ) ( ) ( )

1
( ) ( ) ( )

i

i i

i

N

i j i

ji

N N

j j i

j ji i

u t

c e t c F t e t e t

c
e t c e t e t

 


 
 



 



 
     

 

 
     

 



 

 

 

  

 

(9) 

The closed-loop dynamics of vehicle i will be in the 

following form by considering the parasitic delay ( )  
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     (10) 

By defining the error vector as
1 1 1, , ,..., , , ,N N Ne e e e e e   E

the platoon closed-loop dynamics will be in the following 

form 

Figure 3. The range policy function F(.) 
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where 1D D A and 
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By applying the following theorem, the large dimension 

closed-loop dynamics of platoon is converted to 

individual third-order linear differential equations. 

Theorem 1. Without loss of generality, it is assumed that 

the adjacency matrix A has n distinct real eigenvalues i

and m distinct complex eigenvalues i i ig jh   . It is 

assumed that rn and rm are repetition orders of rth real or 

complex eigenvalues. Therefore,
1 1

n m

r rn m N   , 

where N is the length of platoon. There exists a non-

singular matrix N NV such that 

 

1

1 1

,

,..., , ,...,n n n mdiag



 





V AV Π

Π Π Π Π Π
 

 

(12)   

where , 1,2,...,i i nΠ are Jordan blocks associated to real 

eigenvalues. For repetitive real eigenvalues, these blocks 

are in the following form 
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Based on nilpotent matrices associated to , {0,1},i  

[31].
 

Moreover, Jordan blocks associated to i are as 

follows ( 1,..., )i n n m    
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(14) 

Proof. Appendix 1. 

        According to theorem 1, there exists a non-singular 

matrix V such that, 1 , V AV Π whereΠ is the Jordan 

canonical form of matrix A. By defining 3( ) , E V I E

(11) can be written in the following form: 
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(15) 

By applying lemma (1) to (15), we will have 
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Theorem 2. Under the following conditions and 

sufficiently small time delay, system (16) is globally 

asymptotically stable. 
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(17) 

where  1 1 0 2 3'( ( )), ,c F t c cL ,  2 0,0,1/
T

TL and P is 

a positive definite matrix satisfying  1 2 S S P
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Proof. System (16) without time delay should be stable. 

The matrix 1 2 3N N    I S I S Π S is in fact a block 

upper diagonal matrix. For real eigenvalues, these blocks 

will be in the following form 
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and for complex eigenvalues in the following form 
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According to matrix theory [31], system (13) without 

delay is asymptotically stable if , .i iΘ Θ 0 The 

characteristic equation of iΘ is as follows 
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(20) 

By employing the Routh-Hurwitz criterion, it can be 

found that under the following conditions, (20) is 

asymptotically stable 
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According to Gersgorin theorem (appendix 2), 1.i 

Therefore, (1-21) is always satisfied. It can be verified 

that under condition (1-17), (2-21) is satisfied.  

     In continuance of proof, from lemma (2), it is inferred 

that system (19) is asymptotically stable if there exists a 

positive definite matrix P satisfying the following 

inequality 
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    

 

2 1 2 1 2

2 2

0

0

T T

i T

i

g

g

    

 
  
 

I S S P P S S

L L 0

 

 

 

(23) 

Since  2 2
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L L is a negative semi-definite 

matrix, therefore eq. (23) is always negative definite. By 

calculating the stable regions of time delay, the proof will 

be complete. In continuance, a brief review of D-

subdivision method is presented. By employing (18) and 
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(19), the characteristic equations of (16) for real and 

complex eigenvalues are as eqs. (24) and (25), 

respectively. 
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ice have infinite roots, the stability analysis 

of (24) and (25) by using Routh-Hurwitz is really hard or 

impossible. Therefore, the following Rekasius 

transformations are applied to achieve a finite dimension 

polynomial [32]. 

1 2

1 2

1 1
, , ,

1 1

s sT s T s
e e s j

T s T s

      
   

 
 

 

(26) 

Under the Rekasius transformation, all imaginary 

roots of eqs. (24) and (25) remain invariant [32]. By 

considering ,s j defining
1 1 2 2,v T v T   and 

replacing (26) in (25) and (24), we obtain that 

5

0

5

0

8

0

8

0

( , , , , )

( , , , , ) 0

( , , , , )

( , , , , ) 0

k

i k i

k

k

k i

k

k

i k i

k

k

k i

k

ce y T c g,h

j z T c g,h

ce y T c g,h

j z T c g,h

  

  

  

  









 

 

 

 









 

 

 

 

 

 

(27) 

If there is a solution  for eqs. (24) and (25), 

both their real and imaginary parts must be zero 

simultaneously. If the Sylvester’s matrices associated to 

eq. (27) are singular, there exit imaginary roots for eqs. 

(24) and (25). The Sylvester’s matrix associated to eq. 

(1-27) is in the following form 

              

3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

0 0

0 0

0 0

0 0

0 0

0 0

y y y y

y y y y

y y y y

z z z z

z z z z

z z z z

 
 
 
 

  
 
 
 
 
 

M                                                           

We can express that 

 1 2det( ) ( , ) tan(0.5 ), tan(0.5 )J v v J   M  (28) 

which constitutes a closed-form description of the kernel 

curves in the spectral delay space (SDS) ( , )  [32]. 

Every point ( , )  on SDS brings an imaginary 

characteristic root at .j  By using the transformation

 1

1 2( , ) 2 tan ( , ) / ,v v k     0,1,2,...k  , the kernel and 

offspring hypercurves are derived from SDS [32]. For an 

imaginary root ,s j the root tendency is defined as 

follows [32] 

sgn Re
j

s j
s j

s
RT








  
   

    

 

 

(29) 

If the root tendency is positive, by increasing the amount 

of delay, the imaginary root s j will move to right side 

of imaginary axis. By using kernel and offspring 

hypercurves and concept of root tendency, the stable 

regions of time delay for characteristic equations (24) 

and (25) are obtained. For more details about D-

subdivision method, readers are referred to [32]. 

Remark. The internal stability analysis of large scale 

heterogeneous vehicular platoons is another important 

issue which will be considered later. 

4.   Simulation Study 

In this section, a platoon of ten vehicles is considered 

according to Fig. (4). Table (1) shows the control and 

system parameters used in simulation studies.                         

 

Figure 4. Communication topology of platoon. 

Table 1. Control gains and system parameters 

1 4.51c   2 1.92c   3 2.37c   0.1T s  

1 8R m  
2 15R m  0.1s   0.12s   

 

The eigenvalues of adjacency matrix are equal to

-1.36  0.84,-1.18  0.49,-1,-0.32,2.46,2.02,0.55,1.36.j j  In 

the simulation studies, the constant time headway is 

considered as h=0.85s. Fig. (5) depicts the SDS diagrams 

for eigenvalues of adjacency matrix. By employing SDS 

diagram, the kernel (red curves) and offspring (blue 

curves) hypercurves are obtained according to Fig. (6). 

This figure shows the stable region of communication 

and parasitic delays. In all simulation results, the spacing 

error is defined as 1 0.i i ix x L hv     Figs. (7) and (8) 

show the spacing error and velocity of platoon for point 

“a”. According to these figures, point “a” depicts a stable 
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behavior for vehicles motion. Fig. (9) shows the unstable 

behavior of platoon for point “b”. As it is expected from 

Fig. (6), for this point, the platoon behavior is internal 

unstable. To study the effect of external disturbance 

applying to lead vehcile on internal and string stability, 

the disturbance signal  ( ) 2.47sin 0.1d t t in time 

period [60,120]t is applied to lead vehicle. According 

to Fig. (10), the platoon is string stable in presence of 

external disturbance. 

Figure 5. Spectral delay space for eigenvalues of 

adjacency matrix 

 

Figure 6 (a). Kernel and ospring hypercurves 

 

 

Figure 6 (b). Stable and u stable regions for communication 

 and parasitic delays 

Figure 7. Spacing error of platoon, point “a” 

 

Figure 8. Velocity of platoon, point “a” 
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Figure 9. Unstable behaviour of platoon, point “b” 

 

 

Figure 10. Internal and string stable behaviour in presence 

of external disturbance, point “a” 

5.   Conclusion 

This paper presented a new approach to stability analysis 

and control design of vehicular platoons with large 

dimension. Due to large length of platoon, a new virtual 

leader following consensus protocol was proposed in this 

paper. By presenting a new decoupling approach, the 

large scale closed-loop dynamics was transformed to 

individual third-order linear dynamics. A new spacing 

policy was proposed to adjust the inter-vehicle spacing. 

Both parasitic and communication delays were 

considered in system modeling and stability analysis. 

The D-subdivision method was employed to calculate the 

stable regions of delays. The most important results of 

this paper are decoupling the large scale dimension 

closed-loop dynamics based on a new headway policy 

and the independency of control parameters on network 

structure. Several simulation results were provided to 

show the effectiveness of the proposed methods. 
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7.   Appendix 

7.1.   Graph theory 

Let ( , , )G V E A is a graph of order N with {1,2,..., }V N

which represents node set, E N N  is the set of edges 

and A is the adjacency matrix with non-negative 

elements. An edge ( , )i j denotes that the node j has access 

to the information of the node i. Set of neighbors of 

node 𝑖 is shown by { : ( , ) , }iN j V j i j i    . The 

diagonal in-degree matrix of a network is 

[ ] ,n n

ijD  D with 
1

n

jj j jkk
D a


   and 0,jjD 

for .j k In the leader-follower scheme, for the follower 

agents 1 to N, there exists a leader labeled by 0. 

Information is exchanged between the leader and the 

follower agents which belong to the neighbors of the 

leader. Then, the graph  ,  , G V E A  with node set 

{0}V V   and edge set E V V  represents the 

communication topology between the leader and the 

followers. A diagonal matrix 
N NB is defined as a 

leader adjacency matrix of G  with diagonal elements

0.i ib a  If lead vehicle is a neighbor of vehicle i, 0 0ia   

and 0 0ia  , otherwise. Node 0 is globally reachable in 

G  if there is a path form every node i V to it. For graph 

G  the Laplacian matrix [ ] N N

ijl  L  is defined with 

1,

N

ii ijj i
l a

 
 and , .ij ijl a i j   Also, for graph G the 

important matrix  H L B  is defined. 

7.2.   Mathematical lemmas 

Lemma 1. [31]: An arbitrary matrix Λ is asymptotically 

stable if there exists a positive definite matrix P

satisfying .TΛP PΛ 0  

Lemma 2. [31]: The sum of two definite and semi-

definite matrices is a definite matrix. 

Lemma 3. [31]: For arbitrary matrices , , ,Χ Η Κ Σ  with 

appropriate dimension, we have     Χ Η Κ Σ  

   .ΧΚ ΗΣ  

7.3.   Proof of theorem 1 

A non-singular matrix V can be found such that 

1

* *

1 1 1

,

{ ,..., , , ,..., , }n n n n m n mdiag



   





V ΨV Π

Π Π Π Π Π Π Π
 

 

(A1) 

where , 1,..., ,i i nΠ are in the form (13), ,iΠ 1,i n   

..., ,n m are in the form of (14) and (*) denotes the 

complex conjugate operator. Also, V is in the following 

form 

 1 2, ,..., n mV V V V  (A2) 

For real eigenvalues, , 1,2,...,iN n

i i n


 V and for 

complex eigenvalues, , 1,..., .iN m

i i n n m


   V For

1 ,n r n m    we have 

* * *,r r r r r r ΨV VΠ ΨV V Π  (A3) 

rV can be expressed as  1 2, ,..., .
rr r r rnV v v v

rkv can be 

defined as 

, 1 ; , N

rk rk rk r rk rkj k n    v v v v v  (A4) 

By using (A3) for k=1, we have 

1 1r r rΨv v  (A5) 

Applying (A4) in (A5) leads to 

    

 

1 1 1 1 1

1 1

r r r r r r r r r

r r r r

g jh j g h

j g h

     

 

Ψv v v v v

v v
 

 

(A6) 

Eq. (A6) can be divided to following equations 

1 1 1 1 1 1,r r r r r r r r r rg h g h   Ψv v v Ψv v v   

(A7) 

Eq. (A7) is equivalent to 

     1 1 1 1 1 1

r r

r r r r r r r

r r

g h

h g

 
  

 
Ψ v v v v v v Π  

 

(A8) 

For1 rk n  , it can be written that 

( 1)rk r rk r k  Ψv v v  (A9) 

Replacing (A4) in (A9), will result to 

   

 

( 1)

( 1)

rk rk rk r rk r rk r k

r rk r rk r k

j g h

j g h





     

  

Ψv Ψ v v v v v

v v v
 

 

(A10) 

In matrix form, (A10) can be written as follows 

 

( 1) ( 1)

( 1) ( 1) 2

1 0

0 1

rk rk

T

r r

r k r k rk rk

r r

T

r k r k rk rk r

g h

h g
 

 



 
    

 

      

Ψ v v

v v v v

v v v v I Π

 

 

 

 

(A11) 

Therefore, for rth eigenvalue with repetition order ,rn the 

matrix
rv will be in the following form 

1 1 2 2[ , , , ,..., , ]
r rr r r r r rn rnv v v v v v v

 
(A12) 

So that, we can write 
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r r rΨv v Π  (A13) 

where rΠ is defined in eq. (10). In continuance of the 

proof, matrix
N NV is defined as follows  

1 1,..., , ,...,n n n m 
 
 

V V V V V  
(A14) 

In (A14), the first n-blocks are corresponding to real 

eigenvalues and other blocks following (A12) are 

corresponding to complex eigenvalues. Now we can 

write that 

ΨV VΠ  (A15) 

Finally, the non-singularity of V should be proven. For 

imaginary eigenvalues we can write that 

* *

,
2 2

rk rk rk rk

rk rk

 
 

v v v v
v v  (A16) 

We define the matrix 1 2

1
{ , ,..., },

2
n+mdiagΩ Ω Ω Ω  

where 

1 1
2, 1,2,..., ,

1 1

, 1,...,

i ii n

i n n m

 
    

 

  

Ω Ω
 

 

(A16) 

Now we can write .V VΩ Since the matricesΩ and V

are non-singular, it is inferred that V is also non-singular. 

So that, from (A15), we can write 

1 V ΨV Π  (A18) 

and the proof is complete. 

 

7.4.   Gresgorin theorem 

Let [ ] N N

ijq  Q be a square matrix. The all 

eigenvalues of Q are located in the union of N disks. 

1
1,

:
N

N

ii iji
j i

z z q q


 

  
   

  
  (A19) 

 

 

 

 

 

 

 


