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Abstract 

The following study deals with the updating the finite element model of structures using the operational modal 

analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies 

instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as 

geometry and material properties of the structure, local and global sensitivity analyses have been performed. The 

sum of the squared errors between the natural frequencies obtained from operational modal analysis and the finite 

element method is used to define the objective function. The experimental natural frequencies are determined by 

frequency domain decomposition technique which is considered as an efficient operational modal analysis method. 

To verify the accuracy of the proposed algorithm, it is implemented on a three-story structure to update its finite 

element model. Moreover, to study the efficiency of bees algorithm, its results are compared with those particle 

swarm optimization and Nelder and Mead methods. The results show that this algorithm leads more accurate results 

with faster convergence. In addition, modal assurance criterion is calculated for updated finite element model and 

frequency domain decomposition technique. Moreover, finding the best locations of acceleration and shaker 

mounting in order to accurate experiments are explained. 

Keywords: Finite Element Model, Operational Modal Analysis, Frequency Domain Decomposition, Bees Algorithm, Sensitivity 

Analysis. 
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1.   Introduction 

Due to increase in demand for increased efficiency 

and reduced weight of structures in modern industries 

such as aviation and aerospace industries, developing 

an accurate understanding of dynamic and vibrational 

behavior of systems and providing a precise model to 

describe their behavior are necessary. Accurate 

dynamic model ensures accuracy of subsequent 

analyses done on the structure such as structural 

health monitoring, damage detection and many others 

[1]. 

 During the last few decades, interest for modal 

analysis raised remarkably. One of the most 

important ways to identify dynamic characteristics of 

civil or mechanical structures such as dams, bridges, 

ships and airplanes is experimental modal analysis 

[2]. Nowadays modal analysis is divided in two 

important branches, empirical modal analysis (EMA) 

and operational modal analysis (OMA) [3]. During in 

EMA, both the applied force and response of 

structure are measured. Then, by combination of this 

information and identification methods, dynamic 

properties of each structure can be obtained. There 

are several methods to find modal parameters using 

EMA which can be found in [2]. However, providing 

and measuring input forces in real condition are 

approximately impossible, therefore for solving this 

drawback OMA was created. Response of structure 

due to any external force is the sole information used 

in operational modal analysis [3]. Operational modal 

analysis methods are categorized in frequency and 

time domains [4]. Peak picking, transmissibility and 

frequency domain decomposition are the most 

demanding methods in frequency domain, whereas 

stochastic subspace identification, linear 

autoregressive method and Ibrahim's time domain 

method are considered as the most important methods 

in time domain. Increasing demands of various 

industries for precise calculation of modal parameters 

have resulted in expanding operational modal 

analysis in the past two decades. James et al. [5] 

formulated natural excitation method based on 

applying cross-correlations between obtained 

responses from structures. This method is considered 

as the first method in operational modal analysis. In 

addition Ibrahim time domain [6], polyreference and 

eigensystem realization algorithms [7] are second 

generation of operational modal analysis in time 

domain. However, the most powerful method in time 

OMA is stochastic subspace identification method 

which was created by Van Overschee [8]. Order of 

system is considered as the most important factor in 

most of OMA modal analysis in time domain. 

Inappropriate order selection causes essential problem 

to identify accurate modal parameters [4]. Peak-

picking is the first OMA method in frequency domain 

which is based on power spectral density (PSD) [9]. 

This method could not distinct close natural 

frequencies and this is the main drawback of this 

method. 

 To overcome this problem, frequency domain 

decomposition (FDD) was created [3]. This method is 

based on PSD and singular value decomposition 

transform (SVD). FDD method is capable to detect 

closed modes; however it is not able to estimate 

damping in structures. Enhanced frequency domain 

decomposition (EFDD) which is considered as the 

next generation of FDD method eliminated this 

problem and detects damping in structures [10, 11]. 

Pioldi et al [12] created a new version of FDD 

method as refined FDD method. The main 

characteristic of this new method is to calculate 

modal parameters of structures which have high 

damping. Then, they applied their method on a frame 

and obtain dynamic parameters with an acceptable 

accuracy.  

Updating the finite element model is considered 

as an inverse approach which involves reducing the 

difference between finite element model and physical 

model. Therefore, the updating process involves an 

optimization gradient based optimization techniques 

have been used extensively in the finite element 

model updating. Collins et al. [13] have used inverse 

eigensensitivity method for updating the finite 

element model. However, failing to find the global 

optimum point of system is one of the fundamental 

problems of these methods. In addition, the existence 

of optimum points in system boundaries results in the 

reduction in efficiency of these methods. In order to 

solve these drawbacks, the intelligent optimization 

methods such as genetic algorithm, bee algorithm and 

particle swarm optimization algorithm were invented. 

These methods do not need to use gradient 

information and are not sensitive to initial guess. 

Consequently, considering these characteristics, these 

methods can be used in finite element model 

updating. Dunn et al. [14] applied genetic algorithm 

for updating the finite element model of a F/A-18 

aircraft based on experimental data. Moradi et al. [15] 

updated a piping system in finite element model using 

bee algorithm and classical modal analysis data. 

Then, they compared their results with genetic and 

PSO algorithms. Malekzehtab et al. [16] applied 

genetic algorithm for finite element model updating 

and damage detection of a jacket offshore platform. 

Their objective function was defined based on the 

natural frequencies and mode shape of the offshore 

platform. Chouksey et al. [17] utilized experimental 

data for updating a rotating shaft with two journal 
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bearing supports. They modeled journal bearing 

supports with linear and rotating springs and 

dampers.  

Moradi and Alimouri [18] used the differential 

quadrature method, experimental modal analysis and 

bees optimization method in order to obtain location, 

depth and size of cracks in structures. Torres et al. 

[19] used operational modal analysis to update FEM 

Metropolitan Cathedral of Santiago Chile. They used 

FDD and EFDD methods to obtain dynamic 

parameters of structure. Then, an objective function 

defined based on mode shapes and natural 

frequencies to update FE model of this structure. 

Ebrahimi et al. [20] updated finite model of a cutting 

harvest using FDD technique. Then, they could 

reduce the vibration of this machine by adding some 

masses to real model. 

 In this study, the modal parameters of the system 

are calculated empirically using frequency domain 

decomposition method. Then effective parameters in 

model are obtained by sensitivity analysis. Next, an 

objective function based on natural frequencies 

calculated by operational modal analysis and finite 

element model is defined to update finite element 

model, and finally, this objective function minimized 

by the bees algorithm. To evaluate the proposed 

algorithm, these steps are applied on a three-story 

structure and the results are compared with PSO and 

Neader-Mead results. Moreover, in order to ensure 

accurate results from operational modal analysis, the 

appropriate location of accelerometers and excitation 

by shaker are determined.  

2.   Theory 

2.1.   FDD Method 

The FDD method is based on a conventional relation 

between input and output of a system [3]. The input is 

assumed be a stationary random process and the basic 

relation in FDD method is stated by Eq.(1). 

   
H

yy xx
G H j G H j      

 
(1) 

In the above equation Gxx()∈R p p  is defined as 

power spectral density function (PSD) and p is 

regarded as number of input channels. In this 

equation Gyy() ∈R q q  is output PSD matrix and q is 

number of output signals. H() is the (p q) 

frequency response function (FRF) matrix and 

overbar H denotes Hermitian operator. Therefore, the 

best method for showing FRF matrix is based on as 

[3, 11, 21]: 

 
1

k

k k

k k k

R R
H j

j j
 

   
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 
 
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where k is considered as the number of vibration 

modes, k and 
k
 are the poles of the FRF function, 

and Rk is the (p q) residue matrix and  it can be 

depict as [12]: 

T

k k kR     (3) 

where k = [ k1 k2 … km ]T and k = [ k1 k2 … kr 

]T are the kth∈R p 1  mode shape vector and modal 

participation factor vector, respectively [21]. When 

all output measurements are equal by input 

references, H() becomes a square matrix. Then, 

Eq.(1), and Eq.(2), can be rewritten as [21]: 
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where Ak is the residue matrix of the PSD output. 

Since, for the PSD output, the residue matrix is an (q 

q) matrix is obtained by [21]: 

1

n

k k

k k yy

s k s k s

R R
A R G

   

 
   

 
 
 
   (5) 

For light structural damping (small damping in 

most of civil structure ratios ≈1), the pole can be 

expressed in an approximate form. Thus, in the close 

of the kth
 natural frequency, only the 

k
R term exist, 

therefore the residue matrix can be derived from 

Eq.(3) as [11, 12]: 
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(6) 

If the damping ratio is low the power spectral density 

matrix can be written as below: 
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(7) 

Eq.(7) is expressed for negative and positive 

natural frequency range; however in industries 

application only the positive part will be considered, 

therefore Eq.(7) can be converted to Eq.(8) [11, 12, 

21]: 
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(8) 
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Finally singular value decomposition (SVD) is 

used to decompose output power spectral density 

Gyy(). SVD transform decomposes Gyy() into 

singular values and singular vectors. Then, by using 

these singular values and singular vectors natural 

frequencies and mode shapes of structures will be 

obtained, respectively. In Fig. 1 algorithm of FDD 

method is explained.  

2.2.   Selection the best freedom degrees for 

operational modal test 

In order to transfer excitation energy to all degrees of 

freedom of a system, it should be noted that the 

excitation points should not be located near nodes of 

mode shapes of the system. By using optimum 

driving point (ODP) parameter given in Eq.(9), it can 

be determined that how near the degrees of freedom 

are to mode nodes of the system.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Flowchart of FDD method 
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where, j and m are degree of freedom and number of 

mode shapes of the system, respectively. The points 

of which ODP values are zero or close to zero are not 

suitable for stimulation of system, because they are 

placed in mode shape nodes or near them. By 

contrast, points with maximal ODP values are 

appropriate for excitation and mounting 

accelerometers. While exciting a structure by a 

shaker, the possibility of interference between shaker 

and structure establishes which should be minimized. 

Each shaker is composed of a system of mass, spring 

and damper and any interference between it and the 

structure causes changes in signal generated by the 

shaker. To reduce this effect, shaker should be 

connected to the structure at where average 

acceleration is of minimum value. The average 

acceleration is defined using average driving dof 

displacement (ADDOFA) as in Eq.(10). 

 
2

1

2

1 1 1
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jr
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The possibility of interference excitation in points 

with high ADDOFA is higher than in other points; 

therefore, the points with higher ODP/ADDOFA ratio 

are considered more appropriate points for excitation. 

2.3.   Sensitivity Analysis 

Various mathematical models have been implemented 

for estimation of complex phenomena in different 

areas such as engineering, economy and physics. 

Identification of effective parameters in these 

mathematical models is the major challenge which 

users often deal with. Sensitivity analysis is one of 

the most important methods able to identify the 

parameters that have the greatest impact on the 

results. In other words, any small changes in sensitive 

parameters would result in significant changes in 

output. 

Once at a time index (OAT) is considered as one 

of the most applicable criteria for determination of 

sensitive parameters. Eq. (11) states index (OAT) for 

identification of sensitive parameters. In this case, 

according to Eq. (11), a dimensionless index is 

considered in order to remove the effects of various 

units of parameters. 

OAT
Y X

X Y





  (11) 

where, X and Y are input and output parameters of the 

model, respectively. Moreover, factor X/Y is defined 

as a normalized coefficient to eliminate the effects of 

the units. The OAT index defined in Eq.(12) 

Start 

Measuring the acceleration responses 

       1 2
, ,...,

r N

r
Y y i y i y i R


   

Calculation of PSD matrix 

 

   
1

2

j t

y y
S R e d


  


 





   

Decomposition of spectral density using SVD transform 

 

   
T

y
S U V


     

Diagram of   vs. frequency 
 

Using Peak-picking method to estimate natural frequency 

 

Determination of peak of graph as natural frequencies and 

mode shapes using MAC criteria   

 
   

       

2

( , )

T T

FDD i FDD j

T T T T

FDD i FDD i FDD j FDD j

MAC i j
 

   

 

   




 

Finish 



Vol. 48, No. 1, June 2017 
 

79 

 

measures the local sensitivity. Global sensitivity 

index (GSI) is defined by Eq. (12) in which overall 

sensitivity can be estimated. 

max min

max

GSI
Y Y

Y


   (12) 

 

here, Ymin and Ymax are minimum and maximum 

output of model using upper and lower limits bounds 

of the input parameters, respectively. According to 

Eqs. (11) and (12), parameters that play fundamental 

role in output can be identified. In this research, input 

parameters are physical properties of structure and 

natural frequencies are considered as outputs. By 

using sensitivity analysis, physical parameters which 

are suitable for optimization algorithm can be 

determined. 

2.4.   Bees Algorithm 

Bees optimization algorithm is classified in 

evolutionary algorithms such as genetic algorithm, 

PSO algorithm and so on. There is an organized 

social behavior among bees which can be used for 

solving complex optimization problems. There are 

scout bees in each swarm whose main task is to find 

food sources for their hives. As scout bees find new 

food sources, they return to their hives and evaluate 

the different discovered gardens based on specific 

parameters. Then, scout bees by using toggle dance 

provide direction, distance and amount of nectar in 

these gardens for worker bees. Then, the worker bees 

fly to the detected locations. The number of worker 

bees sent has direct proportion to nectar amount 

available in the detected garden and reverse 

proportion to its distance. In other words, more 

worker bees are sent to gardens which have more 

nectars and short distance to hive. Therefore, this 

strategy enables bees swarm to obtain food sources in 

an efficient procedure. From Nt  random solutions, Nt1 

solutions which have higher fitness values are 

considered as the best solutions. Then, Nt2 solutions 

are selected as elite ones among the best solutions. In 

order to find better solution, the best solutions 

neighborhood is searched. Therefore, nt1 and nt2 

denote the number of neighborhoods searched around 

the best and elite solutions, respectively (nt1<nt2). 

Then, the remaining solutions are chosen randomly in 

the search space to find other solutions Eq. (13) 

indicate formation of a new generation in bees 

algorithm. 

   
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N N N n N n N N       
(13) 

where, Nnew and Nold are the new generation and the 

previous generation, respectively. Additionally, 

number of population in each generation is fixed. 

These steps continue whenever the convergence 

criteria happened. In this research, an objective 

function is defined for finite element model updating. 

This objective function is based on natural 

frequencies obtained from finite element method and 

operational modal analysis (Eq. (14)). 
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Figure 2: Flowchart of bees optimization algorithm 

 

where s is the number of natural frequencies used in 

optimization problem, Ωc,j denotes natural frequencies 

obtained from finite element method and Ωuc,j denotes 

natural frequencies calculated using operational 

modal analysis. Moreover, Z vector includes design 

parameters which are identified by sensitivity 
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search spaces near elite and best solutions 

Select Nt1 solutions among neighborhood search 

Determination of new generation by using 

(Eq.(13)) 
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analysis (section (2-3)). By minimization of objective 

function (Eq. (14)) using bees optimization algorithm, 

design parameters are obtained and a precise finite 

element model based on real structure is designed. 

Fig.2 shows the flowchart of bees algorithm. 

3.   Results and discussion 

The main objective of this research is to optimize the 

finite element model of structures by using a 

combination of FDD method, sensitivity analysis and 

finite element method. The algorithm of the proposed 

method used is described in Fig. 3. To verify the 

algorithm, a three-story structure is built and the 

proposed algorithm is tasted on it. Results are 

depicted in the following steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Finite model updating algorithm 

 

3.1.   Finite element model 

Fig. 4 shows sketch of the three-story structure. This 

structure is built by steel and all connections are 

welded. Moreover, anchor bolts are used to connect 

the frame to the ground.  

In Table 1, all dimensions of the three-story frame are 

presented.  

 

In Fig. 5, finite element model of three-story 

structure in ANSYS software is displayed. 

Solid 186 Element is used for building this model. 

Additionally, in this model, welds are taken into 

account as a change in Young's modulus in 

connections.   

26781 elements were used to build the model. 

Applying the boundary conditions the natural 

frequencies of the frame were calculated by the 

eigenvalue analysis in the finite element software 

(ANSYS) and the results are listed in Table 2. 

3.2.   Appropriate points for shaker and 

accelerometer installation 

Acquiring modal parameters needs an accurate 

planning for conducting experiments. Appropriate 

location of the accelerometers and shakers can lead to 

more accurate modal parameters estimation. 

According to section (2-2), by using ODP and 

ODP/ADDOFA, the best points of accelerometers 

measurement and structure stimulation by shaker can 

be detected. Fig. 6 and Table 3 display and tabulated 

these points in y direction, respectively. 

 

 

 
Figure 4: Plan of three views of the three-story structure 
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modal parameters 

using finite 

element method 

 

 

Determination of 

the best points for 

experimental 

analysis (section 2-

3) and obtaining 

modal parameters 

using FDD/EFDD 

method 

 

 

Sensitivity analysis of finite element 

model and finding sensitive design 

parameters (section 2-4) 

 

Defining an objective function and finding optimum 

values of design parameters 

 

 



Vol. 48, No. 1, June 2017 
 

81 

 

Table 1: Dimensions of the three-story frame 

Length 

(m) 
symbol parameter No 

0.600 La1 

Length of horizontal members in 

the y-z plane 

1 

1.100 La2 2 

1.600 La3 3 

0.600 Lb1 

Height of horizontal members in 

the x-z plane 

4 

1.100 Lb2 5 

1.600 Lb3 6 

0.500 Lc1 Length of horizontal members in 

the x-z plane 

7 

0.400 Lc2 8 

0.016 a 
Cross section 

9 

0.016 b 10 

 
Figure 5: Finite element model of the three-story structure 

 

 
Table 2. Natural frequencies obtained by FEM (rad/sec) 

Freq 1st 2nd 3rd 4th 5th 6th 

FEM 73.05 84.70 92.86 234.56 276.03 326.48 

 

Fig. 7 shows the best places for accelerometers 

and shaker installation in x direction and Table 4 

presents their corresponding coordinates 

3.3.   Sensitivity analysis 

In order to determine the effective parameters for 

finite element model updating, sensitivity analysis 

was applied on the three-story frame according to 

section (2-3). Table 5 presents lower and upper limits 

of design parameters for sensitivity analysis (see 

section (2-3)). 

Figs. 8 and 9 present local and global sensitivities 

for the three-story structure respectively.  

As is clear from Fig. 8, maximum local sensitivity 

belongs to those design parameters related to length 

of members and physical characteristics of structure 

such as Young's modulus and density, however the 

minimum values are related to Young's modulus of 

weld connections and the cross-section of members. 

Moreover, in global sensitivity analysis, 

approximately the same parameters considered in 

local sensitivity analysis have direct impact on the 

natural frequencies obtained. 

 
 
   Figure 6: a- Best location of accelerometer installation in 

y direction b- Best location of shaker installation in y 

direction 

 
Table 3: Coordinates of the best locations for 

accelerometers and shaker installation in y direction 

Length (cm) point Length (cm) Point 

12 6A 95 1A 

46 7A 110 2A 

44 8A 122 3A 

86 9A 144 4A 

105 10A 160 5A 

 

 

 
 
Figure 7:  a-The Best location of accelerometer installation 

in x direction b-The Best location of shaker installation in x 

direction 
 

(a) (b) 

(a) (b) 
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Table 4: Coordinates of the best locations for 

accelerometers and shaker installation in x direction 

Length (cm) point Length (cm) point 

13 5B 91 1B 

33 6B 120 2B 

50 7B 148 3B 

72 8B 160 4B 

 

 
 

Figure 8: Results from local sensitivity analysis  

 
 

Figure 9: Results from global sensitivity analysis  

Table 5. Upper and lower bounds of design parameters 

 

Upper 

limit 

Lower 

limit 

Symbol 

(unit) 
Parameters no 

8000 7600 (3kg/m )ρ Density 1 

220 180 (Gpa)   E 
Young's 

modulus 

2 

0.4 0.2 ([])  Poisson's ratio 3 

1.65 1.55 Da1 (m)  4 

   

Length  of 

vertical 

members 

 

1.65 1.55 Da2 (m) 5 

1.65 1.55 Da3 (m) 6 

1.65 1.55 Da4  (m) 7 

0.62 

1.14 

1.65 

0.58 

1.07 

1.55 

Dd1 

(m) 

Dd2 

(m) 

Dd3 

(m) 

Height of 

horizontal 

members in x-z 

plane 

8 

9 

10 

0.62 0.58 
De1 

(m) Height of 

horizontal 

members in y-z 

plane 

11 

1.14 1.07 
De2 

(m) 
12 

1.65 1.55 
De3 

(m) 
13 

0.0165 
0.015

5 

a1….a

16 (m) 

Width of cross 

section 
14-29 

0.0165 
0.015

5 

b1….b

16 (m) 

Length of cross 

section 
31-45 

0.52 0.48 Dc (m) 

Length of 

horizontal bars in 

x-z plane 

46 

0.42 0.38 Dd (m) 

Length of 

horizontal bars in 

y-z plane 

47 

220 180 

E1…E

24 

(Gpa) 

Weld Young's 

modulus 
58-71 

 

 

3.4.   Operational modal analysis 

Operational modal analysis is regarded as a subset of 

modal analysis that only depends on output 

responses. In this research, the FDD method is 

applied to identify dynamic parameters of the three-

story structure. Random inputs is the main 

assumption of FDD method, thus for random 

stimulation of the three-story structure, an electro-

dynamic shaker is applied. This electro-dynamic 

shaker can produce random, burst random, Pseudo 

random, Sweep random and Periodic random signals. 

Then, by using accelerometers attached on the 

structure, the output signals are captured and send to 

time recorder software. Fig. 10 presents all of 

equipment used in operational modal analysis of the 

structure. 

In Fig. 11 the time response captured by the 

accelerometers under random excitation is displayed. 

Moreover, in this experiment, sampling rate 16328 

was considered and 5 accelerometers gathered 

acceleration of structure simultaneously. 

Accelerometers are piezo-Tronic type (A120/V) and 
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TIRA is the brand name of shaker which is used in 

this experiment.  

Natural frequencies obtained from various kinds 

of signals using FDD method are presented in Table 

6. Additionally, the last row of Table 6 presents 

natural frequencies calculated by classic modal 

analysis. 

 

 
 

Figure10: Equipment used in experimental modal analysis 

 

Fig. 12 shows relative error percentage of natural 

frequencies of the structure obtained from operational 

modal analysis and classic modal analysis (hammer 

test). According to this figure, the natural frequencies 

calculated by pusedo random signals are more 

consistent with those obtained from classic modal 

analysis and consequently, only this signal will be 

used in the following sections of this research to 

obtain the updated model. Frequency diagram of 

FDD method for pusedo random excitation signal in x 

direction is depicted in Fig. 13. The natural 

frequencies of the three-story structure obtained from 

FDD and finite element methods plus relative error 

these are tabulated in Table 7. 

 

 
Figure 11: Response of the three-story structure under 

random excitation 

 

3.5.   Bees updating results 

According to Table 7, the relative error of natural 

frequencies obtained by FDD and FEM methods is 

high and it suggests that there might be a defect in 

finite element modeling. This defect may be due to 

introducing physical properties such as density, 

Young’ module and so on to the software or can be 

related to geometric properties of structure such as 

length, thickness and size of members. For solving 

this problem, bees algorithm is applied in order to 

minimize this error. Three different sets of design 

parameters are defined for bees algorithm. The first 

set includes parameters obtained from sensitivity 

analysis, second set includes parameters not 

important for sensitivity analysis and material 

properties and the third set consists of all design 

parameters. In this research, these sets are the 

parameters used in Table 8.   

Fig. 14 depicts convergence of bees algorithm based 

on different sets of design parameters. As it is clear 

from Fig. 14, faster and more precise convergence is 

obtained using sets 1 and 3 than set 2. However, this 

convergence occurred with 14 design parameters by 

set 1 and 71 design parameters in set 3. Additionally, 

run time of the optimization process in set 1 is lower 

than that in set 3; this shows that optimization using 

set 1 could achieve optimal response in minimum 

time. Moreover, since all of design parameters in set 

1 were obtained by sensitivity analysis, it is clear that 

sensitivity analysis is capable of identifying effective 

parameters in optimization process.  
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Table 6. Experimental natural frequencies calculated by FDD and classical methods 

   Frequency no.                Input 

signal 
method 

6th 5th 4th 3rd 2nd 1st 

293.260 238.360 205.180 91.130 73.710 61.120 Random 

FDD 

(method) 

297.780 241.090 207.670 93.380 74.430 60.190 
Burst 

random 

293.010 237.830 206.170 89.680 71.890 61.870 
Pseudo 

random 

296.670 241.390 212.450 97.130 78.410 65.130 
Sweep 

random 

301.230 249.870 216.890 98.230 77.120 54.130 
Periodic 

random 

292.210 238.010 206.240 89.380 71.341 62.328 hammer 
Classical 

modal 

 

 
Figure12: Relative error percentage of natural frequencies 

of FDD method and classic modal analysis 

 

 
Figure13: Diagram of decomposition of power spectral 

density using SVD decomposition in x direction 

Table 7: Natural frequencies obtained from FDD and FEM 

method-(rad/sec) 

Relative 

error )%( 
FEM 

method 

FDD 

method 

Frequency 

no. 

15.304 73.050 61.870 1 

15.124 84.700 71.890 2 

3.429 92.864 89.680 3 

12.104 234.562 206.170 4 

13.840 276.033 237.830 5 

10.252 326.483 293.010 6 

 
Table 8: Design parameter sets used in FEM updating 

Set 3 Set 2 Set 1 

Design 

parameter

s 

√ √ √ ρ 

√ √ √ E 

√ × √ Da1 

√ × √ Da2 

√ × √ Da3 

√ × √ Da4 

√ × √ Dd1 

√ × √ Dd2 

√ × √ Dd3 

√ × √ De1 

√ × √ De2 

√ × √ De3 

√ √ × a1….a16 

√ √ × b1….b16 

√ × √ Dc 

√ × √ Dd 

√ √ × E1…E24 

√ √ ×   
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Figure14: Convergence of bees algorithm 

Table 9 presents control parameters utilized in 

bees optimization algorithm. These values have been 

obtained by empirical studies. Table 10 lists the 

natural frequencies obtained from updated finite 

element model done by bees optimization algorithm. 

It can be deduced from Tables 7 and 10 that the 

relative error between natural frequencies calculated 

by FEM method and the experimental modal analysis 

decreased remarkably after model updating. Total 

relative error before model updating was %60.075 

that reduced to %1.785 after model updating. 

In order to verify performance of bees 

optimization algorithm in finite model updating, the 

finite element model of three-story structure is 

updated by PSO and Nelder-Mead optimization 

algorithm; then results of these algorithms are 

compared with each other. PSO method is an 

evolutionary optimization method designed by 

Kennedy and Eberhart [22]. This method is inspired 

by migration behavior of birds or fish schooling. PSO 

algorithm is based on particles movements in which 

each particle can be considered as a possible optimal 

solution. Particles in PSO method follow a very 

simple behavior: trying for neighboring particles 

success and their success. Finding optimal solution 

area in the search space with a large number of 

dimensions is the result of mass movement behavior. 

Nelder-Mead algorithm is a direct method for 

finding minimal value of an unconstrained n-

dimensional objective function presented by Nelder 

and Mead [23]. This method is based on the 

comparison of the function value in the n + 1 vertices 

of a simplex and replacing the worse vertex in terms 

of the objective function with a new point. Moreover, 

Nelder-Mead method works only by using the 

function values and does not need any function 

derivatives; thus it is classified as a direct method.  

Fig. 15 portrays convergence diagram of bees 

algorithm, PSO and Nelder-Mead method for finite 

model updating of three-story structure using first set 

of design parameters.  

As can be seen from Fig. 15, bees algorithm 

converges faster than other optimization algorithms 

and its objective function has the lowest value among 

all investigated methods. The first set of design 

parameters optimized using various kinds of 

optimization methods are tabulated in Table 11. To 

evaluate the efficiency of optimization algorithms, 

two criteria are defined, practical reliability index and 

normalized price value. Practical reliability index is 

defined as the probability of the solution to reach a 

practical optimum. Additionally, a practical optimum 

is stated as an optimal solution within 0.1% of the 

final optimum response. In this essay, the best value 

of the objective function is calculated after 200 

iterations; thus this objective function was used to 

define practical reliability. Furthermore, normalized 

price value is defined as the number of objective 

functions calculated to the practical reliability ratio. 

Table 12 indicates values of practical reliability 

and normalized price for the three proposed 

optimization algorithms in this essay. According to 

Table 12, BA algorithm achieved the optimal solution 

with lower cost than other methods. To compare the 

mode shapes obtained from FDD and FEM methods, 

the mode assurance criterion (MAC) is defined. The 

relation of MAC criteria is stated in Eq.(15). 

   

       

2

( , )

T T

FDD FEM

T T T T

FDD FDD FEM FEM

MAC i j
 

   




 

(15) 

The MAC values for the mode shapes of FDD and 

FEM is shown in Fig. 16. As can be seen from this 

figure, the mode shapes calculated by these methods 

are compatible with each other and the value of MAC 

criteria is more than 0.8 for the same mode shapes. 

4.   Conclusions 

In this study, finite model of a three-story structure 

was updated using BA optimization algorithm and 

FDD method. Several design parameters were 

selected for updating this model some of which were 

chosen by local and global sensitivity analyses. An 

objective function based on summation of the squared 

errors between natural frequencies obtained from 

finite element model and experiment model was 

defined. As the inputs to structure were random, only 

operational modal analysis is able to identify modal 

parameters of structure with an appropriate accuracy; 

therefor, FDD method as one of the strong parametric 
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methods in operational modal analysis was performed 

on structure and could obtain modal parameters of 

real structure. In order to update finite element model, 

BA optimization method minimized the defined 

objective function and finally the best set of designed 

parameters was obtained. Results show that the 

combined errors between the first six natural 

frequencies were reduced from %60.075 to %1.785 

after updating. For verification of the BA 

optimization algorithm, the proposed objective 

function was minimized by PSO and Nelder-Mead 

methods. Results showed that BA algorithm was 

faster than these methods and BA algorithm 

successfully brought finite element model closer to 

the real model. Moreover, the MAC values for the 

same modes are more than 0.8 indicated that mode 

shapes obtained by FDD and FEM method are 

compatible with each other. 

 

Table 9: Control parameters of bees algorithm 

values Control parameter 

40000 
Number of objective 

functions 

0.01 Neighborhood radius 

20 t1N 

12 t2N 

10 t1n 

15 t2n 

100 tN 

100 Number of iterations 

 

 

Table 10: Comparison of the natural frequencies from the 

updated finite element models and corresponding empirical 

values 

Relative 

error (%) 

Natural frequencies (rad/sec) 

Mode Updated finite 

element 

model 

Experimental 

model 

0.031 61.851 61.870 1 

0.523 71.513 71.890 2 

0.037 89.647 89.680 3 

0.523 205.098 206.170 4 

0.007 237.814 237.830 5 

0.661 291.086 293.010 6 

 

Table 11: Design parameters optimized using different 

optimization algorithms 

PSO 
Nelder-

Mead 
BA 

Design 

parameters 

7643 7643 7712  (3kg/m)ρ    

201 201 198 (Gpa) E  

1.63 1.63 1.61 Da1 

1.63 1.63 1.61 Da2 

1.64 1.64 1.60 Da3 

1.65 1.65 1.60 Da4 

0.60 0.60 0.58 Dd1 

1.12 1.12 1.09 Dd2 

1.64 1.64 1.63 Dd3 

0.58 0.58 0.62 De1 

1.10 1.10 1.08 De2 

1.63 1.63 1.65 De3 

0.49 0.49 0.51 Dc 

0.40 0.40 0.40 Dd 

 
Table12: Practical reliabilities and normalized prices 

obtained from BA, PSO and Nelder-Mead methods  

normalized price 
practical 

reliability 
Method 

44444.4 0.9 BA 

66666.7 0.6 PSO 

100000 0.4 Nelder-Mead 

 

 
Figure 15: Convergence of various kinds of optimization 

method with set 1 
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Figure 16: MAC criteria between FDD and FEM mode 

shapes 
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