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Abstract 

Dynamically stable biped robots mimicking human locomotion have received significant attention over the last 
few decades. Formerly, the existence of stable periodic gaits for straight walking of passive biped walkers was 
well known and investigated as the notion of passive dynamic walking. This study is aimed to elaborate this 
notion in the case of three dimensional (3D) walking and extend it for other maneuvers, specifically curved 
walking or turning. For this purpose, the motion of a general 3D compass gait model on a ramp has been analyzed 
theoretically in detail. A comprehensive dynamic modeling with respect to the vertical fixed frame is used based 
on Lagrangian and augmented methods. In addition to 3D passive straight walking, the results confirm the 
existence of some passive turning motions for the biped walker towards the steepest decent of the ramp. It was 
shown that the value of passive turning is strictly concerned to the value of initial perturbed condition of the 
walker, especially to the value of heading angle. A parameter analysis was also accompanied to examine the 
change in the characteristics of such passive motions caused by the change in model parameters. 
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1.   Introduction 

Efforts to empower biped robots, has resulted in 
increasing the degrees of actuation as well as the 
complexity of control strategies [1]. Some 
researchers sought to minimize this complexity 
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through tracing passive dynamic motions like 
human beings. McGeer [2] was the first researcher 
who studied the notion of passive dynamic walking 
in detail. He showed that a bipedal walker can walk 
down dynamically stable on a mild slope, without 
any control input or actuation, just due to gravity. 
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McGeer pioneered his work via some basic two 
dimensional (2D) models, but his attempts to derive 
a stable 3D case failed because of lateral instability 
of the model [3]. Coleman et. al. [4] showed that a 
3D compass gait model which is supplemented by 
special moments of inertia as well as arc feet can 
exhibit stable passive straight walking. Moreover, 
control of biped robots based on such asymptotical 
stable periodic gaits or limit cycles was followed in 
other researches like [5, 6]. However, all of these 
works were limited to “straight walking”. 

One of the essential maneuvers that can be 
considered for a biped walker is curved walking or 
turning. Statistics shows that 20 to 50 percent of daily 
walking of human beings include turning [7]. 
However, so far only few researches have addressed 
this type of motion for biped robots, especially for the 
aforementioned asymptotical stable robots [8-13]. This 
little number of works is also restricted to the study of 
active models.  

The current study aims to elaborate and extend the 
notion of passive 3D walking for “passive curved 
walking or turning” which can be based to develop an 
asymptotically stable steering mechanism of biped 
robots, with inherent efficiency and natural-looking. 
To this end, passive turning motions of the simplest 
bipedal walking model, i.e. “3D rimless spoked wheel” 
have been well addressed by the authors in some 
earlier papers [14, 15]. In the present paper, a “3D 
compass gait biped model” which is more resembled 
to human than the rimless wheel will be studied. 
Hence, giving more details about its 3D passive 
straight walking, we also investigate the possibility of 
passive curved walking and their features for the new 
model. 

 In this regard, the only related work has been 
probably reported by Wisse et al [16, 17] during 
experiment on Delft biped robot. They found out if the 
robot has a special design of a tilted ankle joint which 
couples the sagittal and frontal dynamics of the robot 
(like that exists in a skateboard or bicycle), a sideways 
fall could be averted by a natural passive turning in that 
direction. 

Now, in this paper, not only we investigate this 
maneuver theoretically, but also we show that it is not 
restricted to a special design of biped walker 
considered by them. In another word, we will explain 
that any general biped walker like the model 
understudy could exhibit a dynamically stable passive 
turning mechanism caused by an inherent dynamic 
coupling between the sagittal and frontal planes. 

It is worth to note that, for the goal of this research, 
the model should be analyzed in a new general 

framework with respect to the vertical fixed frame. It 
is especially essential for evaluation of infinite circular 
turnings in the future. 

Hence, the paper is organized as follows: The 
model and its general equations of motion are first 
described. Since it is a hybrid system with impact 
events, the method of Poincare map is applied to find 
periodic motions and stability analysis. Next, 3D 
passive straight walking and finite passive turning 
motions are investigated in detail. Finally, a discussion 
including parameter analysis is presented. The details 
of equations of motion are mentioned in appendix. 

2.   Model description 

The 3D biped walker of interest is illustrated in Figure 
(a). It is a rigid body compass like biped walker 
composed of two symmetrical straight legs of length  
which are connected with a hip joint of width . The 
legs are also equipped by two arc-shaped feet of radius 

. Each leg has mass  with inertia matrix  
described at its Center Of Mass (COM). Also this 
COM is located on  with respect to the 
body coordinate attached to the lowest point of the leg. 

The model is considered to walk on a ramp of angle 
 passively, just under the action of gravity. According 

to Figure 1(b), it can be totally identified by four 
degrees of freedom (DOF) with respect to the vertical 
fixed frame (XYZ). Three DOFs express yaw-roll-
pitch angles of the stance leg i.e. [  respectively, 
while one additional DOF, ,  indicates the relative 
pitch angle of swing leg with respect to the stance leg. 
Therefore, the generalized coordinate vector of the 
model can be totally expressed by 

(1)   

Note that the translation of the model is just a 
dependent motion relying on the no slip assumption for 
the rolling on the stance foot (some non-holonomic 
constraints). For simplicity in results comparison, we 
tried to take the same parameters as [4], with the 
exception that our variable angles are measured with 
respect to the vertical fixed frame (XYZ) whose Z-axis 
is aligned vertically according to the gravity direction, 
rather than the normal fixed frame (XnYnZn) whose Z-
axis is normal to the ramp. It is essential for later 
general analysis of the model in terms of 3D turning, 
especially for the case of infinite or continuous one. 

Because our 3D model has a finite hip width, each 
complete stride consists of two subsequent right and 
left steps at least. Each step by itself is also composed 
of two phases of motion described as follows. 

Single support or continuous phase: In the 
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beginning of each step, the model is supported and  

 

Figure 1: The 3D compass like biped model with finite hip width & arc foot. (a) Parameters definition, (b) DOFs definition 

rolled around the one leg (stance leg), while the other 
leg is moved freely (swing leg). Dynamics of this 
phase has a continuous nature and can be determined 
via a constrained Lagrangian method for instance. 

Double support or collision phase: Once the swing 
foot reaches the ground, the next stage is happened. It 
is assumed that this phase is an instantaneous perfectly 
plastic collision. The transition rule between two sets 
of generalized coordinate rates -immediately before 
and immediately after collision- can be determined 
straightforward via the method mentioned in [18]. 
Moreover a resetting rule is needed to relabel stance 
and swing feet variables conversely at the end of each 
step. Combination of two rules above gives a general 
map of this phase.  

The details of the equations of motion are 
presented in Appendix. In conclusion, the model is a 
hybrid one that can be integrated numerically for each 
step and expressed in the state form as below 

(2) 
 

The vector  indicates the state vector of the system. 
The switching surface  represents a hyper plane in the 
state space and implies the collision condition in 
reality (for more details, please refer to appendix) 

One of the prevalent method for finding periodic 
gaits of such hybrid system is the method of Poincare´ 

map [10]. A Partial Poincare map can be defined by a 
map , that relates the states of the system just after 
a collision , , to just after the next one , , 
namely 

(3)  

Consequently, a (complete-stride) Poincare map is 
a composition of the two partial maps above, in 
relation to two subsequent right and left steps, and can 
be expressed by  as 

(4)  

Any fixed point of this map, that is any roots of 
, corresponds to a periodic motion or limit 

cycle of the system. At this situation, the state of the 
system returns to its initial value after two successive 
steps and continues so on. Therefore to find the 
periodic motions, the following equation can be solved 
numerically  

(5)  

Also regarding stability evaluation, if the Jacobian 
of the map in the neighbourhood of a fixed point has 
eigenvalues inside the unit circle, we conclude that it 
is an asymptotically stable fixed point representing a 
stable periodic motion. 

3.   Passive Straight Walking 

For instance, the parameters of the model are 
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considered as Table 1. In order to simplify the 
comparison and generalize the results, all parameters 
are presented in their dimensionless form using the 

basic parameters of the leg i.e. length , mass , and 
time . 

Table 1: Parameters used for simulation (non-dimensionalized) 

         

0.1236 0.3624 0 0.6969 0.3137 0.1982 0.0186 0.1802 0.0071 0.0023 0.0573

The walker is considered on a ramp of angle 
. Solving Eq. (5) using a numerical 

optimization method, one can find a fixed point 
corresponding to a passive 3D straight walking as 
below 

(
6
) 

that is represented just after collision of the left foot. 

The velocity values are written non-dimensional in 
accordance with the non-dimensional time   
. The simulation results over a gait cycle or one stride 
of this periodic motion are demonstrated through 
Figure 2 to Figure 5. Also, the Jacobian analysis of 
Poincare map about this fixed point confirms the 
asymptotical stability of its periodic motion.  As can 
be seen in Table 2, the maximum eigenvalue of this 
case is less than unity, i.e.  .

Figure 2: Stick diagram over a gait cycle or stride (two steps) for passive 3D straight walking. X, Y and Z are represented non-
dimensional in terms of the leg length, , of the walker.

4.   Passive Curved Walking or Turning 

Here, we focus on another type of motion which is the 
final goal of the current study, namely passive curved 
walking or turning. Roughly speaking, we show that 
this kind of motion can be realized when the model 
takes an initial state perturbed than the fixed point of 
previous straight walking; for example, an initial 
heading angle not directed to the steepest decent of 
ramp. At these situations, the walker turns 
incrementally towards the steepest decent of ramp until 
becomes parallel to it and then follows aforementioned 
straight walking. Hence, it can be said that that such 
passive turnings happen in the basin of attraction of the 
passive straight walking. This behavior is evaluated 
more through several simulations as follows.  

Let’s assume a perturbed initial condition as 

(
7
) 

which differs from the aforementioned fixed point in 
terms of the value of heading angle. For instance, in 
the case of , simulation 
results over 80 steps are shown in Figure 6 to Figure 7. 
The walker exhibits a finite passive turning until it 
takes a direction parallel to the steepest descent and 
walks straightly on the ramp again. Intuitively, it can 
be said that an initial heading angle other than , 
induces a lean angle asymmetry with respect to the 

-0.2 0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1
(b): Side view

x

z

-0.2
0

0.2
0.4

0.6

-0.4
-0.2

0
0.2

0

0.2

0.4

0.6

0.8

1

x

(a): 3D view

y

z



Vol. 47, No. 1, June 2016 

29 
 

vertical gravity plane. This asymmetry acts as a mass 
offset and forces the walker to turn passively towards 

the vertical gravity plane

Figure 3: State variables over two steps of passive 3D straight walking. Horizontal axes represent non-dimensional time . 

Figure 4: Phase plots over a gait cycle (two steps) of passive 3D straight walking. 

Figure 5: over two steps of passive 3D straight walking: (a) Time plot of leg angles with respect to absolute vertical axis, i.e.  for 
the stance leg &  for the swing leg; in addition to distance of swing foot with respect to ground, i.e. rc,z. (b) 

phase portrait corresponding each leg 

0 0.5 1 1.5 2

-0.05
0

0.05

0 0.5 1 1.5 2

-0.01
0

0.01

0 0.5 1 1.5 2

0

0.1

0.2

0 0.5 1 1.5 2

3

3.2

3.4

sw

0 0.5 1 1.5 2

-0.2
0

0.2

-d
ot

0 0.5 1 1.5 2
-0.05

0

0.05

-d
ot

0 0.5 1 1.5 2
0

0.2
0.4
0.6
0.8

-d
ot

0 0.5 1 1.5 2

-0.8
-0.6
-0.4
-0.2

0

sw
-d

ot

-0.05 0 0.05

-0.2

0

0.2

-d
ot

-0.01 0 0.01
-0.05

0

0.05

-d
ot

0 0.1 0.2
0

0.2

0.4

0.6

0.8

-d
ot

3 3.2 3.4

-0.8

-0.6

-0.4

-0.2

0

sw

sw
-d

ot

0 0.5 1 1.5 2

-0.2

-0.1

0

0.1

0.2

(a)

Le
g 

an
gl

e

 

 

ns
rc,z

-10 -5 0 5 10

-50

0

50

*

Leg angle (deg)
(b)

Le
g 

an
gu

la
r v

el
oc

ity
 *

 1
80

/



M. R. Sabaapour 

30 
 

Table 2: Eigenvectors and eigenvalues of Jacobian matrix about the mentioned fixed point related to 3D straight walking 

 Mode I Mode II Mode III Mode IV Mode V 

 0.0523 -0.0772 +- 0.0556i 0.0953 -+ 0.1768i 0.1670 -+ 0.3858i 0.0246 

 0.0115 0.0253 -+ 0.0321i 0.1410 +- 0.0216i 0.1402 +- 0.0004i -0.0506 

 -0.189 0.1605 -+ 0.1378i 0.2613 +- 0.0568i 0.2462 +- 0.0455i -0.0985 

 0.1574 -0.2549 +- 0.1890i -0.1584 -+ 0.0165i -0.1447 -+ 0.0086i 0.0539 

 0.2229 0.2754 -+ 0.0010i 0.2807 +- 0.0778i 0.2791 +- 0.1032i -0.2896 

 0.0883 -0.0063 -+ 0.0211i 0.0565 +- 0.0265i 0.0582 +- 0.0146i -0.053 

 0.6449 0.0974 -+ 0.0929i 0.3689 -+ 0.0119i 0.3338 -+ 0.0354i -0.4242 

 0.6807 0.8657 +- 0.0000i 0.7858 +- 0.0000i 0.7858 +- 0.0000i -0.8471 

 -0.0000+0.0000i -0.2031 + 0.4490i 0.5344 + 0.4005i 0.6589 + 0.3000i 0.0504+0.0000i 

 0.0000 0.4928 0.6678 0.7240 0.0504 

Figure 6: Foot contact and COM position (shown by ‘.’ and ‘o’ at every step beginning respectively) during a passive turning 
induced by a perturbed heading angle  .  X, Y and Z are represented non-dimensional in terms of the leg length, , of the 

walker.

Furthermore, different passive turnings caused by 
different initial heading angles are compared together 
in Figure 8. Note that 3D straight walking is shown as 

case I for comparison. Clearly more disturbed initial 
heading angle yields more finite passive turning.

Figure 7: phase plots of a passive turning ( ). Initial points are specified by ‘*’. 
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Figure 8: Comparison of COM positions for different initial heading angle resulting different passive turnings. 
. X, Y and Z are represented non-dimensional in terms of the leg length, .

5.   Discussion 

Although the turning motion discussed in this paper 
could be viewed as a transient phase of a system with 
stable  

behavior, what happens in reality is a kind of non-
straight (curved) walking. This give us an inspiration 
that If we aim at designing an active walking system 
capable of following curved paths according to the 
behavior of the passive mechanism, it is sufficient to 
enter the active stable system into a virtual transient 
phase (still in domain of attraction), something like the 
present one. Moreover, it is deduced from the current 
discussion that if the ramp is not constantly 
unidirectional, the transient phase could continuously 
extend. That is, we could construct a system which 
forces the passive walker to follow a predefined 
arbitrary curve. For example, to force the passive 
walker to follow a circular path, the direction of the 
ramp should change in such a way accordingly. Having 
constructed such passive walker, the approach to deal 
with an active robot will be straightforward. 

To give more insight into the characteristics of 
such 3D passive motions, the effects of some model 
parameters variation are examined here. To this end, 
the parameters of the model introduced before in Table 
1 are assumed again as a basis and specified here by 
subscript ‘2’. For instance, the effect of hip width is 
examined through Table 3 and Figure 9. In another 
world, different values of hip width are considered for 
the model whereas all other parameters are held 
unchanged. The related fixed points and maximum 
eigenvalues for each case are illustrated in Table 3. 
Referring to the maximum eigenvalues, it can be said 
that increasing hip width, firstly improves 
asymptotical stability of 3D passive walking, although 
this stability is violated later. Remember that the 
asymptotical stability of a periodic motion increases as 
the maximum eigenvalue is kept away from unity more 
in magnitude. Furthermore, a perturbed motion started 
from a perturbed initial heading angle of 

 is simulated for each case and compared in 
Figure 9. As we expected, all of them represent a same 
value of passive turning, but with different oscillatory 
behaviors in accordance with their different stability 
characteristics specified before.

Table 3: Different fixed points of 3D passive straight walking related to different model hip width (shown up to order 10-5) 

 

 0.10110 0.00149 0.08913 3.43793 0.13168 0.02474 0.47311 0.39098 0.9596

 0.09907 -0.00232 -0.09031 3.43583 -0.13050 -0.02909 0.47124 -0.39256 0.7240

 0.09694 -0.00306 -0.09138 3.43329 -0.12924 -0.03309 0.46887 -0.39384 0.7949

Also a similar comparison about the effect of arc 
foot can be performed as illustrated in Table 4 and 

Figure 10. However, its effect on the stability is similar 
to that of the hip width.
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Figure 9: Comparison of different passive turnings related to different model hip width ( ), but a same initial 
heading angle ( ).  X and Y are represented non-dimensional in terms of the leg length, . 

Table 4: Different fixed points of 3D passive straight walking related to different model arc foot (shown up to order 10-5) 

 

 0.08705 -0.00278 -0.07235 3.39952 -0.10426 -0.03569 0.43501 -0.31109 0.8227

 0.09907 -0.00232 -0.09031 3.43583 -0.13050 -0.02909 0.47124 -0.39256 0.7240 

 0.10446 -0.00209 -0.09838 3.45215 -0.14158 -0.02615 0.48824 -0.42731 0.9024 

Figure 10: Comparison of different passive turnings related 
to different model arc foot ( ), but a same 

initial heading angle ( ) 

6.   Conclusion 

This paper investigated the concept of passive straight 
walking in three-dimensional space and introduced an 
extension, namely “passive curved walking or 
turning”. To this end, a general 3D compass-gait biped 
model with arc feet was considered. A new extendable 
dynamic model was proposed with respect to a general 
vertical fixed frame. Using this model, 3D passive 
straight walking was evaluated more precisely as well 
as a new category of passive maneuvers namely 
passive turning was studied. It was shown that the 
value of passive turning is strictly concerned to the 
value of initial perturbed condition from passive 
straight walking, especially in terms of heading angle. 
It was highlighted that increasing hip width or foot 
radius firstly increases asymptotical stability, but 

shows instability effects thereafter. Future works 
include exploiting the results of “finite passive 
turning” presented in this work to develop a set of 
“infinite passive turning” motions and consequently an 
efficient, natural-looking steering mechanism. 

7.   Appendix 

The details of equations of motion are presented here. 
Since the motion is governed by some non-holonomic 
constraints, three additional generalized coordinates 
specifying the model translation are also applied such 
that the extended or dependent generalized coordinate 
vector could be considered as 

(A1)  

where [  represents the position vector of 
stance foot arc center with respect to the global vertical 
fixed frame. Now we can apply the Lagrange 
multipliers technique as follows. 

7.1.   Single support phase: 

Applying the Lagrange equations, one can derive 
equations of motion in the standard form below 

(A2)  

where represents the vector of generalized 
external forces acting on the robot,  indicates three 
unknown Lagrange multipliers related to three 
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physically meaningful forces at the contact point, and 
also matrix   is defined as  , in 
witch  denotes the position vector of the contact point 
between stance foot and the ground. Moreover, 
constraint equations for no slip rolling of stance foot 
can be expressed as 

(A3)  

The seven equations in Eq. (A2) and the three 
constraint equations above can be used together to 
solve for the ten unknowns, i.e.  and . To do so, one 
can differentiate constraint equations and apply an 
augmented form as 

(A4)  

Once this is solved numerically,  and 
consequently  will be in hand. It should 
be reminded that the equations of motion for this stage 
are finally interpreted in the state space form as 

(A5)  

7.2.   Double support or collision phase: 

For the collision phase, the procedure mentioned in 
[18] can be used. Assuming equations of motion 
similar to Eq. (A1) and then integrating them over the 
duration of collision (  to ), one can obtain 

(A6)  

where  represents generalized impacts acting on the 
robot,  indicates three unknown Lagrange 
multipliers related to three physically impacts at the 
impact point, and also matrix  is defined as 

 , in which  denotes the position 
vector of the contact point on the swing foot. For the 
instant immediately after the collision, we also deal 
with no-slip constraint for the impact point in the form 

(A7)  

So differentiating Equation above and combining with 
previous Equation, one can obtain 

(A8)  

Solving this equation, the unknowns such as  can be 
found readily. It is known that the stance and swing 
legs must be relabeled at the end of each step. For this 
purpose,  (and subsequently ) are reset by way of 

(A9)  

reminding the perfectly plastic assumption for the 
collision. In addition, the sign of parameters , ,  
and  must be reversed accordingly at the end of each 
step. In conclusion, a general nonlinear map between 
the states of this stage can be obtained by combining 
numerically two set of rules above and interpreted as 

(A10) 
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