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Abstract 

The aim of this study is the investigation of the large amplitude deflection of an Euler-Bernoulli beam subjected to an 

axial load on a viscoelastic foundation with the strong damping. In order to achieve this purpose, the beam nonlinear 

frequency has been calculated by homotopy perturbation method (HPM) and Hamilton Approach (HA) and it was 

compared by the exact solutions for the different boundary conditions such as simple-simple, clamped-simple and 

clamped-clamped which showed a good accuracy in results. In addition, to find the deflection of the nonlinear Euler-

Bernoulli beam, the problem has been solved based on homotopy perturbation method and modified differential 

transform method (MDTM) and finally, the results were compared by Rung-Kutta exact solutions. The derived 

deflection results by two mentioned methods had a good agreement with the exact RK4 solutions. By considering the 

paper results, buckling force is increased for each case permanently by increase in the boundary rigidity for a constant 

value of system amplitude (A). As a final comparison, in based on paper results, the buckling force is arisen by 

increasing the system amplitude for each case. 

Keywords: Euler-Bernoulli beam, Homotopy perturbation method, Padé approximants, Modified differential transform method, 

Variable foundation, Vibration and buckling analysis. 

1.   Introduction 

As Euler-Bernoulli beams are widely implemented in 

different engineering fields, their dynamical and 

vibrational investigations are the most important goal 

of any study project. Although many analytical, semi 

analytical and numerical researches on mechanical and 

structural elements have been performed yet, finding 

                                                           
 Corresponding Author. Tel.: +989390154377 

Email Address: m.choulaie@gmail.com 

the new reliable solutions to solve some more 

complicated problems such as nonlinear beams in 

different load and boundary conditions are very useful. 

Nowadays, researchers focus on considerations of the 

strong nonlinearity induced by the large amplitude 

vibrations of the mechanical components. In case of 
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different nonlinear beam solutions, Sedighi and Shirazi 

presented an analytical solution of cantilever beam 

vibration with nonlinear boundary condition by 

considering the dead zone effect concept [1]. Barari et 

al. [2, 3] studied on the beam deformation problem 

using homotopy perturbation method (HPM). Also, in 

some other researches perturbation method is applied 

to obtain nonlinear frequency and dynamic system 

response [4-6]. Durmaz and Kaya [7] and the other 

researchers [8-11] presented some investigations based 

on energy balance method (EBM) to investigate the 

nonlinear behavior of the oscillators. They derived 

first-, second- and third-order energy balance method 

for a cubic-quintic Duffing oscillator. Nonlinear and 

linear structures solving is investigated by several 

literatures [12-33] which their results have a good 

accuracy with the exact solutions. Rezazadeh et al. 

[34] presented this method to derive the micro-beam 

frequencies parametrically. Kacar et al. [35] studied on 

the beam analysis on the variable winkler elastic 

foundation by using the differential transform method 

(DTM). This method also is applied by some other 

researches [36-39]. The most controversial problem in 

DTM is the solutions stability for the large range of 

time which depends on the other system parameters. 

Karimian and Azimi [20] used differential transform 

method and Hamilton Approach to solve Euler-

Bernoulli beams subjected to axial load. Abdelhafez 

[40] performed a solution for Duffing and Van der pol 

equations under damping effects by using modified 

differential transform method (MDTM) and based on 

Padé approximants concept. The similar researches 

have been performed recently [41-43]. In case of large 

amplitude vibration of beams, Mirzabeigy and 

Madoliat [44] studied on an Euler-Bernoulli beam 

resting on the variable elastic foundation. They derived 

the nonlinear frequencies by helping perturbation 

method. Senalp et al. [45] performed a comparison 

between linear and nonlinear response of Euler-

Bernoulli beam on a viscoelastic foundation by using 

Galerkin method and finite element method (FEM). 

Based on this overview, as the large amplitude 

vibration of Euler-Bernoulli beam with the strong 

damping on the viscoelastic foundation has not been 

performed, this subject is investigated now. 

In this paper, the governing motion equation of the 

nonlinear Euler-Bernoulli beam resting on the variable 

linear and nonlinear viscoelastic foundation has been 

derived by helping Hamilton principles and it has been 

solved by HPM and MDTM. Consequently, 

comparing the results by Rung-Kutta solution shows 

the good accuracy. Also, the nonlinear frequencies 

have been obtained by HPM and Hamilton Approach 

(HA) at the different simply support-simply support 

(S-S), simply support-clamped support (S-C) and 

clamped support-clamped support (C-C) boundary 

conditions that they have complete agreement in 

comparison with the exact solutions in the other 

previous works. 

2.   Mathematical Modelling 

Fig.1 shows a schematic of an Euler-Bernoulli beam 

on the nonlinear viscoelastic foundation with the 

variable coefficients. In this paper, the beam is 

subjected by the axial load. The spatial coordinate x

along the beam length is applied to use in the 

mathematical formulations. The beam length L , mass 

per unit volume


, beam thickness h , modulus of 

elasticity E , moment of inertia I and the rectangular 

cross section with the area of A are the other 

specifications of the beam. 

 

 

Figure 1: An Euler-Bernoulli beam subjected by axial load 
on the viscoelastic foundation 

 

In order to derive the motion equation, one can be 

able to use Hamilton’s principle as bellow 
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However, the motion equation of system is as 

follow 
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In the last equation, )(xk and )(xc can be 

considered as 

 

)()( xkgxk  , )()( xcgxc     (6) 
 

Where k and c are the constant coefficients of 

stiffness and damping, also g( x ) is the spatial 

coordinate function along the beam length. In order to 

make the beam equation form easier, dimensionless 

parameters are considered as follow 
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where
A

I
R   is the gyration radius of the cross 

section.  

The form of solution based on variables separation 

method is assumed as follow 

)()(),( tUxtxy   (8) 
 

Where )(x  will be determined based on the 

different boundary conditions. Implementing the 

weighted residual Bubnov-Galerkin method leads to 
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Consequently, the time-dependent nonlinear 

equation will be derived as follow 

0)()()()( 3  tUtUtUtU    (10) 
 

Where 

,

)(

)()(

1

0

2

1

0

2






dxx

dxxxg

C






 

,321    

 

,

)(

)()
)(

(

1

0

2

1

0

4

4

1






dxx

dxx
dx

xd







 

 

 

 

 

 

 

(11) 
,

)(

)()
)(

(

1

0

2

1

0

2

2

2






dxx

dxx
dx

xd

F








 






1

0

2

1

0

2

3

)(

)()(

dxx

dxxxg

K






 



  














1

0

2

1

0

1

0

2

2

2

)(

)()
)(

()
)(

(

2

1

dxx

dxxdx
dx

xd

dx

xd







 

     In this study, the main purpose is to investigate the 

dynamic response of Eq.10 by an analytical solution 

and then comparing it with the numerical solution. 

Perturbation method will be implemented to find an 

analytical solution for the large amplitude oscillation 

(Eq.10) under the initial conditions as bellow 

0)0( AU   , 0)0( U  (12) 

In the above initial conditions,
0A  is the 

dimensionless initial displacement of the midpoint of 

Euler-Bernoulli beam. 

In this paper, three stiffness functions are assumed 

to define winkler foundation. The three mentioned 

cases are as follows: 

Case 1: )2.01()( xkxK    
Case 2: )2.01()( 2xkxK   (12-a) 

Case 3: )sin()( xkxK    

3.   Solution Methods 

As can be observed, Eq.10 has a nonlinear form that it 

makes some difficulties to solve it by the ordinary 

analytical methods. Therefore, in order to derive the 

solution of the governing motion Eq.10 and the 

nonlinear frequencies in the various mentioned 

boundary conditions in Table 1, HPM, HA and MDTM 

are applied in this paper. The nonlinear frequencies are 

derived by HPM, HA and the response of the system is 

obtained by HPM, MDTM and RK4. 
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Table 1: The first eigenmode of beam with the different BCs 

BC                                                 )(x  

SS-SS )sin( x  , 14.3  

SS-CS )]sinh()[sin(
sinhsin

coshcos
)]cosh()[cos( xxxx 




 




  , 93.3  

CS-CS )]sin()[sinh(
sinsinh

coscosh
)]cos()[cosh( xxxx 




 




  , 73.4  

 

3.1.   Homotopy Perturbation Method  

In order to solve the problem by implementing 

HPM, Eq.10 is divided to the linear and nonlinear 

parts. Remembering this equation and its 

corresponding initial conditions as follow 
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So as to solve the last equation by perturbation 

method, the parameter U is defined as 

TU   (13) 
 

Substituting Eq.13 into Eq.10 leads to 
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     Where 





2
 is the damping ratio of the above 

system. 

Considering the form of system solution T, and the 

constant coefficient   as follow 

 2

4

1

2

0 TTTT   (15) 

 2

4

1

22   (16) 

 

Substituting Eqs.15 and 16 into Eq.14 and 

collecting the same power of   leads to below 

equations 
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While   , the solution of Eq.17 will be as 

follow 
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The expanded form of )(cos3  td and the 

Taylor series of te 2
are as follows 

)(3cos
4

1
)cos(

4

3
)(cos3   ttt ddd

 (21) 



!2

)2(
21

2
2 t

te t 


 
(22) 

 

Substituting Eqs.21, 22 into Eq.20 and after some 

essential mathematical calculation, Eq.20 will be 

shown as 
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In order to eliminate the secular terms should be 
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Nonlinear frequency by substituting Eq.24 into 

Eq.16 for the first approximation will be derived as 
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The last equation is the system nonlinear 

frequency. Furthermore, the system response based on 

HPM can be expressed as follow 
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If perturbed Duffing equation with the damper is 

presented as 

),(2 2 uufuuu     (27) 
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Where 10c  and 20c  can be obtained from the 

initial conditions. By solving Eq.28 1u  can be found 

as  
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Where 1c , 2c are as follows 
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It is obvious, when 0 , 
1c  and 

2c  are equal to 

10c and 20c . Finally, the first approximate solution 

will be found as bellow 
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3.2 Hamilton Approach 

The nonlinear frequency of Euler-Bernoulli beam can 

be easily derived from the Hamilton Principles. 

Hamiltonian form of the Eq.10 is as follow 
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Where, the first term of the left-hand side of the 

above equation shows kinetic energy and the next two 

terms illustrate the total system potential energy.  

If the form of trial function is assumed as  

)cos()( 0 tAtU   (36) 

Substituting Eq.36 into Eq.35 can be showed 

residual equation as follow 
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The first-order approximation is as follow 
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Solving Eq.38 leads to the nonlinear frequency as 

follow  
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(39) 

3.3 DTM and MDTM 

Differential Transform Method (DTM) presents a 

good approximate about a specific point by helping the 

power series concept. It is one of the most powerful 

methods to achieve the accurate solutions of the 

system in the limited time domain. So as to apply this 
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method to unlimited time domain, DTM has some 

difficulties and because of this reason MDTM can be 

used to obtain more accurate solution than DTM. 

However, the first step is to use DTM to derive the 

differential transform of the system response )(tx . In 

order to aim this goal, )(kX  is defined as follow 
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Also, the invers transform of )(kX  is 
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Using Eqs.40 and 41 
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Some primary relations of DTM are presented in 

Table 2. 

Table 2:  Some primary relations of DTM 

Original Function Transformed Function 
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In order to obtain more precise solution results, 

MDTM is implemented in this study based on Padé 

approximation concept. In order to apply this method, 

Laplace transform of Eq.41 should be taken as follow 
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derived Laplace transform equation. In based on Padé 

approximation concept, ),( mnL  is equal to )(tf  and 
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Solving Eq.44 leads to obtain the coefficients 

],...,,[ 10 nppp  and ],...,,[ 21 mqqq . Consequently, after 

specify all coefficients, ),( mnLs
 can be derived by 

substituting 
s

t
1

 in Eq.44. Finally, the modified 

solution of )(tx  can be obtained by applying invers 

Laplace transform of ),( mnLs
. 
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  
 

(47) 

 
4.   Results and Discussions 

In order to have a good comparison between the 

different methods, the numerical analysis has been 

performed helping the appropriate data that satisfy the 

most important goals of this study such as the 

nonlinear variable viscoelastic foundation model and 

the strong damping conditions. 

Table 3 shows the nonlinear natural frequencies for 

S-S, S-C and C-C boundary conditions by applying the 

linear and nonlinear elastic foundation model. The 

results that summarized in Table 3 show the 

comparison between the linear frequencies and system 

nonlinear frequencies for the different boundary 

conditions and two cases foundation functions and also 

stiffness amounts based on HPM and HA (first order 

energy balance method). The obtained ratio of the 

nonlinear to linear frequencies in this paper is 
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compared by another literature [44] in Table 4. It 

should be mentioned that the results which presented 

in reference [44] are for an Euler-Bernoulli beam 

without axial load and elastic foundation. There is no 

comparison data for an Euler-Bernoulli beam resting 

on viscoelastic foundation.  

 
Table 3: Nonlinear natural frequencies for different boundary conditions by applying the linear and nonlinear elastic foundation 

model. 

Boundary 

Condition 

Foundation function xxg 2.01)(   22.01)( xxg   

Stiffness amount K=10 K=100 K=10 K=100 

S-S Linear frequency 10.315 13.690 10.336 13.848 

Nonlinear(HPM) frequency 11.166 14.341 11.185 14.492 

Nonlinear (HA) frequency 11.111 14.299 11.130 14.450 

S-C Linear frequency 15.698 18.061 15.712 18.182 

Nonlinear(HPM) frequency 17.207 19.387 17.220 19.499 

Nonlinear (HA) frequency 17.110 19.301 17.123 19.414 

C-C Linear frequency 22.573 24.301 22.583 24.395 

Nonlinear(HPM) frequency 23.797 25.442 23.807 25.532 

Nonlinear (HA) frequency 23.717 25.368 23.727 25.457 

 
Table 4: Ratio of the nonlinear to linear frequencies in this paper and another literature [44]. 

Boundary Condition Present Ref. [44] Error 

S-S 1.0825 1.0892 0.6% 

S-C 1.0961 - - 

C-C 1.0542 1.0550 0.07% 

Table 3 indicates the greater amount of the 

nonlinear frequency with respect to the linear 

frequency in each boundary condition. Additionally, 

the rate of frequency is increased by raising the rigidity 

of the boundary conditions. The above data is derived 

by assuming the amplitude amount A=1 and the axial 

load F=0. 

Table 5 shows the rate of buckling force (F) in each 

boundary condition with respect to variation of system 

amplitude (A). As can be seen in Table 5, the buckling 

force is increased by arising in rigidity of the boundary 

condition for constant system amplitude in each case. 

Moreover, by increasing the system amplitude the 

buckling force is increased for each case. 

 
Table 5: Rate of buckling force (F) in each boundary condition with respect to the variation of system amplitude (A). 

 Buckling Force (F) in S-S Buckling Force (F) in S-C Buckling Force (F) in C-C 

 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

A=0.1 19.007 19.447 36.908 28.391 28.772 44.083 48.049 48.419 63.635 

A=1 20.838 21.279 38.740 32.662 33.043 48.354 52.616 52.987 68.202 

A=5 63.238 65.679 83.140 136.197 136.578 151.890 163.338 163.709 178.925 

Table 6 shows the nonlinear damped frequency in 

the various boundary conditions and variable 

viscoelastic foundation functions that derived for the 

different amount of damping coefficients. The results 

below indicate the decrease in the nonlinear damped 

frequency by increasing the amount of damping 

coefficient
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Table 6: Nonlinear damped frequency in the various boundary conditions and variable viscoelastic foundation functions that 
derived for the different amount of damping coefficients. 

Boundary 

Condition 

Foundation function xxg 2.01)(   22.01)( xxg   

Amount of Damping Coefficient 

(C) 
K=10 K=100 K=10 K=100 

S-S 

1 

5 

10 

10.305 

10.067 

9.281 

13.683 

13.504 

12.929 

10.325 

10.063 

9.197 

13.840 

13.646 

13.020 

S-C 

1 

5 

10 

15.692 

15.541 

15.059 

18.055 

17.924 

17.509 

15.705 

15.539 

15.008 

18.176 

18.033 

17.577 

C-C 

1 

5 

10 

22.568 

22.460 

22.120 

24.297 

24.197 

23.881 

22.578 

22.459 

22.082 

24.390 

24.280 

23.932 

 

Fig. 2 shows the variations of the nonlinear 

damped frequency ( d ) with respect to the 

dimensionless stiffness for the different boundary 

conditions. As shown in Fig. 2, by increasing the 

amount of the dimensionless stiffness, the nonlinear 

damped frequency is increased and for the constant 

stiffness, the amount of the nonlinear damped 

frequency has the greater rate for the fully clamped 

boundary conditions. 

Fig. 3 indicates the variations of the nonlinear 

damped frequency ( d ) with respect to the 

dimensionless system amplitude for the different 

boundary conditions. As shown in Fig. 3, by increasing 

the amount of dimensionless amplitude, the nonlinear 

damped frequency is increased and for the constant 

amplitude, the amount of nonlinear damped frequency 

has the greater rate for the fully clamped boundary 

conditions. 

Fig. 4 shows the variations of the nonlinear 

damped frequency ( d ) with respect to the axial load 

for the different boundary conditions S-S, S-C and C-

C. It is obvious that, where the buckling load has the 

maximum amount, the nonlinear frequency is equal to 

zero. Fig. 4 indicates that the linear and parabolic 

elastic foundation have approximately the same 

frequency results with respect to the axial load 

variations. In contrast, the harmonic elastic foundation 

leads to the greater noticeable frequency amount with 

respect to the other mentioned foundation functions. 

 

 

 

Figure 2: variations of the nonlinear damped frequency (

d ) with respect to the dimensionless stiffness for the 
different boundary conditions
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.  

 

Figure 3: variations of the nonlinear damped frequency (

d ) with respect to the dimensionless system amplitude 
for the different boundary conditions 

 

 

 

Figure 4:  variations of the nonlinear damped frequency (

d ) with respect to the axial load for the different 
boundary conditions 

Fig. 5 presents the system response by 

implementing DTM, HPM and RK4. Although there is 

a good agreement between HPM and RK4 method, 

DTM cannot follow them for a large range of time. 

This problem is improved by using MDTM approach. 

As can be observed in Fig. 6, applying MDTM makes 

the response very close to the exact solution which 

derived by Rung-kutta method and also the analytical 

homotopy perturbation solution. In fact, as DTM 

response results are valid just in a small range of time, 

MDTM is implemented in this study to obtain precise 

solution in a wide time-domain. Fig. 6 shows the good 

agreement between HPM, MDTM and the solution 

obtained by RK4. In order to derive the above data 

(Fig. 6) in based on Eq. 10 some numerical inputs are 

applied as 315 , 1 , 21 , 20 A . 

 

Figure 5: system response by implementing DTM, HPM 
and RK4 
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Figure 6: improved system response by implementing 
MDTM and comparing it with HPM and RK4 

5.   Conclusions 

In this paper, free nonlinear vibration of an Euler-

Bernoulli beam resting on the viscoelastic foundation 

induced by axially load with the immovable different 

S-S, S-C and C-C boundary conditions is studied. The 

variable viscoelastic foundation is implemented in the 

linear, parabolic and harmonic functions. The 

nonlinear damped frequencies are obtained by HPM 

and HA and finally, they are compared by the other 

previous works that they have a good agreement with 

the applied methods and the exact solutions. The 

nonlinear system response is derived by HPM, DTM 

and MDTM which they are compared by the solutions 

obtained by RK4 method. The first order homotopy 

perturbation method gives the precise results with 

respect to RK4 solution. Although DTM solutions for 

the small range of time have a good accuracy with 

respect to the other solutions, but by increasing the 

time, the convergence of the results is missed. In order 

to improve the results, MDTM is applied and by using 

this method the poor accuracy in a large time domain 

is compensated. All the results for the nonlinear 

damped frequency show the noticeable ascent in the 

frequency by any increase in the system stiffness. 

Result illustrates by increasing the amount of damping 

coefficient, the nonlinear damped frequency is 

decreased gradually and also by stimulating system 

near to main eigenmode (harmonic mode) the 

nonlinear damped frequency is increased dramatically. 

Considering the paper results, buckling force is arisen 

for each case permanently by increase in the boundary 

rigidity for a constant value of system amplitude (A). 

Moreover, in based on paper results, the buckling force 

is arisen by increasing the system amplitude for each 

case. 
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