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Abstract  

In this study, a hybrid method is proposed to investigate the nonlinear vibrations of pre- and post-buckled 

rectangular plates for the first time. This is an answer to an existing need to develop a fast and precise numerical 

model which can handle the nonlinear vibrations of buckled plates under different boundary conditions and 

plate shapes. The method uses the differential quadrature element, arc-length, harmonic balance and direct 

iterative methods. The governing differential equations of plate vibration have been extracted considering shear 

deformations and the initial geometric imperfection. The solution is assumed to be the sum of the static and 

dynamic parts which upon inserting them into the governing equations, convert them into two sets of nonlinear 

differential equations for static and dynamic behaviors of the plate. First, the static solution is calculated using 

a combination of the differential quadrature element method and an arc-length strategy. Then, putting the first 

step solutions into the dynamic nonlinear differential equations, the nonlinear frequencies and modal shapes of 

the plate are extracted using the harmonic balance and direct iterative methods. Comparing the obtained 

solutions with those published in the literature confirms the accuracy and the precision of the proposed method. 

The results show that an increase in the nonlinear vibration amplitude increases the nonlinear frequencies. 

Keywords: 

 Buckled plate; Differential quadrature element method; Direct iterative method; Harmonic balance method; Nonlinear 

vibration. 
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1.   Introduction 

Basically, many natural phenomena behave in a 

nonlinear manner. Nonlinear vibration of different 

structures has been an interesting research field among 

the researchers. Also, plates are one of the most 

frequently used structures in industrial applications. 

Therefore, investigating the nonlinear vibration of plate 

structures under the application of different loads has 

been the focus of many studies. Wah[1] proposed an 

approximated formula for large amplitude vibrations of 

rectangular plates using the Berger equations and showed 

that these equations can be applied to dynamic problems. 

Mei[2] investigated the large amplitude vibration of 

beams and plates using the finite element method. He 

extracted the governing nonlinear differential equations 

of plates using Berger equations and studied different 

combinations of simply-supported and clamped 

boundary conditions. Yamaki and Chiba [3] used 

Marguerre equations to study the nonlinear vibration of 

a fully clamped isotropic plate under a distributed 

periodic load considering initial geometric imperfection 

and initial edge displacements. Mei and Decha-Umphai 

[4] studied nonlinear forced vibration of rectangular 

plates under harmonic forces using the finite element 

method. Kapania and Yang [5] presented a finite element 

model to study the buckling, post-buckling and nonlinear 

vibration of initially imperfect plates. They showed that 

considering the inplane displacements and inertia into 

governing equations decreases the nonlinear frequencies. 

Hui-shen [6] used Von-Karman theory of large 

deformations to study the post-buckling of rectangular 

plates under uniaxial compression combined with lateral 

pressure. He used Galerkin method to model the lateral 

pressure as an initial geometric imperfection and solved 

the obtained equations using perturbation method.  Woo 

and Nair [7] investigated large amplitude vibrations of 

thin plates taking into account the nonlinear terms of 

Von-Karman equations. They used the Galerkin method 

to convert the governing equations into a duffing 

equation and solved it using the harmonic balance 

method. Esmaeilzadeh and Jalali [8] studied nonlinear 

vibrations of a simply-supported viscoelastic rectangular 

plate using Voight-Kelvin model. Chen et al.[9] 

investigated the nonlinear vibration of plates using finite 

element and harmonic balance method. Azrar et al.[10] 

studied free and forced nonlinear vibrations of a 

rectangular plate under a harmonic force using an 

asymptotic numerical method. Ribeiro [11] studied 

geometrically nonlinear vibration of thick plates using 

finite element. Bikri et al. [12] used Simpson's rule to 

investigate large amplitude vibration of an isotropic 

rectangular plate. Amabili [13-15] studied large 

amplitude oscillations of a rectangular plate under an 

external force with a near to resonance frequency. 

Zarubinskaya and Van Horssen [16] investigated 

nonlinear vibration of simply supported square plates on 

nonlinear elastic foundation. Girish and Ramchandra 

[17] investigated the vibration of thermally postbuckled 

rectangular composite plates considering shear 

deformation and initial geometric imperfection by 

Galerkin method. Fung and Chen [18] used average 

stress method to extract the nonlinear differential 

equations of rectangular FGM plates and solved them by 

Galerkin and Runge-Kuta methods. They studied the 

effects of initial stress and initial geometric imperfection 

on nonlinear behavior of plates and found that tensile 

stress could increase the frequencies and compressive 

stress decrease them. Shooshtari and Khadem [19] used 

the multiple scale method to solve the nonlinear vibration 

of a rectangular plate. They used the Galerkin method to 

convert the governing differential equations into a third-

order duffing equation and solved it with the multiple 

scale method. Bakhtiari-Nejad and Nazari [20] studied 

the nonlinear vibration of isotropic plates with 

viscoelastic laminate using the methods of multiple scale 

and finite difference. Houmat [21] studied the nonlinear 

vibration of composite annular elliptical plates 

considering the shear deformations, rotary inertia and 

geometrical nonlinearity using harmonic balance 

method. Singha and Daripa [22] used finite element 

method to study the nonlinear vibration and dynamic 

stability of isotropic and composite plates under inplane 

periodic loads. Rashidi et al. [23] considered shear 

deformation and rotary inertia in governing equations of 

nonlinear vibration of an isotropic rectangular plate. 

They used Galerkin and homotopy perturbation methods 

to solve obtained equations. Hashemi and Jaberzadeh 

[24] proposed a method for investigating the nonlinear 

vibration of plates using the finite strip method. They 

used a combination of trigonometric functions and 

polynomials to extract nonlinear frequencies and modal 

shapes of the plate. Malekzadeh [25, 26] used the 

differential quadrature method and first-order shear 

deformation theory to study nonlinear vibrations of thin 

to moderately thick composite plates. Ma et al. [27] used 

multiple scale method to study the nonlinear dynamic of 

stiffened plate. They considered the stiffeners as Euler 

beams and used Lagrange equation and modal 

superposition method to derive the dynamic equilibrium 

equations of the stiffened plate according to energy of the 

system.  Yazdi [28-32] used homotopy perturbation 

method to investigate nonlinear vibrations of FGM 

plates. He confirmed that homotopy perturbation method 

with two terms has good precision. Detroux et al [30-32] 

used harmonic balance method to investigate nonlinear 

behavior of some mechanical system. Daneshmehr et al. 

[33] applied Eringen’s nonlocal theory to study the small 

scale effects on natural frequencies of nanoplates made 

of functionally graded materials. They used higher order 

shear deformation plate theory and generalized 

differential quadrature method to obtain accurate results. 

Liu et al. [34] used differential quadrature method to 
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investigate the buckling and postbuckling of 

piezoelectric nanoplates based on the nonlocal Mindlin 

plate model. They observed that an increase in nonlocal 

parameters leads to smaller buckling and postbuckling 

loads and the positive/negative electric voltage 

decrease/increase buckling and postbuckling loads. 

KrishnaBhaskar and MeeraSaheb [35] proposed coupled 

displacement field (CDF) method to investigate 

nonlinear vibration of Mindlin plates. Their method 

simplified the vibration problem due to the reduction in 

number of undetermined coefficients compared with 

conventional Rayleigh-Ritz method.. 

To the best of authors knowledge, there is a need to 

propose a fast and accurate numerical method to 

investigate nonlinear vibrations of buckled plates with 

none of the restrictions of the other references. This work 

focuses on the application of a novel method for 

investigating the nonlinear vibrations behavior of 

rectangular buckled plates under uniaxial compressive 

load. After extracting the governing differential 

equations, the solution is considered as the sum of the 

static (time independent) and dynamic (time dependent) 

responses. Using this assumption, the governing 

equations are converted into two nonlinear differential 

equation sets; a time independent and a time dependent 

equation set. The former set is discretized using the 

differential quadrature element method (DQEM) to 

obtain a nonlinear system of algebraic equations which 

will be solved by an arc-length strategy to find the post-

buckling state of the plate. Then, the nonlinear vibration 

equations about the buckled plate are discretized using 

DQEM and the harmonic balance method which will 

result in a nonlinear eigenvalue problem. This nonlinear 

eigenvalue problem will be solved by the direct iterative 

method to find the nonlinear natural frequencies of the 

buckled plate. To validate the results of the proposed 

method they are compared with those obtained from the 

published literature through a series of case studies. Also, 

the effects of several parameters on the nonlinear 

frequencies of buckled plate are investigated. 

2.   Governing Equations 

Fig. 1 shows an initially imperfect plate having 

dimensions a and b, and thickness h. the plate is under 

the compressive inplane load, P, acting across the width. 

 

Figure 1. A rectangular plate with initial imperfection under uniaxial compressive load. 

 

Considering the Von-Karman strain-displacement 

relations for large deformations and the first-order shear 

deformation theory, the relation between stresses and 

displacements can be obtained as equation 1.  
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where u, v and w are displacements in x, y and z 

directions, and α and β are the rotations about the x and y 

axes, respectively. w0 is the initial geometric 

imperfection, and E and ν represent the Young’s modulus 

and the Poison’s ratio. The inplane forces and moments 

of the plate can be determined by integrating these 

stresses. 

 

 

(2) 

 

 

 

 

 

 

 

here, Ks represents the shear correction factor and G 

is the shear modulus.  Using these forces and moments, 

the governing differential equations of motion turn out to 

be: 
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where 3 / 12x yI I h , h  and  is the 

density of the plate. Inserting equation (2) into equation 

(3), the nonlinear differential equations of the plate are 

obtained based on the displacement field. In order to 

solve this system of nonlinear differential equations, the 

solution is assumed to be composed of: 

 

(4) 

 

 

 

 
 

(4) 

where subscripts s and d stand for the static solution 

(time independent) and dynamic solution (time 

dependent), respectively. Inserting equation (4) into the 

governing equations and eliminating the time dependent 

terms, the nonlinear differential equations of equilibrium 

are obtained as equations (A1)-(A5) in appendix A. 

Deformation of the plate under different 

compressive load ratios can be obtained solving 

equations (A1) to (A5). To solve them, they are 

discretized using differential quadrature element method 

(Bellman et al. [36], Quan and Chang [37], Wang and 

Wang [38], Wang [39]). The resulting nonlinear 

algebraic equations will be solved using an arc-length 

strategy (Wempner [40], Riks [41], Forde and Stiemer 

[42]) which has the ability to pass the bifurcation points 

if the load passes the buckling load. Upon solution of the 

equilibrium problem, inserting equation (4) one more 

time into the governing equations and eliminating terms 

which only depend on the static solutions, and 

considering large amplitude vibrations about the buckled 

shape of the plate, the nonlinear differential equations of 

post-buckled plate vibrations can be expressed as 

equations (B1)-(B5) in appendix B. These equations can 

be presented in matrix form as: 

 
(5) 

where [KL] and [KNL] are linear and nonlinear stiffness 

matrices and {ø} is the displacement vector in the form 

of {u,v,w,α,β}T. In order to solve these equations and 

extract the nonlinear frequencies and modal shapes of the 

buckled plate, the harmonic balance method (Krylov and 

Bogoliubov [43], Detroux et al.[30-32] and the 

differential quadrature element method are used to obtain 

a nonlinear eigenvalue problem in the form of: 

 

(6) 

Coefficient ¾ in Eq. (6) has been induced by using the 

harmonic balance method and elimination of the higher-

order terms. As mentioned earlier, the direct iterative 

method (Ribeiro and Petyt [44]) has been used to solve 

this nonlinear eigenvalue problem. First, the nonlinear 

terms are eliminated and the resulted linear eigenvalue 

problem is solved. Then, nonlinear terms are calculated 

using linear modal shapes. Next, frequencies and modal 

shapes of the new eigenvalue problem are extracted and 

the computed nonlinear modal shapes are used to 

calculate the nonlinear terms. This process continues 

until the convergence criteria (Equation (7)) is reached.  

 

(7) 

where i and i+1 subscripts refer to ith and (i+1)th
 

iterations. Errall is the relative error and its value may be 

selected between 10-6 and 10-3. 

The solution of this nonlinear eigenvalue problem 

provides the nonlinear frequencies and corresponding 

modal shapes of the plate under the compressive inplane 

load . 

3.   Results 

In order to verify the precision and the consistency of the 

proposed approach, the formulation developed in the 

preceding section is applied on a square simply-

supported plate and the results are compared with those 

published in the literature. Table 1 shows the result for a 

plate having Poison’s ratio equal to 0.3 under no-load 

condition. The ratio of the first nonlinear frequency to 

linear frequency for different vibration amplitudes of the 

plate’s center are compared with the results obtained by 

Wah [1], Mei[2] and KrishnaBhaskar and 

MeeraSaheb[35]. As mentioned earlier, Mei[2] used 

finite element method to solve this problem while 

Wah[1] used Galerkin method and KrishnaBhaskar and 

MeeraSaheb[35] used CDF method to find the nonlinear 

frequencies of the unloaded plate. 
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Table 1. The first nonlinear frequency against the maximum amplitude at the center for a square plate. 

NL

L





 

aW

h
 Ref [35] Ref [2] Ref [1] Present 

0 1 1 1 1 

0.2 1.0203 1.0182 1.0222 1.0194 

0.4 1.0789 1.0709 1.0858 1.0750 

0.6 1.1699 1.1530 1.1833 1.1599 

0.8 1.2865 1.2590 1.3067 1.2668 

1 1.4227 1.3825 1.4491 1.3892 

 

where Wa/h is the ratio of nonlinear vibration amplitude 

to the thickness and ωNL/ωL is the ratio of nonlinear 

frequency to linear frequency. Table 1 shows that the 

proposed algorithm is in very good agreement with those 

obtained by other references ([1],[2],[35]). However, as 

the relative amplitude of vibration increases, the results 

obtained by current study diverge from those of Wah[1]  

but still are in very good agreement with Mei[2]. 

Differences between the presented results and Wah[1] 

are because of the in-plane inertia that has been 

considered in this study. Mei[2], too had taken into 

account the effects of inplane displacements and inertia, 

and observed that the consideration of these effects could 

reduce the nonlinear frequencies. 

Figure 2 shows the variation of vibration amplitude ratio 

against the frequency ratio for different aspect ratio of the 

square plate. The plate is simply-supported with length 

to thickness ratio equal to 240 (i.e. a/h=240). 

Comparison of the results of the current study and those 

obtained by the Mei[2] shows the accuracy of the 

proposed method. It can be seen that increasing the 

length to width ratio results in an increase in the 

nonlinear frequency. The figure also shows that an 

increase in the aspect ratio induces a shift of the 

backbone curve to the right. 

 

Figure 2: Variation of maximum amplitude versus the frequency ratio for different aspect ratio. 

(a/b=1 (…), a/b=2 (---), a/b=1 Mei [2] ( _. ), a/b=2 Mei[2] ( _.. )) 

 

Figure 3 shows the variations of the first four nonlinear 

natural frequencies of a plate in terms of the compressive 

load for different nonlinear vibration amplitudes. The 

square plate is simply supported at its boundaries. The 

figure shows that an increase in compressive load in pre-

buckling state decrease the frequencies as a result of the 

bending stiffness reduction, and increase them after the 

buckling load because of the domination of the stretching 

stiffness over bending stiffness. The same behavior can 

be observed for linear vibrations. The figure also shows 

that increasing the nonlinear vibration amplitude 

increases the corresponding frequencies due to the 

increase in the bending stiffness.
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Figure 3: variation of first four natural frequencies of a plate against compressive load for different vibration amplitude. 

 (linear (…), Wa/h=0.5 (---), Wa/h=1 ( _ )) 

 

The first four nonlinear modal shapes of the plate 

under different buckling states are presented in figure 4. 

Figure 4(a) represents the modal shapes at the pre-

buckling state with P/Pcr=0, where Figure 4(b) shows the 

same modes at the post-buckled state of P/Pcr=2. The 

vibration amplitude for both cases is fixed at Wa/h=0.5. 

 

Figure 4: Nonlinear modal shapes of the simply supported plate: (a) Pre-buckling (b) Post-buckling. 

Figure 5 shows the effects of initial imperfection 

amplitude on the first four nonlinear natural frequencies 

of a simply supported square plate for different inplane 

compressive loads. As it can be seen from the figure, the 

variation of frequencies is insignificant for small 

imperfection amplitudes, and it becomes negligible at 
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large compressive loads. This is due to the fact that after 

buckling, the plate curvature increases and the small 

initial imperfection becomes negligible as compared 

with it. However, for large imperfection amplitudes, the 

variation in frequencies become more significant and are 

comparable as the load increases over the buckling state. 

Figure 6 shows the effect of plate thickness on the 

relative change in the first nonlinear frequency compare 

with the linear one for different compressive applied 

load. The variation in nonlinear frequencies for the 

thicker plates is more than the thin plates. It could be seen 

that the máximum change of first nonlinear frequency of 

plate for a moderately thick plate (h/a=0.1) is about 

19.43% but for a thin plate (h/a=0.001) in the same load 

ratio, it is about 3.22%. 

Figure 7 shows the variation of the first four nonlinear 

frequencies of a fully clamped square plate under the 

applied inplane compressive load for different nonlinear 

vibration amplitudes. It can be seen from the figure that 

as the compressive inplane load increases from zero to 

the buckling load, the reduction in plate stiffness causes 

all natural frequencies to be smoothly decreased. After 

the buckling, the curves for the odd frequencies increase 

rapidly, while the even modes experience some more 

decrement (unlike simply supported plate). The change 

in frequencies depends on the variation of bending and 

stretching stiffnesses. The figure shows that for the 

second and forth modes, the reduction of frequencies 

after the buckling load continue because they are bending 

modes. However, for the first and third modes, as they 

are bending-stretching modes, the frequencies increase 

after the buckling load due to the fact that the dynamic 

stretching-induced stiffness dominates the elastic 

bending stiffness. 

 

 

Figure 5: variation of the first four nonlinear frequencies of a simply supported square plate with applied load for different 

initial imperfection. (W0/h=0.001 (…), W0/h=0.01 (---), W0/h=0. 1( _ )) 
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Figure 6: Effect of plate thickness on first nonlinear frequency. (h/a=0.001 (…), h/a=0.01 (---), h/a=0. 1 ( _ )) 

 

Figure 7: variation of the first four nonlinear frequencies of a fully clamped square plate with the compressive load for 

different amplitude. (linear (…), Wa/h=0.5 (---), Wa/h=1 ( _ )) 

 

Figure 8 shows the first four modal shapes for a fully 

clamped square plate in Pre-buckling (P/Pcr=0) and Post-

buckling (P/Pcr=1.2) states, respectively. 

4.   Conclusions 

In this study, nonlinear vibrations of plates under the 

action of inplane compressive load have been 

investigated by a hybrid method which uses the 

differential quadrature element, the arc-length, the 

harmonic balance and the direct iterative methods. The 

governing differential equations were divided into two 

sets of static (post-buckling) and dynamic (vibration) 

equations. The static equations were discretized using the 

differential quadrature element method, and solved by an 

arc-length strategy to find the state of equilibrium under 

the applied compressive inplane load. Next, inserting the 

static solution into the dynamic equations and using the 
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harmonic balance and the differential quadrature element 

method, the governing dynamic equations were 

transformed into a nonlinear eigenvalue problem and 

solved by the direct iterative method. 

Several case studies were performed to show the 

integrity of the proposed method. Also, the effect of 

some parameters influencing the nonlinear natural 

frequencies for simply supported and clamped boundary 

conditions were examined. It was realized that the 

nonlinear frequencies are functions of the compressive 

load and vibration amplitude. Moreover, the 

investigation shows that the frequencies are sensitive to 

the initial imperfection amplitudes (especially after the 

buckling). 

It can be concluded that for simply supported plate, 

increasing the compressive load decreases the nonlinear 

frequencies in the pre-buckling domain and increases 

them in the post-buckling domain as well. Also, the plate 

thickness influences the frequencies; the thicker plate, 

the larger change in nonlinear frequencies. However, the 

results are different for the clamped plates. The presence 

of stretching stiffness causes the increase in frequencies 

after the buckling for some modes, while the influence of 

bending stiffness continues to decrease the frequencies 

for other modes. 

 

Figure 8: nonlinear modal shapes of the fully clamped plate: (a) Pre-buckling (b) Post-buckling. 
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5.   Appendix A: Nonlinear Differential Equations 

of Equilibrium 
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6.   Appendix B: Nonlinear Differential Equations 

of Buckled Plate Vibration 
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