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Abstract 

Based on the Frobenius series method, stresses analysis of the functionally graded rotating thick cylindrical pressure 

vessels (FGRTCPV) are examined. The vessel is considered in both plane stress and plane strain conditions. All of the 

cylindrical shell properties except the Poisson ratio are considered exponential function along the radial direction. The 

governing Navier equation for this problem is determined, by employing the principle of the two dimensional elastic 

theories. This paper presents a closed-form analytical solution for the Navier equation of FGRTCPV as the novelty of 

the present paper. Moreover, a finite element (FE) model is developed for comparison with the results of the Frobenius 

series method. This comparison demonstrates that the results of the Frobenius series method are accurate. Finally, the 

effect of some parameters on stresses analysis of the FGRTCPV is examined. In order to investigate the inhomogeneity 

effect on the elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-

varying properties, values of the parameters have been set arbitrary in the present study. The presented outcomes 

illustrate that the inhomogeneity constant provides a major effect on the mechanical behaviors of the exponential FG 

thick cylindrical under pressure. 

Keywords: Rotating thick cylinder, Pressure vessel, Functionally graded material, Exponentially, Power series method of 

Frobenius Introduction

1.   Introduction 

Functionally Graded Materials (FGMs) have been 

developing rapidly in the past two decades [1]. A group 

of composite materials are called FGM that 

mechanical properties vary continuously from one 

surface to another [2]. This type of material is a new 
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class of advanced composite materials [3-8], in which 

the microstructural details are spatially varied through 

smooth and continuous distribution of the 

reinforcement phase [9]. Structures made of FGMs are 

designed in order to optimize their performance in one 

or more directions depending upon the loads 

anticipated to act on them [10]. A number of different 
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papers, which are considered various aspects of FGM, 

have been published in recent years [11-22]. Thick 

wall pressure vessels  are commonly used in industry 

for storage and transportation of 

liquids and gases when designed as tanks. The 

displacement and stresses analysis of pressurized 

hollow cylinder or disk made FG materials are 

presented by Horgan and Chan. [23]. These 

researchers assumed that the modulus of elasticity is a 

power law function of the radial direction. In this 

paper, the Poisson’s ratio was constant. Tutuncu and 

Ozturk [24], perused the stress analysis in the FG 

pressure vessels. This paper provided an exact solution 

for displacements of FG spherical and cylindrical 

pressure vessels. Shi et al. [25], Presented a scheme to 

investigating FG structure. They offered that FG 

structure can convert to the N-layered homogeneous 

elastic hollow cylinder. Tutuncu [26], by using power 

series method investigates stress analysis of cylindrical 

pressure vessels made of exponentially FG materials. 

The exponential FG cylindrical and spherical pressure 

vessels are presented by Chen and Lin [27]. Assuming 

the shear modulus in the radial direction is vary based 

on a power law relation or an exponential function, 

Batra and Nie [28], obtained analytically plane strain 

infinitesimal deformations of a non- asymmetrically 

loaded hollow cylinder, on the other hand, an eccentric 

cylinder composed of a linear elastic isotropic and 

incompressible functionally graded material. Using the 

Airy stress function, Nie and Batra [29], investigated 

of a FG cylinder under both axisymmetric and non-

axisymmetric loads. In another study, using the Airy 

stress function,  an exact solution for a functionally 

graded hollow cylinder under  plane strain condition 

are presented by Nie and Batra [30]. Callioglu, Bektas, 

and Sayer [31] obtained a closed-form solutions for 

elastic analysis of FG annular rotating disks. Material 

parameters except Poisson’s ratio, have the power-law 

dependence on the radial direction, Fatehi and Nejad 

[32], presented a parametric analysis for purely elastic 

analysis of rotating FGM thick hollow cylindrical 

shells as per plane strain condition. Using a 

elastoperfectly plastic material and Tresca’s model as 

the yield criterion, Nejad et al. [13], studied elasto-

plastic analysis in an functionally graded rotating disk. 

They presented an analytical solution in terms of radial 

displacement.  

A semi-analytical solution for stresses analysis of FG 

rotating thick cylindrical pressure vessels with variable 

thickness are performed by Nejad et al. [33].  

 This paper presents the elastic analysis of FG thick 

cylindrical pressure vessels with exponentially-

varying properties using the Frobenius series method. 

Considering all studies in the given field, there are no 

works carried out so far related to this issue. 

Eventually, a numerical solution based on finite 

element program ANSYS for verification of results is 

performed. 

2.   Formulation of problem 

In this section, the distribution of displacement and 

stress in a rotating FGM thick hollow cylindrical 

pressure vessel in the conditions of both plane strain 

and plane stress will be calculated. Consider a rotating 

thick hollow cylinder with an internal radii a, and an 

external radii b, exposed to an internal uniform 

pressure P, which is axisymmetric. The cylinder is 

assumed under a constant angular velocity ω (Figure 

1). 

 

Figure 1: Cross section of FGM thick-walled 

cylindrical pressure vessel. 

The material properties except for the Poisson’s 

ratio of the cylinder are assumed as an exponential 

function of radial direction as follows [34]: 

1 2

 

r a r a

b a b a
i iE E e , e ,

 

 

    
   

       (1) 

where iE
 
and i   are Young’s modulus and density in 

inner surface, respectively. 1  and 2   take negative 

or positive values, and represent the property of the 

FGMs, which is called the inhomogeneous constant 

hereafter. 

In the case of symmetrical deformation, the  

equilibrium equation takes the below form 

  2 2 0rr

d
r r .

dr
      

  
(2) 

In the case of small deformation, the strain components 

is as follow 

 rr

du u
, ,

dr r
    (3) 

where, u  is the displacement in the radial-direction. 

The general relations for a non-homogeneous isotropic 

cylindrical shell are  
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rr rrA B
E ,

B A 

 

 

    
    

    
 (4) 

where A  and B  are function of Poisson’s ratio   as 

follow: 
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 (5) 

Using Eqs. (1) to (4), the Navier Equation is 

   2

11 1r r rr u r hr u h r u        

2 13

r a
( )

b afr e .
 




   (6) 

The following equation is established by assumption 

1 2    . 

   2 3

11 1r r rr u r hr u h r u fr .        (7) 

where 

2

1 ,   ,   
1

i

i

h f .
b a AE

  



  

 
 (8) 

Using Frobenius method [35], Eq. (7) can be solved as 

follow: 

0

n s

r n
n

u a r .






  (9) 

Substituting Eq. (9) into Eq. (7) 

 

    

 

22

0 1
0

1 3

1

1 1 1s

n
n

n s

n

a s r n s a

h n s a r fr .






 

     


    


 (10) 

The solution of Eq. (7) is as follows 

r h pu u u   (11) 

where hu  and pu  are homogeneous and particular 

solutions, respectively. Homogeneous solution is 

obtained by solving Eq. (12) 

     

 

2

0 1
0

1

1

1 1 1 1

0

s

n
n

n s
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




 
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   


(12) 

 

Since 
0 0a   

    1 21 1 0 1  ,  1s s s s .         (13) 

Eq. (13) is called the indicial equation for Eq. (7). It is 

observed that the roots of the indicial equation are 

differ by an integer, thus only one of the solutions is in 

the form of Eq. (9). 

In the Eq. (12), the recursive relation is as follow: 
 

 

 

1

1 2
1 1

n n

h n s
a a .

n s




 
 

  
 (14) 

Expansion of the recurrence relation gives the 

coefficients na  function of  0a
 
and Gamma functions 

as follows: 

     
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(15) 

The first solution of Eq. (7) determined for

 1 01 , 1s a   . 

  1

1 1
1

n

n
n

u r a s r ,






   (16) 

where 

 
   

     
1

1

1

2 1 1

1 1 3

n

n

n
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a s h .

n n

 

   
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

  
 (17) 

For the second root  2 1s   , the second solution of 

Eq. (7) obtained in the form 

   2
2 1 2

1

1
s n

n
n

u Qu ln r r C s r ,




 
   

 
  (18) 

where 

   
 

     

2

2

1 1

2

2 2

1

2
s s N

n n

h
Q lim s s a s ,

d
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 


 
  


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 (19) 

Assume that 

   

     
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2
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2
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 (20) 

hence 



M. Gharibi et al. 

 

92 

 

   
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and 
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.
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

 
       

  
  

  

 

(22) 

The  z  is defined as follows 

 
 

 

' z
z ,

z





  (23) 

 

 

 

 

 

Substituting Eq. (23) into Eq. (22) 
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(24) 

Hence, the  2nC s  will be as follows 

 
   

   

   

     

1

1

2

1

1

1

1 1

2 1

1 2 1 1

1 1 1

n n

n

n h
C s

n! n !

n

n n .

 

 

  

   


  

 
 

     

      

 
(25) 

 

 

Finally, the homogeneous solution of Eq. (7) is 

 

       1 1 1 1

1 1 2 2 1 1 2 1 2
1 1 1

n n n

h n n n
n n n

u c u c u c r a s r c Q r a s r ln r r C s r .
  

   

  

      
             

      
    (26) 

In order to obtaining particular solution of Eq. (7), in 

Eq. (12), it is considered that 3 3s   

 

The particular solution of Eq. (7) is 

3 3

3
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8

n
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n
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Thus, the solution of Eq. (7) is expressed as 
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Substitution of Eq. (30) into first Eqs. (3-4) 
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where 
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The constants 
1c  and 

2c  are determined using the 

boundary conditions  rr r a P   
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Therefore, the radial deformation, radial and circumferential stresses of the exponential FGM thick rotating cylindrical 

pressure vessel are obtained as 
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where 

1 2

1 2

 a a

b b

V V
m , t .

V V
   (40) 

and 

   

 

1 1

1

1 1  1 1

3 1

F n , G n ,

H n

 



 



     

  
 (41) 

3.   Results and discussion  

Consider a rotating cylindrical shell in plane stress 

problem under the inner uniform pressure of 40  MPa. 

The cylinder has the internal and external radii of 40  

cm and 60  cm, respectively. Additionally, it is 

considered that values of the Poisson’s ratio,  , 

internal Young’s modulus iE  and internal density i  

, are  0 3.  , 200 GPa , and 7860 3kg / m , respectively. 

For a comparative examine on numerical evaluation of 

this problem, a geometry specimen is patterned 

applying commercial finite element code, ANSYS. 

Because of the geometrical symmetry in the cylinder, 

just a quarter of the specimen geometry in the finite 

element model was considered. To be able to represent 

the non-homogeneous specimen, an 8-node 

axisymmetric quadrilateral element was applied. The 

variation in material properties was applied by 20 

layers, with each layer having a constant value of 

material properties, for modeling of FGM cylindrical 

pressure vessel. Figure 2 demonstrates the meshing of 

a quarter of the specimen geometry. The case study for 

rotating cylinder is administered at two sections: 

 Angular velocity is constant and 

inhomogeneous constant is variable. 

 Angular velocity is variable and 

inhomogeneous constant is fixed. 

3.1. Section 1: The angular velocity has a constant 

value of 100 rad/s : 

Figure 3 reveals the distribution of Young’s modulus 

in the r direction. It is considerable that Young’s 

modulus increases, since the value of  expands. 

Figure 4 reveals the distribution of radial deformation 

versus the dimensionless r direction. It is evident that 

at the same situation, the radial deformation declines 

as   grows. The distribution of compressive radial 

stress versus dimensionless r direction is shown in 

Figure 5. It is observed that the radial stress raises for 

larger values of β. The circumferential stress versus 

dimensionless radial direction for various values of β 

is drawn in Figure 6.  

 

 
Figure. 2. Finite element mesh region. 

 

 

Figure 3. Radial distribution of Young’s modulus 

 

The purpose should be observed using this figure that 

at the same condition, approximately, for 1 2.  , the 

value of the circumferential stress reduces as β raises 

although for 1 2.  , this situation is reversed. 

Moreover, the circumferential stress reduces versus the 

r direction for approximately 0 5.  , but,  for almost 

0 5.  , the circumferential stress increases. 

Furthermore, for 0 5.  , the circumferential stress 

remains nearly uniform versus the radius of the 

cylinder. The issue could be a important factor for 

control of optimum stress. For the goal of examining 

the stress distribution versus r direction, the von Mises 

equivalent stress versus the r direction, is drawn in 
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Figure 7. It is observed that at all considered 

conditions, the equivalent stress for 0 75.   remains 

nearly uniform along the radius of the cylinder. It 

means that this parameter can be considered as a 

significant element in terms of controlling stresses. 

The von Mises equivalent stress raises for 0 75.  , as 

the radius increases whereas for 0 75.  , it lessens. 

Furthermore, It can be seen that by increasing, 

distribution of material properties will increase. 

In Figures 8 to 10, the amounts of all radial, 

circumferential and von Mises equivalent stresses are 

determined in the case of 0 75.  . These figures 

display the stress distribution in 20 layers of thick 

cylindrical pressure vessels. 

 

 

Figure 4. Radial distribution of radial displacement 

 

 

Figure 5. Radial distribution of radial stress 

 

 

 

3.2. Section 2: The inhomogeneous constant has a 

fixed amount of 0 5.  . 

Figure 11 shows the distribution of tensile radial 

displacement along the normalized radial direction. It 

is apparent that at the same position, the radial 

deformation raises as   increases. The distribution of 

radial stress versus r direction is shown in Figure 12. 

It is seen that for larger values of , the stress declines. 

According to Figure 13, the radial stress is 

compressive for all values of angular velocity except 

for 225   and 1 25r a . . This figure reveals the 

radial distribution of circumferential stress. For all 

values of angular velocity, the circumferential stress 

remains nearly uniform versus r direction. The matter 

could be a significant factor in terms of controlling 

optimum stress. For the purpose of studying the stress 

distribution along the hollow cylinder radius, in Figure 

14, the von Mises equivalent stress is plotted in the 

radial direction. The equivalent stress increases as   

grows. 

 

 Figure 6. Radial distribution of circumferential stress 

 

Figure 7. Radial distribution of von Mises equivalent stress 
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Figure 8. Radial stress obtained from ANSYS code in a rotating 

FGM cylindrical pressure vessel ( 0 75.  ) 

 

 

Figure 9. Circumferential stress obtained from ANSYS code in a 

rotating FGM cylindrical pressure vessel ( 0 75.  ) 

 

Figure 10. von Mises equivalent stress obtained from ANSYS 
code in a rotating FGM cylindrical pressure vessel 

( 0 75.  ) 

 

Figure 11. Radial distribution of radial displacement 

 

 

Figure 12. Radial distribution of radial stress 

 

 

Figure 13. Radial distribution of circumferential stress 
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Figure 14. Radial distribution of von Mises equivalent stress 

4.   Conclusion 

It is apparent that analytical solutions to simplified 

versions of real engineering problems are important. 

The Frobenius series technique is really a strong 

strategy for obtaining answers of particular differential 

equations that arise in applications. According to 

fundamental equations of elasticity and ultizing FSM, 

analytic solutions are derived for stresses and the 

displacements of rotating exponential FGM thick 

hollow cylindrical under pressure. Using this, profiles 

are plotted for various values of inhomogeneity 

constant and angular velocity for the radial 

deformation, radial and circumferential stresses, as a 

function of r direction. Also, this research presents a 

numerical solution employing a commercial finite 

elements code, ANSYS. Excellent agreement is 

discovered between the analytic solutions and the 

solutions based on ANSYS finite element code. The 

presented outcomes illustrate that the inhomogeneity 

constant provides a major effect on the mechanical 

behaviors of the exponential FG thick cylindrical 

under pressure. 
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