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Abstract 
The vast biological and industrial applications of laminar flow of viscous fluid through a porous channel with contracting 

or expanding permeable wall have attest to the importance of studying the flow process. In this paper, two-dimensional 

flow of viscous fluid in a porous channel through slowly expanding or contracting walls with injection or suction is 

analyzed using variation parameter method. From the parametric studies using the developed approximate analytical 

solutions, it is shown that increase in the Reynolds number of the flow process leads to decrease in the axial velocity at 

the center of the channel during the expansion. The axial velocity increases slightly near the surface of the channel when 

the wall contracts at the same rate. Also, as the wall expansion ratio increases, the velocity at the center decreases but it 

increases near the wall. The results of the approximate analytical solution are verified by numerical solution using 

shooting method coupled with Runge-Kutta method. The results of the variation parameter method are in excellent 

agreement with the results obtained using numerical method. 

 

Keyword: Viscous; Porous Channel; Expanding or Contracting walls; Variation parameter method; Biological 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
* Corresponding Author: Tel: + 2347034717417 

 E-mail address:mikegbeminiyiprof@yahoo.com 

mailto:mikegbeminiyiprof@yahoo.com


Sobamowo 

320 

1. Introduction 

The study of laminar flow of viscous fluid through a 

porous channel or pipe with contracting or expanding 

permeable walls have attracted good number of research 

efforts in the past few decades. This is because of its 

biological applications such as transport of biological 

fluids through contracting or expanding vessels, filtration 

in kidneys and lungs, flow inside lymphatics, the 

synchronous pulsation of porous diaphragms, modeling of 

air circulation in respiratory system.  Also, the wide range 

of attracted research attentions of the laminar flow process 

is due to its industrial applications as it is evident in the 

model of regression of burning surface in solid rocket 

motors, binary gas diffusion, chromatography, ion 

exchange, ground water movement, transpiration cooling 

and the separation of 235U from 238U by gaseous diffusion 

and also flow in multichannel filtration systems such as 

the wall flow monolith filter used to reduce emissions 

from diesel engines [1–8]. In all these applications, it is 

established that the equations governing the flow process 

are generally nonlinear. In order to predict and determine 

the actual flow behavior, different analytical, approximate 

analytical and numerical methods have been employed to 

solve the governing nonlinear equations. In the past 

studies of laminar flow through a porous channel, 

Majdalani [5] and Majdalani and Roh [6] adopted 

asymptotic formulations using Wentzel-Krammers-

Brillouin (WKB) and multiple-scale techniques to study 

the oscillatory channel flow with wall injection. 

Jankowski and Majdalani [9] also applied the multiple-

scale techniques to analyze oscillatory channel flow with 

arbitrary suction. Jankowski and Majdalani [10] 

developed an analytical solution by means of the 

Liouville-Green transformation for laminar flow in a 

porous channel with large wall suction and a weakly 

oscillatory pressure while Zhou and Majdalani [11] used 

finite difference method and asymptotic technique 

(variation of parameters and small parameter 

perturbations) to investigate the mean flow for slab rocket 

motors with regressing walls. The results from the two 

methods were compared for different Reynolds numbers 

Re and the wall regression rate a, and it was observed that 

accuracy of the analytical solution deteriorates for small 

Re and large a. A good agreement between the solutions 

was observed for large values of Re. A similar analysis 

was done by Majdalani and Zhou [12] for moderate-to-

large injection and suction driven channel flow with 

expanding or contracting walls. Multiple solutions 

associated with this problem have been reported by 

Robinson [13], Zarturska et al. [14] and Si et al. [15, 16]. 

Majdalani et al. [17] applied regular perturbation method 

to study two-dimensional viscous flow between slowly 

expanding or contracting walls with weak permeability. 

In a recent study, Dinarvand et al. [18] adopted homotopy 

analysis and homotopy perturbation methods to solve 

Berman’s model of two-dimensional viscous flow in 

porous channels with wall suction or injection. They 

concluded that the HPM solution is not valid for large 

Reynolds numbers, a weakness earlier observed in the 

case of other perturbation techniques. Using the 

homotopy analysis method (HAM), Xu et al. [19] 

developed highly accurate series approximations for two-

dimensional viscous flow between two moving porous 

walls and obtained multiple solutions associated with this 

problem. Also, the same method was adopted by 

Dinarvand and Rashidi [20] to analyze two dimensional 

viscous flow in a rectangular domain bounded by two 

moving porous walls. Although, the homotopy analysis 

method is a reliable and efficient semi-analytical 

technique, it suffers from a number of limiting 

assumptions such as the requirements that the solution 

ought to conform to the so-called rule of solution 

expression and the rule of coefficient ergodicity. 

Moreover, the solution comes with large number of terms. 

In practice, analytical solutions with large number of 

terms and conditional statements for the solutions are not 

convenient for use by designers and engineers [21].  

Variation parameter method (VPM) is an approximate 

analytical method which has been applied to solve linear 

and nonlinear differential equations [22-26]. It is different 

from variational iteration method (VIM) in many aspects. 

In VIM, the multiplier used called Lagrange Multiplier 

can be of different forms of exact, semi-exact and 

approximate multipliers. However, in VPM, there is no 

concept of exact and approximate multipliers. The 

multiplier used in VPM is calculated using Wronskian 

technique. Also, VIM takes into account the complete 

equation for the solution purposes while VPM gives the 

solution of the problem without taking highest order term 

into consideration [27]. Its main advantages is in its ability 

to solve nonlinear integral and differential equations 

without linearization, discretization, closure, restrictive 

assumptions, perturbation, approximations, round-off 

error and discretization that could result in massive 

numerical computations. It provides excellent 

approximations to the solution of non-linear equations 

with high accuracy. Moreover, the need for small 

perturbation parameter as required in traditional 

perturbation methods, the difficulty in determining the 

Adomian polynomials, the rigour of the derivations of 

differential transformations or recursive relation as 

carried out in DTM, the restrictions of HPM to weakly 

nonlinear problems as established in literatures, the lack 

of rigorous theories or proper guidance for choosing 

initial approximation, auxiliary linear operators, auxiliary 

functions, auxiliary parameters, and the requirements of 

conformity of the solution to the rule of coefficient 

ergodicity as done in HAM, the search Langrange 

multiplier as carried in VIM, and the challenges 

associated with proper construction of the approximating 

functions for arbitrary domains or geometry of interest as 

in Galerkin weighted residual method (GWRM), least 
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square method (LSM) and collocation method (CM) are 

some of the difficulties that VPM overcomes.  The results 

of VPM are completely reliable and physically realistic. 

Therefore, in this present work, variation parameter 

method is utilized to analyze unsteady two-dimensional 

flow of viscous fluid through a porous channel with 

expanding/contracting walls with injection or suction. 

Also, the developed approximate analytical solutions are 

used to study the effects of the flow parameters in the 

expanding or contracting porous channel. In order to 

support and verify the approximate analytical solution by 

VPM, a numerical solution is also obtained using fourth-

order Runge-Kutta method coupled with shooing 

techniques. From the analysis, the results obtained by 

VPM are in excellent agreements with the results of the 

numerical method. 

2.  Problem Formulation 

Consider a fully developed unsteady, laminar, isothermal, 

and incompressible flow in a two-dimensional porous 

channel bounded by two permeable surfaces or walls that 

enable the viscous fluid to enter or exit during successive 

expansions or contractions as shown in Fig. 1. One end of 

the channel is closed by a compliant solid membrane. 

Both walls are assumed to have equal permeability and to 

expand uniformly at a time dependent rate, ( )a t . A 

coordinate system is chosen with the origin at the center 

of the channel as shown in the figure. 

 
Fig. 1. The model of the porous channel with 

expanding or contracting walls. 

Following the assumptions, the equations for continuity 

and motion are 

0
 

 
 

u v

x y                                                                                                                                                                            (1)

 

2 2
2

2 2

       
                  

o

u u u p u u
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  

                                                                                                  (2) 

 

2 2

2 2

       
                 

v v v p v v
u v

t x y y x y
 

                                                                                                           (3) 

Assuming no slip condition, the appropriate boundary 

conditions are given as 

( ), 0,     w

a
y a t u v V

c
                      (4) 

0, 0, 0


  


u
y v

y
                                      (5) 

0, 0 x u                                                                (6) 

where 
w

a
c

V
 is the wall presence or injection/suction 

coefficient i.e. which is the measure of permeability 

On introducing the following stream functions and the 

mean flow vorticity 

,
 

 
 

u v
y x

 
                                                   (7) 

The pressure term in Eqs. (2) and (3) can be eliminated 

and the vorticity transport equation is obtained as 

2 2
2

2 2

       
               

o

u
u v B u

t x y yx y

    
  

                                                                                                 (8)

 

where  

 
 
 

v u

x y
                                                              (9) 

Also, the above partial differential equation can be 

converted to ordinary differential equation using the 

following similarity variables 
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   
2

, , ,


 
x

u f t v f t
HH

 
 


                          (10) 

where 

 
 ,

, ,


 


f ty
f t

H


 


 

Substituting Eq. (9) and (10) into Eq. (8), we arrived at a 

fourth order ordinary differential equation 

 
2

2( ) 3 0      t

a
f t f f ff f f f Ha f       


 


                                                                       (11) 

And the boundary conditions becomes 

0, 0, 0  f f  

1, , 0  f Re f                                     (12)  

where  
( )


aa t

t





 is the non-dimensional wall 

dilation rate which is positive for expansion and negative 

for contraction. 

And  waV
Re




is the permeation Reynolds number, 

which is positive for injection and negative for suction. 

Using the following variables,  

, , , , , ,
 

        
u v f xf xf f

u v f u v c
aa a a Re c c c Re

 
                                                       (13) 

 Eqs. (11) and (12) are normalized as 

   
2

2( ) 3 0      t

a
f t f f Re ff f f f Ha f       


 


                                                               (14) 

with the boundary conditions  

 

0, 0, 0  f f

1, 1, 0  f f                                  (15)  

 

Assuming  
( )


aa t

t





 remains constant during the 

flow process, and ( )f f  , then  0tf  and Eq. (14) 

reduces to 

 

 

  2

3

0

 

   

f f f

Re ff f f Ha f

  

   

 
                            (16) 

The boundary conditions still remain as Eq. (15). 

If α=0 in the above Eq. (16), the Berman’s model [1] 

for channels with stationary walls is recovered. 

 

 

3. The Procedure of Variation Parameter Method 

The basic concept of VPM for solving differential 

equations is as follows: The general nonlinear equation 

is in the operator form 

 

( ) ( ) ( )  Lf Rf Nf g                                      (17) 

 

The linear terms are decomposed into L + R, with L taken 

as the highest order derivative which is easily invertible 

and R as the remainder of the linear operator of order less 

than L. where g is the system input or the source term 

and u is the system output, Nu represents the nonlinear 

terms.  

 

The VPM provides the general iterative scheme for Eq. 

(17) as: 
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 1 0
0

( ) ( ) ( , ) ( ) ( ) ( )     n n nf f Rf Nf g d


        
                                                                                     

(18) 

where the initial approximation 0( )f  is given by  

 

0

0

(0)
( )

!



m i

i

i

k f
f

i
                                                (19) 

 

m is the order of the given differential equation, ki s are 

the unknown constants that can be determined by 

initial/boundary conditions and ( , )    is the multiplier 

that reduces the order of the integration and can be 

determined with the help of Wronskian technique.    

  

 
1 1 1 11 ( )

( , )
( 1)!( )! ( 1)!

    
 

  


i i mm m

i
i m i m

   
             (20)

 

 

From the above, one can easily obtain the expressions 

of the multiplier for  Lf(η)= f n(η) 
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Consequently, an exact solution can be obtained when n 

approaches infinity. 

 

Using the standard procedure of VPM as stated above, 

one can write the solution of  Eq. (16) for the case of 

negligible magnetic field as 

 

         

2 3

1 1 2 3 4

3 2 2 3

0

( )
2 6

3
3! 2! 2! 3!

    

               


n

n n n n

f k k k k

f f Re ff f f d


    

 
 

    
                             (21)

Here, k1, k2, k3,  and k4 are constants obtained by taking 

the highest order linear term of Eq. (16) and integrating 

it four times to get the final form of the scheme.  

The above equation can also be written as  
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1
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0
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                              (22) 

From the boundary conditions in Eq. (15)
 

(0) 0, (0) 0 f f  

Using the above statement and inserting the boundary 

conditions of Eq. (15) into Eq. (22), we have  
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                          (23) 

For the sake of conformity to variation parameter 

analysis, Eq. (28) will be written in form of 
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2
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0
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From the iterative scheme, it can easily be shown that 

the series solution is given as  
 

 
3

2
0 1( )

6
 

k
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
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1 1( )
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 
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Similarly, the other iterations  

 3 4 5 6 7 15( ), ( ), ( ), ( ), ( ), ... ( )f f f f f f        

 

are obtained  
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1
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( )
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...
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                                                        (26) 

Where the constants k1 and k2 are determined using the 

boundary conditions in Eq. (15) i.e.  (1) 1, (1) 0 f f  

Also, the first-order derivatives of f(1) is developed as 
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         


      
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4. Results and Discussion 

In order to support and verify the approximate analytical 

solution using VPM, a numerical solution is also 

obtained using fourth-order Runge-Kutta method 

coupled with shooing techniques. The comparisons of 

the results through the two different methods are shown 

in Table 1 and Table 2. From the analysis, the results 

obtained by VPM are in excellent agreements with the 

results obtained by the numerical method. This shows 

that the results of VPM are completely reliable and 

physically realistic as the efficiency and accuracy of 

VPM is demonstrated. 

Also, the developed solutions are used to study the 

effects of the flow parameters in the expanding or 

contracting porous channel with injection and suction. 

Figs. 1 show the effects of the permeation Reynolds 

number and non-dimensional wall dilation rate on the 

dimensionless flow velocities. Fig. 1a-d, 2a-2d, 3a and 

3b show the effects of Reynolds number, Re, on the 

velocity at constant non-dimensional wall dilation rate 

on the dimensionless axial velocity. Increase in the 

Reynolds number decreases the axial velocity at the 

center of the channel during the expansion while the 

axial velocity increases slightly near the surface of the 

channel when the wall contracts at the same rate. The 

behavior of axial velocity for different permeation 

Reynolds number, over a range of non-dimensional wall 

dilation rate were plotted in Figs. 2, 2a-2d. The figures 

depict that, for every level of injection or suction, the 

velocity is maximum at the center of the channel and 

near the point, the velocity is increased when the channel 

is expanding and decrease when the channel contracts. 

That is because the flow toward the center becomes 

greater to make up for the space caused by the expansion 

of the wall and as a result the axial velocity also becomes 

greater near the center. As the wall expansion ratio 

increases, the velocity at the center decreases and 

increases near the wall.  Similarly, for the case of 

contracting wall as shown in Fig. 2a-d and 3a, increasing 

contraction ratio leads to lower axial velocity near the 

center and the higher near the wall because the flow 

toward the wall becomes greater and as a result the axial 

velocity near the wall becomes greater. So, both the 

expansion and suction through the wall reinforce the 

flow through the channel and similarly does the wall 

contraction and injection through the surface. The results 

of the present study show that for every level of injection 

or suction, in the case of expanding wall, increasing 

expansion ratio  leads to higher axial velocity near the 

center and the lower axial velocity near the wall. 

 

 

 

 

 

Table 1: Comparison of results of flow  for large 

Reynolds number and suction 

( )f   Re = 5,  α=0.5 

η NM VPM 

0.0 0.000000 0.000000 

0.1 0.152874 0.152874 

0.2 0.301551 0.301551 

0.3 0.442606 0.442606 

0.4 0.573196 0.573196 

0.5 0.690876 0.690876 

0.6 0.793373 0.793373 

0.7 0.878373 0.878373 

0.8 0.943297 0.943297 

0.9 0.985090 0.985090 

1.0 1.000000 1.000000 

 

Table 2: Comparison of results of flow for large 

Reynolds number, injection and suction 

( )f   Re = 5,  α=0.5 

η NM VPM 

0.0 1.536154 1.536154 

0.1 1.151411 1.151411 

0.2 1.453855 1.453855 

0.3 1.362554 1.362554 

0.4 1.245207 1.245207 

0.5 1.104631 1.104631 

0.6 0.941489 0.941489 

0.7 0.754210 0.754210 

0.8 0.539188 0.539188 

0.9 0.290458 0.290458 

1.0 0.000000 0.000000 

 

5. Conclusion 
In this work, variation parameter method has been 

applied to analyze two-dimensional unsteady flow of 

viscous fluid in a porous channel through 

expanding/contracting walls with large injection or 

suction. From the results, it was established that increase 

in the Reynolds number decreases the axial velocity at 

the center of the channel during the expansion while the 

axial velocity increases slightly near the surface of the 

channel when the wall contracts at the same rate. Also, 

as the wall expansion ratio increases, the velocity at the 

center decreases and increases near the wall. For every 

level of injection or suction, in the case of expanding 

wall, increasing expansion ratio leads to higher axial 

velocity near the center and the lower axial velocity near 

the wall. The approximate analytical solution was 

verified by numerical solution using shooting method 

coupled with Runge-Kutta method. The results of the 

variation parameter method are in excellent agreement 

with the results obtained using numerical method.  
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Nomenclature 

a  time-dependent rate  

0B electromagnetic induction 

Ha  Hartmann number 

p   Pressure 

Re permeation Reynolds number 

t  time 

u   velocity component in x-direction 

v   velocity component in y-direction 

wV  fluid inflow velocity at the wall 

x coordinate axis parallel to the channel walls 

y coordinate axis perpendicular to the channel walls 

nf  density of the nanofluid 

f  density of the fluid 

nf dynamic viscosity of the nanofluid 

s  density of the nanoparticles 

  fraction of nanoparticles in the nanofluid 

  electrical conductivity 

  dimensionaless wall dilation rate 

 

 

 

  
a b 

  
c d 

Fig. 1 Variation of f (η) for different expansion and contraction ratio, α and different small values of Re 
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                         (a)                                                                                           (b) 

 
                            (c)                                                                                          (d) 

 
                                                                            (e) 

Fig. 2 Variation of f’ (η) for different expansion and contraction ratio, α and different small values of Re 
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(a) 

 

(b) 

Fig. 3 Variation of f’ (η) for different expansion and contraction ratio, α and different values of Re 
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