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Abstract 

In this work, we applied Chebychev spectral collocation method to analyze the unsteady two-

dimensional flow of nanofluid in a porous channel through expanding or contracting walls with large 

injection or suction. The solutions are used to study the effects of various parameters on the flow of the 

nanofluid in the porous channel. From the analysis, It was established that increase in expansion ratio and 

Reynolds number decreases the axial velocity at the center of the channel during the expansion while the 

axial velocity increases near the surface of the channel during contraction. Moreover, it was also established 

that an increase in injection rate leads to a higher axial velocity near the center and the lower axial velocity 

near the wall. On the verification of the results, it is shown that the results obtained from Chebychev spectral 

collocation method are in good agreement when compared to the results obtained using other numerical 

methods. 

Keywords: Nanofluid, Porous Channel; Expanding or Contracting walls, Chebychev Spectral 

Collocation method. 
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1. Introduction 

The vast applications of fluid flow in a porous channel 

through expanding or contracting walls with large 

injection or suction as in synthetic respiratory systems, 

artificial circulatory systems and several industrial 

processes have attracted a lot of research interests in 

the past few years. The pioneer work on the flow 

phenomenon was carried out by Berman [1]. Some 

years later, Terrill [2, 3] improved the work of Berman 

on laminar flow in channels with porous walls. 

Providing solutions to the inherent nonlinear equations 

governing the flow process have led to the applications 

of different analytical, approximate analytical and 

numerical methods. Dauenhauer and Majdalani [4] 

developed exact self-similarity solution for the Navier-

Stokes equations for a porous channel with 

orthogonally moving walls. Asymptotic formulations 

based on Wentzel-Krammers-Brillouin (WKB) and 

multiple-scale techniques was used by Majdalani [5] 

and Majdalani and Roh [6] to study the oscillatory 

channel flow with wall injection. Similar work using 

the multiple scales techniques was done by Jankowski 

and Majdalani [9] to analyze oscillatory channel flow 

with arbitrary suction. The same authors [10] used 

Liouville-Green transformation to develop an 

analytical solution for laminar flow in a porous channel 

with large wall suction and a weakly oscillatory 

pressure.  Zhou and Majdalani [11] applied finite 

difference method and asymptotic technique (variation 

of parameters and small parameter perturbations) to 

investigate the mean flow for slab rocket motors with 

regressing walls. A similar analysis was done by 

Majdalani and Zhou [12] for moderate-to-large 

injection and suction driven channel flows with 

expanding or contracting walls. Multiple solutions 

associated with this problem have been reported by 

Robinson [13], Zarturska et al. [14] and Si et al. [15, 

16]. Majdalani et al. [17] applied regular perturbation 

method to study two-dimensional viscous flow 

between slowly expanding or contracting walls with 

weak permeability. In a recent study, Dinarvand et al. 

[18] adopted homotopy analysis and homotopy 

perturbation methods to solve Berman’s model of two-

dimensional viscous flow in porous channels with wall 

suction or injection. Using the homotopy analysis 

method, Xu et al. [19] developed highly accurate series 

approximations for two-dimensional viscous flow 

between two moving porous walls and obtained 

multiple solutions associated with this problem. Also, 

the same method was adopted by Dinarvand and 

Rashidi [20] to analyse two dimensional viscous flow 

in a rectangular domain bounded by two moving 

porous walls.  

The approximate analytical methods as applied by 

past researchers solve the differential equations 

without linearization, discretization or no 

approximation, linearization restrictive assumptions or 

perturbation, complexity of expansion of derivatives 

and computation of derivatives symbolically. 

However, most of the approximate methods give 

accurate predictions only when the nonlinearities are 

weak or for small values of the fin thermo-geometric 

parameter, they fail to predict accurate solutions for 

strong nonlinear models. Also, the methods often 

involved complex mathematical analysis leading to 

analytic expression involving a large number terms 

and when they are routinely implemented, they can 

sometimes lead to erroneous results [21, 22]. 

Moreover, in practice, approximate analytical 

solutions with large number of terms are not easily 

convenient for use by engineers and designers. This 

however, necessitate the application of simple yet 

accurate expressions for the determine the flow 

process an essential requisite.  

Spectral methods have been widely applied in 

computational fluid dynamics, electrodynamics and 

magnetohydrodynamics [23-30]. Also, the collocation 

method is much more suitable for treating with non-

linear problems. Recent numerical work concerned 

with the solution of non-linear differential equations 

has also provided more and more evidence of the 

applicability and accuracy of the Chebyshev 

collocation method [31-34].  The main advantage of 

spectral methods lies in their accuracy for a given 

number of unknowns. For smooth problems in simple 

geometries, they offer exponential rates of 

convergence/spectral accuracy [35-38]. Chebychev 

spectral collocation method is a numerical approach 

that solves nonlinear integral and differential equations 

without linearization, discretization, closure, 

restrictive assumptions, perturbation, approximations, 

round-off error and discretization which often results 

in massive numerical computations. Chebychev 

spectral collocation method reduces the complexity of 

expansion of derivatives and the computational 

difficulties of the other traditional approximation 

analytical or perturbation methods.  The method 

provides excellent approximations to the solution of 

non-linear equation with high accuracy, minimal 

calculation, and avoidance of physically unrealistic 

assumptions. It is not affected by computation round 

off errors and one is not faced with necessity of large 

computer memory and time.  Thus, when compared 

with other numerical methods, Chebychev spectral 

collocation method offers fast rate of convergence with 

a very large converging speed. The converging speed 

of the approximated numerical solution to the 

primitive problem is faster than one expressed by any 

power-index of N-1. Nevertheless, despite the high 

accuracy and efficiency of this method, it has not been 

significantly applied to nonlinear flow problems. 

Therefore, in this work, Chebychev spectral 

collocation method is applied to analyze the unsteady 

two-dimensional flow of nanofluid through a porous 

channel with expanding/contracting walls. Moreover, 

the developed solutions are used to study the effects of 

the flow parameters in the expanding or contracting 

porous channel. From the present analysis, the results 

obtained by the method for solving the problem under 

investigation are compared with the numerical solution 
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for the non-linear case and very good agreements are 

established. 

2. Problem Formulation 
Fig. 1 below shows the schematic diagram of a 

fully developed unsteady, laminar, isothermal, and 

incompressible flow in a two-dimensional porous 

channel bounded by two permeable surfaces or walls 

that enable the nanofluid to enter or exit during 

successive expansions or contractions. One end of the 

channel is closed by a compliant solid membrane. Both 

walls are assumed to have equal permeability and to 

expand uniformly at a time dependent rate, ( )a t . Also, 

a coordinate system is chosen with the origin at the 

center of the channel as shown in the figure. 

 
Fig. 1. The model of the porous channel with 

expanding or contracting walls. 

 

Based on the assumptions, the equations for continuity 

and motion are 
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Assuming no slip condition, the appropriate boundary 

conditions are given as 

( ), 0,     w

a
y a t u v V

c
 

0, 0, 0


  


u
y v

y
 

0, 0 x u                                                         (6) 

where 
w

a
c

V
 is the wall presence or 

injection/suction coefficient, which is the measure of 

permeability 

Introducing the following stream functions and the 

mean flow vorticity 

�̅� =  
𝜕�̅�
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                                              (7) 

The pressure term in Eqs. (2) and (3) can be 

eliminated and the vorticity transport equation is 

obtained as 
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Also, the above partial differential equation can be 

converted to ordinary differential equation using the 

following similarity variables 
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Substituting Eq. (9) and (10) into Eq. (8), we have a 

fourth order ordinary differential equation 
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And the following boundary conditions becomes 
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where  
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
nf
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aa t
t


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
 is the non-dimensional wall 

dilation rate which is positive for expansion and 

negative for contraction. In addition, 
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is the permeation Reynolds number, which is 
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positive for injection and negative for suction. Using the following variables,  
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Eqs. (11) and (12) are normalized as 
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The boundary conditions remain as Eq. (15). 

 

If α=0 in the above Eq. (16), the Berman’s model [1] 

for channels with stationary walls is recovered. 

3. Solution Procedure 

The nonlinearity in governing equation Eq. (8) 

makes it very difficult to develop a closed-form 

solution to the non-linear equation. Therefore, in this 

work, a spectral collocation method of the Chebyshev 

type is employed to solve the heat transfer equation. 

The Chebyshev collocation spectral method is based 

on the expansion of Chebyshev polynomials. At first, 

it expands the variable at collocation points and seeks 

the variable derivatives at these points, then substitutes 

the expansions into the differential equations and 

finally seeks the approximated solution in physical 

space. This means that Chebyshev collocation spectral 

method is accomplished through, starting with 

Chebyshev approximation for the approximate 

solution and generating approximations for the higher-

order derivatives through successive differentiation of 

the approximate solution. Looking for an approximate 

solution, which is a global Chebyshev polynomial of 

degree N defined on the interval [-1, 1], the interval is 

discretized by using collocation points to define the 

Chebyshev nodes in [-1, 1], namely  
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The derivatives of the functions at the collocation 

points are given by: 
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where n
kjd  represents the differential matrix of order n 

and are given by 
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where  n jT x  are the Chebyshev polynomial and 

coefficients j  and lc  are defined as: 
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As described above, the Chebyshev polynomials 

are defined on the finite interval [-1, 1]. Therefore, to 

apply Chebyshev spectral method to our equation (8), 

we make a suitable linear transformation and transform 

the physical domain [-1, 1] to Chebyshev 

computational domain [-1,1]. We sample the unknown 

function w at the Chebyshev points to obtain the data 

vector        1 2, , ,...   
T

o Nw w x w x w x w x .  

The next step is to find a Chebyshev polynomial P of 

degree N that interpolates the data 

  . ., , 0,1,... j ji e P x w j N  and obtains the 

spectral derivative vector w by differentiating P and 

evaluating at the grid points

  '. ., ' , 0,1,...  j j ji e w P x w j N . This 

transforms the nonlinear differential equation into 

system nonlinear algebraic equations, which are solved 
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by Newton’s iterative method starting with an initial 

guess. Making a suitable transformation to map the 

physical domain [0, 1] to a computational domain [-

1,1] to facilitate our computations.  
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After applying CSCM, using Eq. (14), the governing 

equation and boundary conditions are transformed into 

a system of nonlinear algebraic equations: 
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The boundary conditions are 
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The above system of nonlinear algebraic equation is 

solved using Newton’s method to determine the 

temperature distribution in the fin. 

 

4. Results and Discussion 

Table 1 shows the comparison between the results 

of CSCM and NM. The obtained results of velocity 

distributions using CSCM as compared with the 

numerical procedure using Runge-Kutta method 

coupled with shooting method are in good agreements. 

The high accuracy of CSCM gives high confidence 

about validity of the method in providing solutions to 

the problem.  

 

Table 1: Comparison of results of flow for large 

Reynolds number and suction 

 

 
(a) 

 
(b) 

Fig. 2 Variation of f (η) for different expansion and contraction 
ratio, α and different small values of Re 

 

 
Fig. 3 Variation of f (η) for different expansion and contraction 

ratio, α and large value of Re 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f(


)



 

 
R = 0.5,   = -1.0

R = 0.5,   = -0.5

R = 0.5,   = 0.5

R = 0.5,   = 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f(


)



 

 
R = 1.0,   = -1.0

R = 1.0,   = -0.5

R = 1.0,   = 0.5

R = 1.0,   = 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f(


)



 

 

R = 50,   = -0.50

R = 50,   = -0.25

R = 50,   = 0.25

R  = 50,   = 0.50



Oguntala et al. 

230 

 

Effects of the permeation Reynolds number and 

non-dimensional wall dilation rate on the 

dimensionless flow velocities are shown in Fig. 2 and 

3 while Figs. 4 and 5a and 5b show the effects of 

Reynolds number, Re, on the velocity at constant non-

dimensional wall dilation rate on the dimensionless 

axial velocity. Increase in the Reynolds number 

decreases the axial velocity at the centre of the channel 

during the expansion while the axial velocity increases 

slightly near the surface of the channel when the wall 

contracts at the same rate. 

 
(a) 

(b) 

Fig. 4 Variation of f’ (η) for different expansion and contraction 

ratio, α and different small values of Re 
 

The behaviour of axial velocity for different 

permeation Reynolds number, over a range of non-

dimensional wall dilation rate were plotted in Figs. 2-

5. The figures depict that, for every level of injection 

or suction, the velocity is maximum at the centre of the 

channel and near the point, the velocity is increased 

when the channel is expanding and decrease when the 

channel contracts. As the wall expansion ratio 

increases, the velocity at the centre decreases and 

increases near the wall.  Similarly, for the case of 

contracting wall as shown in Fig. 5a-b, increasing 

contraction ratio leads to lower axial velocity near the 

centre and the higher near the wall because the flow 

toward the wall becomes greater and as a result the 

axial velocity near the wall becomes greater. So, both 

the expansion and suction through the wall reinforce 

the flow through the channel and similarly does the 

wall contraction and injection through the surface. The 

results of the present study show that for every level of 

injection or suction, in the case of expanding wall, 

increasing a(t) leads to higher axial velocity near the 

centre and the lower axial velocity near the wall. 

5. Conclusion 

In this work, Chebychev spectral collocation 

method has been applied to analyze the unsteady two-

dimensional flow of nanofluid in a porous channel 

through expanding or contracting walls with large 

injection or suction. The solutions are used to study the 

effects of model parameters on the flow of the 

nanofluid in the porous channel. The obtained results 

of velocity distributions using CSCM as compared 

with the numerical procedure using Runge-Kutta 

method coupled with shooting method are shown to be 

in good agreements. Therefore, the high accuracy of 

CSCM gives high confidence about validity of the 

method in providing solutions to the flow problems.  

 
(a) 

 
(b) 

Fig. 5 Variation of f’ (η) for different expansion and contraction 

ratio, α and different small values of Re 
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