Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius

Mahboobeh Gharibi 1, Mohammad Zamani Nejad 1*, Amin Hadi 2

1 Mechanical Engineering Department, Yasouj University, P. O. Box: 75914-353, Yasouj, Iran.
2 School of Mechanical Engineering, University of Tehran, Tehran, Iran.

Received: 20 May, 2017, Accepted: 19 June, 2017

Abstract

Based on the Frobenius series method, stresses analysis of the functionally graded rotating thick cylindrical pressure vessels (FGRTCPV) are examined. The vessel is considered in both plane stress and plane strain conditions. All of the cylindrical shell properties except the Poisson ratio are considered exponential function along the radial direction. The governing Navier equation for this problem is determined, by employing the principle of the two dimensional elastic theories. This paper presents a closed-form analytical solution for the Navier equation of FGRTCPV as the novelty of the present paper. Moreover, a finite element (FE) model is developed for comparison with the results of the Frobenius series method. This comparison demonstrates that the results of the Frobenius series method are accurate. Finally, the effect of some parameters on stresses analysis of the FGRTCPV is examined. In order to investigate the inhomogeneity effect on the elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties, values of the parameters have been set arbitrary in the present study. The presented outcomes illustrate that the inhomogeneity constant provides a major effect on the mechanical behaviors of the exponential FG thick cylindrical under pressure.

Keywords: Rotating thick cylinder, Pressure vessel, Functionally graded material, Exponentially, Power series method of Frobenius

1. Introduction

Functionally Graded Materials (FGMs) have been developing rapidly in the past two decades [1]. A group of composite materials are called FGM that mechanical properties vary continuously from one surface to another [2]. This type of material is a new class of advanced composite materials [3-8], in which the microstructural details are spatially varied through smooth and continuous distribution of the reinforcement phase [9]. Structures made of FGMs are designed in order to optimize their performance in one or more directions depending upon the loads anticipated to act on them [10]. A number of different
papers, which are considered various aspects of FGM, have been published in recent years [11-22]. Thick wall pressure vessels are commonly used in industry for storage and transportation of liquids and gases when designed as tanks. The displacement and stresses analysis of pressurized hollow cylinder or disk made FG materials are presented by Horgan and Chan. [23]. These researchers assumed that the modulus of elasticity is a power law function of the radial direction. In this paper, the Poisson’s ratio was constant. Tutuncu and Ozturk [24], perused the stress analysis in the FG pressure vessels. This paper provided an exact solution for displacements of FG spherical and cylindrical pressure vessels. Shi et al. [25], Presented a scheme to investigating FG structure. They offered that FG structure can convert to the N-layered homogeneous elastic hollow cylinder. Tutuncu [26], by using power series method investigates stress analysis of cylindrical pressure vessels made of exponentially FG materials. The exponential FG cylindrical and spherical pressure vessels are presented by Chen and Lin [27]. Assuming the shear modulus in the radial direction is vary based on a power law relation or an exponential function, Batra and Nie [28], obtained analytically plane strain infinitesimal deformations of a non- asymmetrically loaded hollow cylinder, on the other hand, an eccentric cylinder composed of a linear elastic isotropic and incompressible functionally graded material. Using the Airy stress function, Nie and Batra [29], investigated of a FG cylinder under both axisymmetric and non-axisymmetric loads. In another study, using the Airy stress function, an exact solution for a functionally graded hollow cylinder under plane strain condition are presented by Nie and Batra [30]. Callioglu, Bektas, and Sayer [31] obtained a closed-form solutions for elastic analysis of FG annular rotating disks. Material parameters except Poisson’s ratio, have the power-law dependence on the radial direction, Fatehi and Nejad [32], presented a parametric analysis for purely elastic analysis of rotating FGM thick hollow cylindrical shells as per plane strain condition. Using an elastopercfectly plastic material and Tresca’s model as the yield criterion, Nejad et al. [13], studied elasto-plastic analysis in a functionally graded rotating disk. They presented an analytical solution in terms of radial displacement.

A semi-analytical solution for stresses analysis of FG rotating thick cylindrical pressure vessels with variable thickness are performed by Nejad et al. [33]. This paper presents the elastic analysis of FG thick cylindrical pressure vessels with exponentially-varying properties using the Frobenius series method. Considering all studies in the given field, there are no works carried out so far related to this issue. Eventually, a numerical solution based on finite element program ANSYS for verification of results is performed.

2. Formulation of problem

In this section, the distribution of displacement and stress in a rotating FGM thick hollow cylindrical pressure vessel in the conditions of both plane strain and plane stress will be calculated. Consider a rotating thick hollow cylinder with an internal radii a, and an external radii b, exposed to an internal uniform pressure P, which is axisymmetric. The cylinder is assumed under a constant angular velocity ω (Figure 1).

![Figure 1: Cross section of FGM thick-walled cylindrical pressure vessel.](image)

The material properties except for the Poisson’s ratio of the cylinder are assumed as an exponential function of radial direction as follows [34]:

\[
E = E_0 e^{\beta_1 \left(\frac{r-a}{b-a}\right)}, \quad \rho = \rho_0 e^{\beta_2 \left(\frac{r-a}{b-a}\right)},
\]

where \(E_0\) and \(\rho_0\) are Young’s modulus and density in inner surface, respectively. \(\beta_1\) and \(\beta_2\) take negative or positive values, and represent the property of the FGMs, which is called the inhomogeneous constant hereafter.

In the case of symmetrical deformation, the equilibrium equation takes the below form

\[
\frac{d}{dr} \left(r\sigma_{rr}\right) - \sigma_{r\omega} + \rho \omega^2 r = 0.
\]

In the case of small deformation, the strain components is as follow

\[
\varepsilon_{rr} = \frac{du}{dr}, \quad \varepsilon_{r\omega} = \frac{u}{r},
\]

where, \(u\) is the displacement in the radial-direction. The general relations for a non-homogeneous isotropic cylindrical shell are
\[
\begin{bmatrix}
\sigma_{rr} \\
\sigma_{\theta\theta}
\end{bmatrix} = E \begin{bmatrix} A & B \\ B & A \end{bmatrix} \begin{bmatrix}
\varepsilon_{rr} \\
\varepsilon_{\theta\theta}
\end{bmatrix},
\]
(4)

where \(A \) and \(B \) are function of Poisson’s ratio \(\nu \) as follow:

Plane stress:

\[
\begin{align*}
A &= \frac{1}{1-\nu^2} \\
B &= \frac{\nu}{1-\nu^2}
\end{align*}
\]

Plane strain:

\[
\begin{align*}
A &= \frac{1-\nu}{(1+\nu)(1-2\nu)} \\
B &= \frac{\nu}{(1+\nu)(1-2\nu)}
\end{align*}
\]

Using Eqs. (1) to (4), the Navier Equation is

\[
r^2u''_r + r(1 + hr)u' - (1 - hv_r)r_u = -fr^3 e^{(\beta_2 - \beta_1) r/a}.
\]
(6)

The following equation is established by assumption \(\beta_1 = \beta_2 = \beta \).

\[
r^2u''_r + r(1 + hr)u' - (1 - hv_r)r_u = -fr^3.
\]
(7)

where

\[
v_1 = \frac{\nu}{1-\nu}, \quad h = \frac{\beta}{b-a}, \quad f = \frac{\rho_0 \omega^2}{AE}.
\]
(8)

Using Frobenius method [35], Eq. (7) can be solved as follow:

\[
u_r = \sum_{n=0}^{\infty} a_n r^{n+s}.
\]
(9)

Substituting Eq. (9) into Eq. (7)

\[
a_0 (s^2 - 1) r^s + \sum_{n=0}^{\infty} \left((n+s+1)^2 - 1 \right) a_{n+1} + h(n+s+v_1) a_n r^{n+s+1} = -fr^3.
\]
(10)

The solution of Eq. (7) is as follows

\[
u_r = \nu_h + \nu_p
\]
(11)

where \(\nu_h \) and \(\nu_p \) are homogeneous and particular solutions, respectively. Homogeneous solution is obtained by solving Eq. (12)

\[
a_0 (s-1)(s+1) r^s + \sum_{n=0}^{\infty} \left((n+s+1)^2 - 1 \right) a_{n+1} + h(n+s+v_1) a_n r^{n+s+1} = 0.
\]
(12)

Since \(a_0 \neq 0 \)

\[
(s-1)(s+1) = 0 \rightarrow \{s_1 = +1, s_2 = -1\}.
\]
(13)

Eq. (13) is called the indicial equation for Eq. (7). It is observed that the roots of the indicial equation are differ by an integer, thus only one of the solutions is in the form of Eq. (9).

In the Eq. (12), the recursive relation is as follow:

\[
a_{n+1} = -\frac{h(n+s+v_1)}{(n+s+1)^2 - 1} a_n.
\]
(14)

Expansion of the recurrence relation gives the coefficients \(a_n \) function of \(a_0 \) and Gamma functions as follows:

\[
a_n = \frac{(-1)^n \Gamma(n+s+v_1) \Gamma(n+2)}{s(n+1)\Gamma(n+1)\Gamma(n+s)\Gamma(n+s+2)} a_0.
\]
(15)

The first solution of Eq. (7) determined for \(s_1 = +1, a_0 \)

\[
u_1 = r + \sum_{n=1}^{\infty} a_n (s_1) r^{n+1},
\]
(16)

where

\[
a_n (s_1) = \frac{2(-1)^n \Gamma(n+v_1+1)}{\Gamma(\nu_1+1)\Gamma(n+1)\Gamma(n+3)} h^n.
\]
(17)

For the second root \(s_2 = -1 \), the second solution of Eq. (7) obtained in the form

\[
u_2 = Qa_0 ln(r) + r^{s_2} \left[1 + \sum_{n=1}^{\infty} C_n (s_2) r^n \right],
\]
(18)

where

\[
\begin{align*}
Q &= \lim_{s \to s_2} (s-s_2) a_n (s) = \frac{h^2 v_1 (1-v_1)}{2} \\
C_n (s_2) &= \frac{d}{ds} [(s-s_2) a_n (s)].
\end{align*}
\]
(19)

Assume that

\[
L = (s+1) a_n (s) = \frac{(-1)^n \Gamma(n+s+v_1) \Gamma(n+2)}{s\Gamma(s+v_1)\Gamma(n+1)\Gamma(n+s)} h^n.
\]
(20)

hence
\[L_{n-1} = \frac{(-1)^n}{n!(n-2)!} \Gamma(n + v_1 - 1) h^n. \]

(21)

and

\[\frac{d}{ds} \left[\ln(L) \right]_{s=v_2} = 1 + 2 \frac{\Gamma'(1)}{\Gamma(1)} + \frac{\Gamma'(n + v_1 - 1)}{\Gamma(n + v_1 - 1)} - \frac{\Gamma''(v_1 - 1)}{\Gamma(v_1 - 1)} - \frac{\Gamma''(n - 1)}{\Gamma(n - 1)} - \frac{\Gamma''(n + 1)}{\Gamma(n + 1)} - \frac{\Gamma'(n + v_1 - 1)}{\Gamma(n + v_1 - 1)}. \]

(22)

The \(\Psi(z) \) is defined as follows

\[\Psi(z) = \frac{\Gamma'(z)}{\Gamma(z)}. \]

(23)

Substituting Eq. (23) into Eq. (22)

\[\frac{d}{ds} \left[\ln(L) \right]_{s=v_2} = 1 + 2 \Psi(1) + \Psi(n + v_1 - 1) - \Psi(v_1 - 1) - \Psi(n - 1) - \Psi(n + 1). \]

(24)

Hence, the \(C_n(s_2) \) will be as follows

\[C_n(s_2) = \frac{(-1)^n}{n!(n-2)!} \Gamma(n + v_1 - 1) h^n \times [1 + 2 \Psi(1) + \Psi(n + v_1 - 1) - \Psi(v_1 - 1) - \Psi(n - 1) - \Psi(n + 1)]. \]

(25)

Finally, the homogeneous solution of Eq. (7) is

\[u_h = c_1 u_1 + c_2 u_2 = c_1 \left(r + \sum_{n=1}^{\infty} a_n(s_1) r^{n+1} \right) + c_2 \left[Q \left(r + \sum_{n=1}^{\infty} a_n(s_1) r^{n+1} \right) \ln(r) + \left[r^{n-1} + \sum_{n=1}^{\infty} C_n(s_2) r^{n-1} \right] \right]. \]

(26)

In order to obtaining particular solution of Eq. (7), in Eq. (12), it is considered that \(s_1 = 3 \)

\[a_0 = -\frac{f}{8}, \quad a_{n=1} = \frac{-h(n + v_1 + 3)}{(n+4)^3 - 1} a_n. \]

(27)

Where

\[a_n(s_3) = \frac{6(-1)^{n+1} \Gamma(n + v_1 + 3) f h^n}{\Gamma(v_1 + 3) \Gamma(n + 3) \Gamma(n + 5)}. \]

(29)

The particular solution of Eq. (7) is

\[u_p = -\frac{1}{8} f r^3 + \sum_{n=1}^{\infty} a_n(s_1) r^{n+3}. \]

(28)

Thus, the solution of Eq. (7) is expressed as

\[u_r = c_1 u_1 + c_2 u_2 + u_p = c_1 \left[r + \sum_{n=1}^{\infty} a_n(s_1) r^{n+1} \right] + c_2 \left[Q \left(r + \sum_{n=1}^{\infty} a_n(s_1) r^{n+1} \right) \ln(r) + \left[r^{n-1} + \sum_{n=1}^{\infty} C_n(s_2) r^{n-1} \right] \right] + \left[-\frac{1}{8} f r^3 + \sum_{n=1}^{\infty} a_n(s_1) r^{n+3} \right]. \]

(30)

Substitution of Eq. (30) into first Eqs. (3-4)

\[\sigma_{rr} = A E c_1 \left[1 + v_1 + \sum_{n=1}^{\infty} F a_n(s_1) r^n \right] + A E c_2 \left[Q \left((1 + v_1) \ln(r) + 1 \right) - \frac{1 - v_1}{r^2} + Q \sum_{n=1}^{\infty} F \ln(r) + 1 \right] a_n(s_1) r^n + \sum_{n=1}^{\infty} G c_n(s_2) r^{n-2} + A E \left[\frac{(3 + v_1) f}{8} r^2 + \sum_{n=1}^{\infty} H a_n(s_1) r^{n+2} \right] \]

(31)

where

\[F = n + 1 + v_1, \quad G = n - 1 + v_1, \quad H = n + 3 + v_1. \]

(32)
The constants \(c_1 \) and \(c_2 \) are determined using the boundary conditions \(\sigma_r (r = a) = -P \) and where
\[
\sigma_r (r = b) = 0
\]
\[
c_1 = \frac{-1}{V_{1b} (m-t)} \left[\frac{P}{AE_i} + V_{3a} - t V_{3b} \right]
\]
\[
c_2 = \frac{1}{V_{2b} (m-t)} \left[\frac{P}{AE_i} + V_{3a} - m V_{3b} \right]
\]
(33)

\[
V_{2a} = Q \left[(1 + \nu_1) \ln(a) + 1 \right] - \frac{1 - \nu_1}{a^2} + Q \sum_{n=1}^{\infty} \left[F \ln(a) + 1 \right] a_n (s_1) a^n + \sum_{n=1}^{\infty} C_n (s_2) a^{n+2},
\]

\[
V_{2b} = Q \left[(1 + \nu_1) \ln(b) + 1 \right] - \frac{1 - \nu_1}{b^2} + Q \sum_{n=1}^{\infty} \left[F \ln(b) + 1 \right] a_n (s_1) b^n + \sum_{n=1}^{\infty} C_n (s_2) b^{n+2}
\]
(35)

\[
V_{3a} = \left(\frac{3 + \nu_1}{8} \right) f a^2 + \sum_{n=1}^{\infty} H a_n (s_1) a^{n+2},
\]

\[
V_{3b} = \left(\frac{3 + \nu_1}{8} \right) f b^2 + \sum_{n=1}^{\infty} H a_n (s_1) b^{n+2}.
\]
(36)

Therefore, the radial deformation, radial and circumferential stresses of the exponential FGM thick rotating cylindrical pressure vessel are obtained as

\[
u_t = \frac{P + (V_{3a} - m V_{3b}) A E_i}{V_{2b} (m-t) A E_i} \times \left[\frac{Q \ln(r) - V_{2b} P + (V_{3a} - t V_{3b}) A E_i}{V_{1b} P + (V_{3a} - m V_{3b}) A E_i} \times \left[r + \sum_{n=1}^{\infty} a_n (s_1) r^{n+1} \right] + \frac{1}{r} + \sum_{n=1}^{\infty} C_n (s_2) r^{n+1} \right]
\]

\[-\frac{1}{8} f r^3 + \sum_{n=1}^{\infty} a_n (s_1) r^{n+3}.\]
(37)

\[
\sigma_{rr} = A E_i e^{\frac{\sigma_{rr}}{A E_i}} \left[\frac{P + (V_{3a} - m V_{3b}) A E_i}{V_{2b} (m-t) A E_i} \times \left[\frac{V_{2b} P + (V_{3a} - t V_{3b}) A E_i}{V_{1b} P + (V_{3a} - m V_{3b}) A E_i} \times \left[1 + \nu_1 + \sum_{n=1}^{\infty} F a_n (s_1) r^n \right] + Q \left[(1 + \nu_1) \ln(r) + 1 \right] - \frac{1 - \nu_1}{r^2} + Q \sum_{n=1}^{\infty} \left[F \ln(r) + 1 \right] a_n (s_1) r^n + \sum_{n=1}^{\infty} C_n (s_2) r^{n+2} - \frac{(3 + \nu_1) f}{8} r^2 + \sum_{n=1}^{\infty} H a_n (s_1) r^{n+2} \right].
\]
(38)

\[
\sigma_{\theta \theta} = A E_i e^{\frac{\sigma_{\theta \theta}}{A E_i}} \left[\frac{P + (V_{3a} - m V_{3b}) A E_i}{V_{2b} (m-t) A E_i} \times \left[\frac{V_{2b} P + (V_{3a} - t V_{3b}) A E_i}{V_{1b} P + (V_{3a} - m V_{3b}) A E_i} \times \left[1 + \nu_1 + \sum_{n=1}^{\infty} F a_n (s_1) r^n \right] + Q \left[(1 + \nu_1) \ln(r) + \nu_1 \right] + \frac{1 - \nu_1}{r^2} + Q \sum_{n=1}^{\infty} \left[F \ln(r) + \nu_1 \right] a_n (s_1) r^n + \sum_{n=1}^{\infty} C_n (s_2) r^{n+2} - \frac{(3 + 3 \nu_1) f}{8} r^2 + \sum_{n=1}^{\infty} H a_n (s_1) r^{n+2} \right].
\]
(39)
where
\[m = \frac{V_{1a}}{V_{1b}}, \quad t = \frac{V_{2a}}{V_{2b}}. \] (40)
and
\[F' = \nu_i (n+1) + 1, \quad G' = \nu_i (n-1) + 1, \quad H' = \nu_i (n+3) + 1 \] (41)

3. Results and discussion

Consider a rotating cylindrical shell in plane stress problem under the inner uniform pressure of 40 MPa. The cylinder has the internal and external radii of 40 cm and 60 cm, respectively. Additionally, it is considered that values of the Poisson’s ratio, \(\nu \), internal Young’s modulus \(E_i \), and internal density \(\rho_i \), are 0.3, 200 GPa, and 7860 kg/m³, respectively. For a comparative examine on numerical evaluation of this problem, a geometry specimen is patterned applying commercial finite element code, ANSYS. Because of the geometrical symmetry in the cylinder, just a quarter of the specimen geometry in the finite element model was considered. To be able to represent the non-homogeneous specimen, an 8-node axisymmetric quadrilateral element was applied. The variation in material properties was applied by 20 layers, with each layer having a constant value of material properties, for modeling of FGM cylindrical pressure vessel. Figure 2 demonstrates the meshing of a quarter of the specimen geometry. The case study for rotating cylinder is administered at two sections:

- Angular velocity is constant and inhomogeneous constant is variable.
- Angular velocity is variable and inhomogeneous constant is fixed.

3.1. Section 1: The angular velocity has a constant value of 100 rad/s:

Figure 3 reveals the distribution of Young’s modulus in the \(r \) direction. It is considerable that Young’s modulus increases, since the value of \(\beta \) expands. Figure 4 reveals the distribution of radial deformation versus the dimensionless \(r \) direction. It is evident that at the same situation, the radial deformation declines as \(\beta \) grows. The distribution of compressive radial stress versus dimensionless \(r \) direction is shown in Figure 5. It is observed that the radial stress raises for larger values of \(\beta \). The circumferential stress versus dimensionless radial direction for various values of \(\beta \) is drawn in Figure 6.

The purpose should be observed using this figure that at the same condition, approximately, for \(\beta < 1.2 \), the value of the circumferential stress reduces as \(\beta \) raises although for \(\beta > 1.2 \), this situation is reversed. Moreover, the circumferential stress reduces versus the \(r \) direction for approximately \(\beta < 0.5 \), but, for almost \(\beta > 0.5 \), the circumferential stress increases. Furthermore, for \(\beta \approx 0.5 \), the circumferential stress remains nearly uniform versus the radius of the cylinder. The issue could be an important factor for control of optimum stress. For the goal of examining the stress distribution versus \(r \) direction, the von Mises equivalent stress versus the \(r \) direction, is drawn in
Figure 7. It is observed that at all considered conditions, the equivalent stress for $\beta = 0.75$ remains nearly uniform along the radius of the cylinder. It means that this parameter can be considered as a significant element in terms of controlling stresses. The von Mises equivalent stress raises for $\beta > 0.75$, as the radius increases whereas for $\beta < 0.75$, it lessens. Furthermore, it can be seen that by increasing, distribution of material properties will increase.

In Figures 8 to 10, the amounts of all radial, circumferential and von Mises equivalent stresses are determined in the case of $\beta = 0.75$. These figures display the stress distribution in 20 layers of thick cylindrical pressure vessels.

3.2. Section 2: The inhomogeneous constant has a fixed amount of $\beta = 0.5$.

Figure 11 shows the distribution of tensile radial displacement along the normalized radial direction. It is apparent that at the same position, the radial deformation raises as ω increases. The distribution of radial stress versus r direction is shown in Figure 12. It is seen that for larger values of ω, the stress declines. According to Figure 13, the radial stress is compressive for all values of angular velocity except for $\omega > 225$ and $r/a > 1.25$. This figure reveals the radial distribution of circumferential stress. For all values of angular velocity, the circumferential stress remains nearly uniform versus r direction. The matter could be a significant factor in terms of controlling optimum stress. For the purpose of studying the stress distribution along the hollow cylinder radius, in Figure 14, the von Mises equivalent stress is plotted in the radial direction. The equivalent stress increases as ω grows.
Figure 8. Radial stress obtained from ANSYS code in a rotating FGM cylindrical pressure vessel ($\beta = 0.75$)

Figure 9. Circumferential stress obtained from ANSYS code in a rotating FGM cylindrical pressure vessel ($\beta = 0.75$)

Figure 10. von Mises equivalent stress obtained from ANSYS code in a rotating FGM cylindrical pressure vessel ($\beta = 0.75$)

Figure 11. Radial distribution of radial displacement

Figure 12. Radial distribution of radial stress

Figure 13. Radial distribution of circumferential stress
4. Conclusion

It is apparent that analytical solutions to simplified versions of real engineering problems are important. The Frobenius series technique is really a strong strategy for obtaining answers of particular differential equations that arise in applications. According to fundamental equations of elasticity and utilizing FSM, analytic solutions are derived for stresses and the displacements of rotating exponential FGM thick hollow cylindrical under pressure. Using this, profiles are plotted for various values of inhomogeneity constant and angular velocity for the radial deformation, radial and circumferential stresses, as a function of r direction. Also, this research presents a numerical solution employing a commercial finite elements code, ANSYS. Excellent agreement is discovered between the analytic solutions and the solutions based on ANSYS finite element code. The presented outcomes illustrate that the inhomogeneity constant provides a major effect on the mechanical behaviors of the exponential FG thick cylindrical under pressure.

References

[16] M. Kahrobaian, M. Rahaeifard, S. Tajalli, M. Ahmadian, A strain gradient functionally graded

