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Abstract 

In this work, analysis of heat transfer in porous fin with temperature-dependent thermal conductivity and internal heat 

generation is carried out using Chebychev spectral collocation method. The numerical solutions are used to investigate 

the influence of various parameters on the thermal performance of the porous fin. The results show that increase in 

convective parameter, porosity parameter, Nusselt, Darcy and Rayleigh numbers and thickness-length ratio of the fin, 

the rate of heat transfer from the base of the fin increases and consequently improve the efficiency of the fin. However, 

the rate of heat transfer from the base of the fin increases with decrease in thermal conductivity material. Also, from 

the parametric studies, an optimum value is reached beyond which further increase in porosity, Nusselt, Darcy and 

Rayleigh numbers, thermal conductivity ratio and thickness-length ratio has no significant influence on the rate of 

heat transfer. It is established that the temperature predictions in the fin using the Chebychev spectral collocation 

method are in excellent agreement with the results of homotopy perturbation method and that of numerical methods 

using Runge-Kutta coupled with shooting method. 

 

Keywords: Porous Fin; Thermal performance; Temperature-Dependent Thermal Conductivity and Internal Heat 

Generation, Chebyshev spectral collocation method. 

1. Introduction 

The use of porous fin as a passive method for heat transfer 

enhancement in thermal equipment has attracted a lot of 

research interests following the pioneer work of Kiwan 

and Al-Nimr [1]. Also, the research interests have been 

greatly aroused following the further studies by Kiwan [2-

4] on the thermal performance analysis of porous fin in 

natural convection environment. This is evident in the 

research works carried out many years later. Gorla and 

Bakier [5] studied the thermal analysis of natural 

convection and radiation in a rectangular porous fin while 

Kundu and Bhanja [6] presented analytical model for the 

analysis of performance and optimization of porous fins. 

In the following year, Kundu et al. [7] proposed a model 

for computing maximum heat transfer in porous fins. 

Meanwhile, Taklifi et al. [8] investigated the effects of 
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magnetohydrodynamics (MHD) on the performance of a 

rectangular porous fin. In the work, it was stated that by 

imposing MHD in system except near the fin tip, heat 

transfer rate from the porous fin decreases. Bhanja and 

Kundu [9] analytically investigated thermal analysis of a 

constructal T-shape porous fin with radiation effects. An 

increase in heat transfer is found by choosing porous 

medium condition in the fin.  Recently, Kundu et al. [10] 

applied Adomian decomposition method on the 

performance and optimum design analysis of porous fin 

of various profiles operating in convection environment 

transient heat transfer analysis of variable section pin fins. 

Saedodin and Sadeghi [11] analyzed the heat transfer in a 

cylindrical porous fin while Saedodin and Olank [12].  

Darvishi et al. [13] studied the thermal performance of a 

porous radial fin with natural convection and radiative 
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heat losses while Hatami and Ganji [14] investigated the 

thermal performance of circular convective-radiative 

porous fins with different section shapes and materials. 

Hatami et al. [15-18] presented various heat transfer 

studies in both dry and wet porous fins. All the studies on 

porous fin cited above are based on constant thermal 

conductivity. Such assumption might be correct because, 

for ordinary fins problem, the thermal conductivity of the 

fin might be taken to be constant. However, if large 

temperature difference exists within the fin, typically, 

between tip and the base of the fin, the thermal 

conductivity is not constant but temperature-dependent. 

Also, in their work, Gorla et al. [19] and Moradi et al. [20] 

established that for most materials, the effective thermal 

conductivity increases with temperature. Therefore, while 

analyzing the fin, the effects of temperature-dependent 

thermal conductivity must be taken into consideration. In 

carrying out such analysis, the thermal conductivity may 

be modeled for such and other many engineering 

applications by linear dependency on temperature. Such 

dependency of thermal conductivity on temperature 

renders the problem highly non-linear and difficult to 

solve exactly. It is also very realistic to consider the 

temperature-dependent internal heat generation in the fin 

(electric-current carrying conductor, nuclear rods or any 

other heat generating components of thermal systems). 

Most of the solutions for the analysis of heat transfer in 

porous fin are established using approximate analytical 

methods. Kundu [6-7, 10] applied Adomian 

decomposition method (ADM) on the performance and 

optimum design analysis of the fins while Saedodin and 

Sadeghi [11], Kiwan [1-5] applied Runge-Kutta for the 

thermal analysis in porous fin. Golar and Baker [5] and 

Gorla et al. [19] applied spectral collocation method 

(SCM) to study the effects of variable thermal 

conductivity on the natural convection and radiation in 

porous fin. Saedodin and Shahababaei [21] adopted 

homotopoy perturbation method (HPM) to analyse heat 

transfer in longitudinal porous fins while Darvishi et al. 

[13] and Moradi et al. [20] and Ha et al. [22] utilized 

homotopy analysis method (HAM) to provide solution to 

the natural convection and radiation in a porous and 

porous moving fins while Hoshyar et al. [23] used 

homotopy perturbation method and collocation method 

for Thermal performance analysis of porous fins with 

temperature-dependent heat generation.  Hatami and 

Ganji [14] applied least square method (LSM) to study the 

thermal behaviour of convective-radiative in porous fin 

with different sections and ceramic materials. Also, 

Rostamiyaan et al. [24] applied variational iterative 

method (VIM) to provide analytical solution for heat 

transfer in porous fin.  Ghasemi et al. [25] used 

differential transformation method (DTM) for heat 

transfer analysis in porous and solid fin while Ganji and 

Dogonchi [26] adopted DTM to analytically investigate 

convective heat transfer of a longitudinal fin with 

temperature-dependent thermal conductivity, heat 

transfer coefficient and heat generation. Also, Dogonchi 

and Ganji [27] applied DTM to carry out convection-

radiation heat transfer study of moving fin with 

temperature-dependent thermal conductivity, heat 

transfer coefficient and heat generation. The approximate 

analytical methods as applied by past researchers solve 

the differential equations without linearization, 

discretization or no approximation, linearization 

restrictive assumptions or perturbation, complexity of 

expansion of derivatives and computation of derivatives 

symbolically. However, the search for a particular value 

that will satisfy second the boundary condition or the 

determination of auxiliary parameters necessitated the use 

of software and such could result in additional 

computational cost in the generation of solution to the 

problem. Also, most of the approximate methods give 

accurate predictions only when the nonlinearities are 

weak or for small values of the fin thermo-geometric 

parameter, they fail to predict accurate solutions for 

strong nonlinear models. Also, the methods often 

involved complex mathematical analysis leading to 

analytic expression involving a large number terms and 

when they are routinely implemented, they can sometimes 

lead to erroneous results [28, 29]. Moreover, in practice, 

approximate analytical solutions with large number of 

terms are not convenient for use by designers and 

engineers. Also, variational methods such as Ritz method 

and Rayleigh-Ritz method sometimes provide powerful 

results, such as upper and lower bounds on quantities of 

interest but require more mathematical manipulations 

than method of weighted residual and are not applicable 

to all problems, and thus suffer a lack of generality.  

Inevitably, simple yet accurate expressions are required to 

determine the fin temperature distribution, efficiency, 

effectiveness and the optimum parameter. 

Numerical methods such as Euler and Runge–Kutta 

methods are limited to solving initial value problems. 

With the aid of shooting method, the methods could be 

carried out iteratively to solve boundary value problems. 

However, these numerical methods are only useful for 

solving ordinary differential equations. On the other hand, 

numerical methods such as finite difference method 

(FDM), finite element methods (FEM) and finite volume 

method (FVM) can be adopted to analyze heat transfer in 

fins with single and multiple independent variables as they 

have been used to solve different linear and non-linear 

differential equations in literatures. On the other hand, the 

fast rate of convergence and a very large converging 

speed of spectral methods over most of the commonly 

used numerical methods have been established in the field 

of numerical simulations. The converging speed of the 

approximated numerical solution to the primitive problem 

is faster than any one expressed by any power-index of 

N−1. Numerical methods such as finite element method 

(FEM) and the finite volume method (FVM) provide 
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linear convergence, while, the spectral methods provide 

exponential convergence [30]. Spectral methods have 

been widely applied in computational fluid dynamics [31, 

32], electrodynamics [33] and magneto hydro dynamics 

[34, 35]. From the view of approximation to the original 

equation, the spectral method can be classified as the 

collocation method which presents discretization in 

physical space, the Galerkin method which seeks solution 

in spectral space, and the pseudo-spectral method which 

provides discrete integration in physical space at first and 

then presents transformation into spectral space for 

seeking the solution. Among the three methods, the 

collocation method is much more suitable for treating 

with non-linear problems. Recent numerical work 

concerned with the solution of non-linear differential 

equations has also provided more and more evidence of 

the applicability and accuracy of the Chebyshev 

collocation method [36-41].  The main advantage of 

spectral methods lies in their accuracy for a given number 

of unknowns. For smooth problems in simple geometries, 

they offer exponential rates of convergence/spectral 

accuracy [42-45]. Despite the high accuracy and 

efficiency of the method, it has not been significantly 

applied to nonlinear heat transfer problems. Therefore, in 

this work, analysis of heat transfer in porous fin with 

temperature-dependent thermal conductivity and internal 

heat generation is carried out using Chebychev spectral 

collocation method. Effects of various parameters on the 

thermal performance of the porous fin are investigated. 

The results obtained by the method are compared with the 

previous studies and excellent agreements are established. 

 

 

2  Problem Formulation 

Consider a straight porous fin of length L and thickness t 

exposed on both faces to a convective environment at 

temperature  as shown in Fig.1.The dimension x 

pertains to the height coordinate which has its origin at the 

fin tip and has a positive orientation from fin tip to fin 

base.  In order to analyze the problem, the following 

assumptions are made. 

1. Porous medium is homogeneous, isotropic and 

saturated with a single phase fluid 

2. Physical properties of solid as well as fluid are 

considered as constant except density variation of 

liquid, which may affect the buoyancy term where 

Boussinesq approximation is employed. 

3. Fluid and porous mediums are locally thermodynamic 

equilibrium in the domain. 

4. Surface radiative transfers and non-Darcian effects are 

negligible. 

5. The temperature variation inside the fin is one-

dimensional i.e. temperature varies along the length 

only and remain constant with time.  

6. There is no thermal contact resistance at the fin base 

and the fin tip is adiabatic type. 

 

 

 

 

 
 

Fig. 1 Schematic of the longitudinal porous fin geometry with the 

internal heat generation  

 

Based on Darcy’s model and following the above 

assumptions, the governing equation for the heat 

transfer in the fin is given as 
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The first, second, third and the fourth terms in the Eq. 

(1) are conductive, convective, porous and internal 

heat generation terms, respectively. 

 

The boundary conditions are 

 

                                                   (2) 

or many engineering applications, the thermal 

conductivity and the coefficient of heat transfer are 

temperature-dependent. Therefore, the temperature-

dependent thermal properties and internal heat 

generation are given by 

 

(3)

 

 

                                  (4) 

Substituting Eqs. (3) and (4) into Eq. (1), we have 
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On introducing the following dimensionless 

parameters in Eq. (6) into Eq. (5); 
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We arrived at the dimensionless governing 

differential Eq. (7) and the boundary conditions 
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If  we expand Eq. (7), we have; 
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The boundary conditions are 
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3 Solution Procedures 

The nonlinearity in governing equation Eq. (8) makes it 

very difficult to develop a closed-form solution to the 

non-linear equation. Therefore, in this work, a spectral 

collocation method of the Chebyshev type is employed 

to solve the heat transfer equation. The Chebyshev 

collocation spectral method is based on the expansion by 

virtue of the Chebyshev polynomials. At first, it expands 

the variable at collocation points and seeks the variable 

derivatives at these points, then substitutes the 

expansions into the differential equations and finally 

seeks the approximated solution in physical space. This 

means that Chebyshev collocation spectral method is 

accomplished through, starting with Chebyshev 

approximation for the approximate solution and 

generating approximations for the higher-order 

derivatives through successive differentiation of the 

approximate solution. 

Looking for an approximate solution, which is a global 

Chebyshev polynomial of degree N defined on the 

interval [-1, 1], the interval is dicretized by using 

collocation points to define the Chebyshev nodes in [-1, 

1], namely  
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The derivatives of the functions at the collocation points 

are given by: 
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where  n jT x  are the Chebyshev polynomial and 

coefficients 
j  and 

lc  are defined as: 
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As described above, the Chebyshev polynomials are 

defined on the finite interval [-1, 1]. Therefore, to apply 

Chebyshev spectral method to our equation (8), we make 

a suitable linear transformation and transform the 

physical domain [-1, 1] to Chebyshev computational 

domain  

[-1,1]. We sample the unknown function w at the 

Chebyshev points to obtain the data vector
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and obtains the spectral derivative vector w by 
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the nonlinear differential equation into system nonlinear 

algebraic equations, which are solved by Newton’s 

iterative method starting with a initial guess. 

 

Making a suitable transformation to map the physical 

domain [0, 1] to a computational domain  

[-1,1] to facilitate our computations.  
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The boundary conditions are 
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After applying CSCM, using Eq. (14), the governing 

equation and boundary conditions are transformed into a 

system of nonlinear algebraic equations: 
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The boundary conditions are 
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The above system of nonlinear algebraic equation is 

solved using Newton’s method to determine the 

temperature distribution in the fin 

 

3.1 Heat flux of the Fin and rate of heat transfer per 

unit area from the porous fin 

 

The fin base heat flux is given by Eq. (18) 
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The dimensionless heat transfer rate at the base of the fin 

is given by 
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3.2 Analysis of Heat transfer augmented in porous fin 

 

In order to make a comparison between the heat transfer 

from a porous fin with that from a solid fin, the ratio of 

heat transfer rate between the two fins are given by 
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where, the denominator represents the maximum 

possible heat transfer rate obtained using a solid fin. 

Writing the above equation in terms of the dimensionless 

temperature and axial distance, yields 
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4  Results and Discussion 
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distributions, rate of heat transfer and by extension on 

the thermal performance of the porous fin are 

investigated. Figs. 2a-d show the effects of nonlinear 

thermal conductivity parameters on the dimensionless 

temperature distribution and by extension on the rate of 

heat transfer. It is shown that as the non-linear thermal 

conductivity parameter increases, the dimensionless 

temperature distribution in the fin decreases.  

 

(a)                                                                                                                 (b) 

 

(c)                                                                                                                     (d) 

Fig. 2 Dimensionless temperature distribution in the fin parameters for varying thermo-geometric parameter when (a) M=0.3, Sh,= 0,  Q=0.4, 

γ=0.2 (b) ) M=0.3, Sh,=0.1,  Q=0.4, γ=0.2  (c) Sh,=0.5, M=0.3, Q=0.4, γ=0.2  (d) ) M=0.8, Sh,=0.1,  Q=0.4, γ=0.2 
 

 

Figs. 3a-d show the effects of porous parameter or 

porosity on the temperature distribution in the porous fin 

are shown.  As the porosity parameter increases, the 

temperature decreases rapidly and the rate of heat 

transfer (the convective heat transfer) through the fin 

increases as the temperature in the fin drops faster 

(becomes steeper reflecting high base heat flow rates) as 

depicted in the figures. The rapid decrease in fin 

temperature due to increase in the porosity parameter is 

because as porosity parameter, Sh increases and in 

consequent, the Darcy and Raleigh number increase, the 

permeability of the porous fin increases and therefore the 

ability of the working fluid to penetrate through the fin 

pores increases, the effect of buoyancy force increases 

and thus the fin convects more heat, the rate of heat 

transfer from the fin is enhanced and the thermal 

performance of the fin is increased. Therefore, increase 

in the porosity of the fin improves fin efficiency due to 

increasing in convection heat transfer.  

The effects of the internal heat generation on the thermal 

stability of the fin is shown in Fig. 4a-d and Fig. 5a-b. It 

is obvious that as porous parameter, Sh increases to a 

certain value, the dimensionless temperature distribution 

decreases. The effects of the internal heat generation on 

the thermal stability of the fin is shown in Fig. 4a-b, it is 

obvious that as porous parameter, Sh increases to a 

certain value, the dimensionless temperature distribution 

at the fin tip results in negative value (which shows 

thermal instability) at x=0, contradicting the assumption 

made in the analysis. However, value of porosity 

parameter for the thermal stability increases with 

increase in internal heat generation parameter, Q (Fig. 

4c) and thermal conductivity parameters, β. This fact was 

not established in the Kiwan [3] numerical analysis of 

the same problem for the large values of Sh.  
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(a)                                                                                                                    (b) 

 

(c)                                                                                                                 (d) 

Fig. 3 Dimensionless temperature distribution in the fin parameters for varying thermo-geometric parameter when (a) β=0.5, M=0.5, Q=0.2, 
γ=0.4  (b) β,=0.5,  M=1.0, Q=0.2, γ=0.4 (c) β=0.5, M=2.0; Q=0.2, γ=0.4  (d) ) β=0.5,  M=10, Q=0.2, γ=0.4 

 

 
 

 

 

Figs. 6a-b show the effects of temperature-dependent 

internal heat generation on the rate of heat transfer i.e. 

fin thermal performance at different porous 

parameters. From the figures, as the temperature-

dependent internal heat generation parameter 

increases, the temperature gradient and consequently, 

the rate of heat transfer in the fin decreases. Also, the 

figures show that the rate of heat transfer at the base of 

the fin increases as the porous parameter or porosity 

increases. 
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                                                         (a)                                                                                                                    (b) 
 

 

 
 

                              (c)                                                                                                                    (d) 

Fig. 4 Dimensionless temperature distribution in the fin parameters for varying thermo-geometric parameter when (a) M=0.5, Sh=2.0, β=0.5, 
γ=0.2 (b) M=0.5, Sh=5.0, β,=0.5, γ=0.2, (c) M=2.0, Sh=5.0,  β=0.5, γ=0.2  (d) M=2.0, Sh=5.0, β=0.5, γ=2.0 
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(a)                                                                                                                    (b) 

 

Fig. 5 Dimensionless temperature distribution in the fin parameters for varying thermo-geometric parameter when (a) Sh=5.0,M=0.5, β= 0.5, 

Q=0.4, γ=0.2  (b) Sh=5.0, β=0.5, M=0.5, Q=0.4, γ=0.2 

 

(a)                                                                                       (b) 

Fig. 6 Effects of temperature-dependent internal heat generation parameter on the dimensionless heat transfer rate in the fin when (c) M=0,β= 0.4, 

Q=0.3  (d) M=0, β=0.4, Q=0.3 
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(a)                                                                                           (b) 

 
(c)                                                                                             (d) 

Fig. 7  Effects of temperature-dependent thermal conductivity parameter and fin thickness-lenght ratio on the dimensionless heat 

transfer rate at the base of the fin when (a)  γ=-0.4, Q=0.5, M=0  (b)   γ=0.7, Q=0.3 (c) t/L=1/1000 ,  k = 45 W/mK; Tb=373 K; 

Ta=298 K;  γ=0.4, Q=0.5, M=0 (d) t/L=1/1000, , k=45 W/mK; Tb=373 K; Ta=298 K; γ=-0.4, Q=0.5  γ=0.7, Q=0.3, M=0 

Actually, a major important analysis in the fin problem 

is the determination of the rate of heat transfer at the 

base of the fin. Figs. 7a-d effects of temperature-

dependent thermal conductivity parameter and fin 

thickness-length ratio, t/L, on the dimensionless heat 

transfer rate at the base of the fin while Figs. 8a-d 

effects of temperature-dependent internal heat 

generation parameter and fin thickness-length ratio on 

the dimensionless heat transfer rate at the base of the 

fin at different porous parameters. From the figures, it 

could be deducted that the temperature-dependent 

thermal conductivity parameter, porosity and fin 

thickness ratio have direct and significant effects on 

the rate of heat transfer at the base of the fin.  Increase 

in the dimensionless thickness parameter (fin 

thickness-length ratio) results in higher rate of heat 

transfer at the base of the fin. 

Fig. 8 shows the effects of Darcy number on the 

dimensionless rate of heat transfer. Increasing Darcy 

number, Da causes an increase in the heat transfer rate 

from the fin. This is because when the Darcy number 

and consequently permeability reduces, collision 

among the fluid flow and the pores of the porous is 

increased. Thus the passing fluids gave more space to 

contact with the porous media which has internal heat 

generation. Consequently, the value of the fin 

temperature is increased by decreasing the Da number.  

Effects of Nusselt number on the rate of heat transfer 

at the base of the fin is depicted in Fig. 9.  

It shows that as Nu increases more heat are drawn from 

the fin base. However, at high values of the porosity 

parameter Sh, increasing Nu has no significant 

influence on the heat transfer from the base of the fin. 

This is because as the porosity parameter Sh increases 

the temperature at the fin tip reaches the ambient 

temperature of the surrounding fluid and thus the 

driving force for heat transfer from the fin tip reduces. 

This leads to a significant reduction from the use of 

high values of Nu at the tip [3]. Increasing t/L or 

decreasing thermal conductivity parameter, Kr 

increases Sh and thus increasing the rate of heat 

transfer at the base of the fin. Moreover, increasing L 

or decreasing Kr tends to reduce the heat transfer rate 

from the fin. From the result, for the different values 
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of fin thicknesses, the respective optimum values 

(values beyond which a further increase on Sh or L has 

no significant change on the heat transfer rate) for Sh 

and L can be established as shown in Fig. 10.  

Increase in fin thickness-length ratio, t/L, increases the 

rate of heat transfer from the base of the fin. However, 

as fin thickness-length ratio increases up to some 

certain values for the different fin thickness-length 

ratio considered, optimum points were reached where 

further increase in t/L has no significant influence on 

the heat transfer rate from the base of the fin. As the 

fin length increases, the temperature of the part far 

from the fin base approaches the working fluid 

temperature. This implies that the driving force for 

natural convection decreases and leads, in porous fins, 

to less fluid infiltrated through the pores of the porous 

domain. This implies that no significant improvements 

will attain if the fin length is further increased. This 

scenario is not only peculiar to porous fin, it also 

occurs in solid fin  

In order to make a comparison between the heat 

transfer rates from a porous fin with that from a solid 

fin, the ratio of heat transfer rate between the porous 

fin and solid are established as given by Eq. (34). Fig. 

11 shows the effects of porosity number on the ratio of 

heat transfer rate between the porous fin and solid.  

The increasing in porosity number, Sh, implies 

increase in Darcy and Rayleigh numbers. While the 

increasing Darcy number, Da increases the 

permeability of the fin, increase in the Ra number 

leads to more effects of buoyancy force and 

consequently heat transfer rate due to convection 

mechanism. Therefore, high values of Sh or Da and Ra 

lead high value of the ratio of heat transfer rate 

between the porous fin and solid and enhanced heat 

transfer between the fin and the air flow.  
 

 

Fig. 8 Effects of Darcy number on dimensionless heat transfer rate              Fig. 9 Effects of Nusselt number on dimensionless heat transfer rate               

 

Fig. 10 Effects of length-thickness ratio on dimensionless heat transfer rate     Fig. 11 Ratio of the porous fin to solid fin heat transfer rate with Sh 
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The numerical solution using CSCM for the non-linear 

thermal model is verified by the fourth-Order Runge 

Kutta coupled with shooting algorithm as presented by 

Kiwan [3]. The comparisons of the results are shown 

in Figs. 12. It is depicted that the CSCM is highly 

accurate and shows excellent agreement with the 

results of the other NM and the HPM. It was 

established that when Sh> 1, the HPM solutions for 

are very weak and provide unreasonable 

results because HPM is not applicable to these cases 

of high or strong nonlinearity. HPM solution fails 

when porosity parameter increases to a large number. 

This shortcoming in the solution method is not only 

peculiar to HPM, it is also experienced when using 

ADM [33] coupled with the additional task tasks of 

finding Adomian polynomials. The results show that 

the CSCM is very effective and it is a convenient tool 

to solve the nonlinear fin problems under different 

conditions. 
 

 
Fig. 12 Comparison of results for Sh=1 

 

Table 1 shows comparison of results (when M=0) in 

the method used in this study. It could be inferred from 

the table that the CSCM is highly accurate and agrees 

very well with the results of homotopy perturbation 

method and that of numerical methods using Runge-

Kutta coupled with shooting method. 

Table 1: Comparison of results 

X             NM                       HPM                     CSC  
                              (Petroudi et al, 2012)   (The Present study) 

0.0       0.9581                    0.9581                    0.9581 

0.1       0.9585                    0.9585                    0.9585 

0.2        0.9597                   0.9597                    0.9597 

0.3        0.9618                   0.9618                    0.9618 

0.4        0.9647                   0.9647                    0.9647 

0.5        0.9685                   0.9685                   0.9685 

0.6       0.9730                   0.9730                    0.9730 

0.7        0.9785                   0.9785                   0.9785 

0.8       0.9846                   0.9846                    0.9848 

0.9       0.9919                   0.9919                    0.9919 

1.0        1.0000                   1.0000                    1.0000 

 

5. Conclusion 

In this work, thermal performance analysis in a porous 

fin temperature-dependent thermal properties and 

internal heat generation has been analyzed using 

Chebychev spectral collocation method. The 

numerical solutions were used to investigate the 

effects of various parameters on the thermal 

performance of the porous fin. Increasing the porosity, 

Nusselt, Darcy and Rayleigh numbers and thickness-

length ratio of the fin increase the rate of heat transfer 

from the base of the fin and consequently improve the 

efficiency of the fin. Also, decreasing thermal 

conductivity parameter, Kr results in increase in the 

rate of heat transfer from the base of the fin. However, 

an optimum value is reached beyond which further 

increase in porosity, Nusselt, Darcy and Rayleigh 

numbers, thermal conductivity ratio and thickness-

length ratio has no significant influence on the rate of 

heat transfer. The CSCM used in the work was 

validated with the numerical method using Runge-

Kutta method.  The CSCM results used are in excellent 

agreement with results with the results of homotopy 

perturbation method and that of numerical methods 

using Runge-Kutta coupled with shooting method.
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