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Abstract 

Assuming arbitrary boundary and initial conditions, a transient thermo-elastic analysis of a rotating thick cylindrical 

pressure vessel made of functionally graded material (FGM) subjected to axisymmetric mechanical and transient 

thermal loads is presented. Time-dependent thermal and mechanical boundary conditions are assumed to act on the 

boundaries of the vessel. Material properties of the vessel are assumed to be graded in the radial direction according 

to a power law function. The Poisson’s ratio is assumed to be constant. Method of separation of variables has been 

used to analytically calculate the time dependent temperature distribution as a function of radial direction. In a case 

study, the distribution of radial and hoop stresses along the thickness is derived and plotted. In order to validate the 

model, the analytical results have been compared with finite element method modeling results presented in literature. 

Any arbitrary boundary and initial conditions can be handled using the equations derived in the present research. In 

order to investigate the inhomogeneity effect on time dependent stress distribution and displacements, values of the 

parameters have been set arbitrary in the present study. To the best of the authors’ knowledge, in previous researches, 

transient thermo-elastic analysis of thick cylindrical FGM pressure vessels is investigated by numerical methods, while 

in the present research, an exact solution is derived for the same problem. 
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1.   Introduction 

Functionally graded materials (FGMs) are a new 

generation of composite materials first introduced by a 

group of Japanese scientists in 1984 [1,2]. From 
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viewpoints of solid mechanics, the FGMs are 

heterogeneous composite materials wherein the 

volume fractions of constituent materials vary 

continuously in some specific directions, such as 

thickness direction [3]. The corresponding author have 
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published a number of papers addressing various 

aspects of FGM in recent years [4-10]. 

Scientific literature is filled with hundreds of 

works dealing with various aspects of functionally 

graded materials such as heat transfer [11,12], 

statically and dynamically stress and deformation 

analysis [13,14], optimization of FGM [15-17] and 

manufacturing and design issues and fatigue problems 

[18-21]. Also functionally graded materials have been 

used for biomedical applications in recent year due to 

their ability to satisfy biomaterials requirements such 

as nontoxicity, corrosion resistance, strength and etc. 

[22]. 

In the present research transient thermoelastic 

analysis of a FGM pressure vessel is carried out. In a 

research, transient thermoelastic analysis of 

pressurized thick spheres subjected to arbitrary 

boundary and initial conditions has been done by 

Mohammadi et al [23]. Using a numerical method, 

Han et al. presented the displacement response of FGM 

shells excited by impact loads [24]. Kim and Noda 

studied the unsteady-state thermal stress of FGM 

circular hollow cylinders by using of Green's function 

method [25]. Chen and Awaji analyzed the thermal 

stress under thermal shock and residual stress arising 

from the fabrication process in a hollow cylinder of 

Functionally graded materials (FGMs) [26]. Liew et al. 

presented an analytical model for the 

thermomechanical behavior of FG hollow circular 

cylinders under the effect of an arbitrary steady state 

or transient temperature field [27]. Ootao and 

Tanigawa theoretically studied the transient 

thermoelastic behavior of a FGM plate [28]. They 

developed a solution for three-dimensional transient 

thermal stress of a FGM rectangular plate subjected to 

a nonuniform heat supply. They assumed that thermal 

and thermoelastic constants such as the thermal 

conductivity, the coefficient of linear thermal 

expansion and Young’s modulus are exponential 

functions of the thickness direction. Heydarpour and 

Aghdam numerically studied the transient 

thermoelastic behavior of rotating functionally graded 

(FG) truncated conical shells subjected to thermal 

shock [29]. They employed the generalized coupled 

thermoelasticity based on the Lord–Shulman (L-S) 

theory. Also they applied different boundary 

conditions. Mishra et al. analytically studied the force 

vibration on nonhomogeneous thermoelastic thin 

FGM annular disk under the application of dynamic 

pressure by applying the generalized theory of 

thermoelasticity with one relaxation time [30]. 

Ghannad and yaghoobi studied steady state thermo-

elastic response of axisymmetric FGM cylinder 

subjected to pressure and external heat flux [31]. They 

calculated the displacement using first order shear 

deformation theory. In a research, nonlinear transient 

thermoelastic analysis of a 2D-FGM thick hollow 

cylinder is carried out by Najibi and Talebitooti [32]. 

They also developed a new material model for 

functionally graded materials based on Mori-Tanaka 

scheme. By using analytical method, Hosseini et al. 

studied transient heat conduction in a cylindrical shell 

of functionally graded material in axisymmetric 

conditions [33]. Jabbari et al. presented a direct 

method of solution to obtain the transient mechanical 

and thermal stresses in a functionally graded hollow 

cylinder with heat source [34]. Shariyat investigated 

the nonlinear transient heat transfer and thermoelastic 

behaviors of the thick-walled FGM cylinders [35]. By 

using the Hermitian transfinite element method, Azadi 

and Azadi analyzed nonlinear transient heat transfer 

and thermoelastic stress of a thick-walled FGM 

cylinder with temperature dependent materials [36]. 

In the present research transient thermoelastic 

analysis of a cylindrical pressure vessel made of a 

functionally graded material is carried out. The 

pressure vessel is assumed to be subjected to 

axisymmetric mechanical and transient thermal loads. 

In this study an exact solution of mentioned problem is 

presented which can handle any arbitrary boundary 

and initial conditions. The results obtained in the 

present research have been validated by those obtained 

using numerical methods which are presented in 

literature. 

 

2.   Problem formulation 

2.1.   Heat conduction problem 

Here we consider a FGM hollow cylinder which its 

inner radius is 
ir  and the outer radius 

or . The material 

properties assumed that radially dependent as follow: 
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In above relations ( )k r is thermal conductivity ,  r

is density  and  c r is heat capacity . 3m , 4m  and 5m  

are the inhomogeneity constants determined 

empirically, and 
i , 

ic  and 
ik  are materials properties 

at inner surface of the cylinder. 

In the absence of heat source, the governing 

equation of one dimensional heat conduction for the 

case of an axisymmetric hollow cylinder can be written 

as Eq. 2. 
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where  ,T r t  is the temperature distribution which 

varies over time and thickness direction. The boundary 

and initial conditions are as follow: 
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In above relations, constants  , 1, 2
ij

i jC   and

 1, 2 
i

g i   depend on thermal boundary conditions 

and  
i

T r  is the initial temperature distribution in the 

cylinder. Under the considered boundary conditions, 

the solution of Eq. 2 can be obtained as Eq. 4. 

     , ,s hT r t T r T r t   (4) 

The general solution of Eq. 2 is sum of the general 

solution  sT r  of related homogeneous equation with 

nonhomogeneous boundary conditions as follow: 
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And solution  ,hT r t  of nonhomogeneous equation 

with homogeneous boundary conditions as follow: 
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The Eq. (5) is Euler Equation and for 
5 0m   , the 

solution of this yield: 

5

1 2

m

sT C r C


   (7) 

Applying the boundary conditions of Eq. 5-b, 

constants 
1C  and 

2C  can be obtained as follow: 
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Also the constant 
2C  can be expressed as Eq. 9. 
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The solution of Eq. 6 can be obtained using the method 

of separation of variables, generalized Bessel function 

and Eigen-function method as: 
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In which  ,
n

rf   is Eigen function and is expressed 

as Eq. 11. 
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Where 5

2

m
p

e
 , 

 3 4 5 2

2

m m m
e

  
 , pJ  and pJ   

are Bessel functions of the first kind and of order p , 

p  respectively. Constants A and B are defined as: 
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Also we can express constants A and B as Eq. 13. 
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in the above equations 
n  are Eigen values which are Eq. 14 positive roots. 
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The coefficient 
nC  is obtained as follow
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The term  
2

, nf r   is the norm of Eigen function and is obtained as Eq. 16. 
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in which 5 2 1m e
r
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 is weight function. Thus temperature distribution is written as Eq. 17.  
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2.2.   Thermoelastic analysis 

Here we consider that the FGM hollow cylinder 

rotates about its central axis at a constant angular 

velocity     For the case of axisymmetric problem, 

circumferential and radial strains  ,rr    can be 

expressed in terms of cylindrical coordinates  , ,r z  

as Eq. 18. The only non-zero component of the 

displacement is radial displacement 
r

u , which is 

dependent only on radial coordinate r . The Poisson’s 

ratio   is assumed to be constants and the coefficient 

of linear thermal expansion  and The Young’s 

modulus E are assumed to be graded in the radial 

direction according to a power law function as Eq. 19.
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where 
1m  and 

2m  are the inhomogeneity constants that determined empirically and 
iE  and 

i  are properties at inner 

surface of the hollow cylinder. Substituting Eq. 18 and Eq. 19 into thermoelastic constitutive relations for plane- strain 

problems yields: 
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T
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 

     
                 

 (20-c) 

 

 

In the above relations , ,rr zz    are radial, hoop and 

axial components of stress. T  is the temperature 

difference as   0,T T r t T   in which 
0T  is the 

ambient temperature which is set to zero in the present 

study. 

Assuming body forces are zero, the equilibrium 

equation of the hollow cylinder rotates at the angular 

velocity   can be written as Eq. 21. 

2rrrr r
r r

 
 


  


 (21) 

Substituting Eq. 20 in Eq. 21 gives: 
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


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   

 
    
   

     
 
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3 1
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r

E r

  




 



 
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
 (22) 

The solution of Eq. 22 can be obtained as Eq.23. 
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In which 
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
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 (24) 

and 
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(25) 

Substituting Eq. 23 into Eq. 20 the radial, circumferential and axial stresses of the rotating thick hollow cylinder are 

obtained as: 
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(26-b) 
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(26-c) 

By substituting the mechanical boundary conditions which are 
rr ip    at 

ir r  and 
rr op    at 

or r  in Eq. 26 

coefficients 
*

1C  and 
*

2C  can be obtained in terms of mechanical properties and applied pressure as Eq. 27. 
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3.   Results and discussions  

Consider a hollow cylinder made up of a functionally 

graded material. The poison’s ration is assumed to be 

constant and it is set to 0.3  . Other physical 

properties are listed in Table 1. The applied pressure 

on inner surface of cylinder is 70 MPa . 

 

Table 1. physical properties of the hollow FGM cylinder 

symbo

l 

value symbo

l 

value 

i
r  0.02 m  

i
c  808.3 J/Kg. K  

o
r  0.04 m  

o
E  200 GPa  

i
E  66.2 GPa  

o
  3

7854 Kg/m  

i
  3

4410 Kg/m  o
   5 o

1.17 10 1 C

 

i
   5 o

1.03 10 1 C

 

o
k  60.5 W/m. K  

i
k  18.1 W/m. K  o

c  o
434 J/Kg. K  

 

We assume that the temperature is constant over 

both inner and outer surfaces of the hollow cylinder. 

Since the initial condition is a linear function of polar 

coordinate r , thermal boundary conditions can be 

expressed as Eq. 28. 

 

 

 

 

, 1
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, 2

.  . : ,0 20    

i

o

T r t
B C

T r t

I C T r r

 




 





℃

℃  (28) 

 

In order to validate the solution algorithm, a 

comparison is performed between the analytical results 

of presented approach with those calculated by finite 

element method and presented in literature. In Fig.1 

numerical and analytical results of temperature are 

compared. This figure shows the time dependent 

temperature at point 0.025mr   over a course of 20 

seconds. Fig. 2 indicates the temperature distribution 

along thickness of the cylinder at time 5sect  . Fig.1 

and Fig.2 reveal that the analytical results obtained 

from the present model agree very well with numerical 

results presented in the literature. Fig. 3 shows the time 

dependent temperature at different radiuses over a 

course of 20 seconds. Temperature distribution along 

the thickness of cylinder is plotted in Fig. 4 at different 

times. 

Radial displacement versus polar coordinate r  at 

time 5sect   is plotted in Fig. 5. Distribution of stress 

components along the thickness of the hollow cylinder 

at time 5sect  is shown in Figures 6 to 8. It is obvious 

in Fig. 7 that hoop stress increases from inner to outer 

surface of cylinder. But near the outer surface it 

decreases. 

Fig. 9 shows the radial displacement at point 

0.025mr  over time. Figures 10 to 12 show the 

radial, hoop and axial components of stress at point 

0.025mr   over a 10 second course. It is obvious that 

at the beginning, hoop and axial stresses increase and 

then decrease as time increases. Fig 11 and Fig 12 

show that hoop and axial stresses at the initial seconds 

have maximum values that must be note by designer. 

 

 

Fig. 1. Temperature at point 0.025mr  . 

 

 

Figures 13 to 16 indicates the radial 

displacement and hoop, radial and axial components 

of stress over time at radiuses 

0.025,0.03,0.035mr  . Figures 17 to 20 shows the 

radial displacement versus polar component r  and 

hoop, radial and axial stress distribution along 

cylinder thickness at different times. These figures 

verify previous presented results. Fig 19 shows that 

the hoop stress distribution for different times at a 

point that 1.25 / 1.75
i

r r   is constant and the 

variation of stress before this point is inverse 

variation stress after this point. Fig. 21 shows the 

radial displacement versus polar coordinate r  at 

different angular velocities  . Radial, hoop and 

axial stress distribution along the cylinder thickness 

is plotted in figures 22 to 24 at different angular 

velocities. These figures show that radial 

displacement, hoop and axial stresses increase as 
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increase angular velocity but radial stress decreases, 

and these variations are very small for radial stress. 
 

 

 

Fig. 2. Temperature distribution along thickness at time 

5sect  . 

 

 

Fig. 3. Comparison of the temperature distribution for 

different radius. 

 

 

Fig. 4. Comparison of the temperature distribution for 

different times. 

 

Fig. 5. Radial displacement distribution at time 

5sect  . 

 

Fig. 6. Radial stress distribution at time 5sect  . 

 

Fig. 7. Hoop stress distribution at time 5sect  . 

 

Fig. 8. Axial stress distribution at time 5sect  . 
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Fig. 9. Radial displacement distribution at point 

5sect  . 

 

Fig. 10. Radial stress distribution at point 5sect  . 

 

Fig. 11. Hoop stress distribution at point 5sect   . 

 

Fig. 12. Axial stress distribution at point 5sect  . 

 

Fig. 13. Comparison of radial displacement distribution 

at different radius. 

 

 

Fig. 14. Comparison of radial stress distribution at 

different radius.  

 

Fig. 15. Comparison of hoop stress distribution at 

different radius.  

 

Fig. 16. axial stress distribution at different radius.  
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Fig. 17. Comparison radial displacement distribution for 

different times.  

 

Fig. 18. Comparison of the radial stress distribution for 

different times.  

 

Fig. 19. Comparison hoop stress distribution for 

different times.  

 

Fig. 20. Comparison the axial stress distribution for 

different times.  

4.   Conclusion  

In the present article the transient thermoelastic 

analysis of an axisymmetric hollow cylinder made of a 

functionally graded material is carried out. Thermal 

and thermoelastic properties of the material are 

assumed to be a power function of polar coordinate r
. The exact solution of time dependent temperature 

distribution and transient hoop, radial and axial stress 

components are obtained under general thermal 

boundary conditions. By perusing the previous section, 

it is concluded that hoop and axial stresses increases as 

radius increase but radial displacement and radial 

stress decrease; and radial displacement increases as 

time increase but radial stress decreases; and hoop and 

axial stresses in the beginning increase and then 

decrease as time increases. Radial displacement, hoop, 

and axial stresses increase as angular velocity increase 

but radial stress decrease and these reductions are very 

small. Any arbitrary boundary and initial conditions 

can be handled using the relations presented in this 

article. 
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