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Abstract 

The main objective of this article is to optimize the walking pattern of a 2D humanoid robot with heel-off 

and toe-off motions in order to minimize the energy consumption and maximize the stability margin. To 

this end, at first, a gait planning method is introduced based on the ankle and hip joint position trajectories. 

Then, using these trajectories and the inverse kinematics, the position trajectories of the knee joint and all 

joint angles are determined. Afterwards, the dynamic model of the 2D humanoid robot is derived using 

Lagrange and Kane methods. The dynamic model equations are obtained for different phases of motion 

and the unknowns, including ground reactions, and joint torques are also calculated. Next, the derived 

dynamic model is verified by comparing the position of the ZMP point based on the robot kinematics and 

the ground reactions. Then, the obtained trajectories have been optimized to determine the optimal heel-off 

and toe-off angles using a genetic algorithm (GA) by two different objective functions: minimum energy 

consumption and maximum stability margin. After optimization, a parametric analysis has been adopted to 

inspect the effects of heel-off and toe-off motions on the selected objective functions. Finally, it is 

concluded that to have more stable walking in high velocities, small angles of heel-off and toe-off motions 

are needed. Consequently, in low velocities, walking patterns with large angles of heel-off and toe-off 

motions are more stable. On the contrary, large heel-off and toe-off motions lead to less energy 

consumption in high velocities, while small heel-off and toe-off motions are suitable for low velocities. 

Another important point is that for the maximum stability optimization, compared to minimum energy 

consumption optimization, more heel-off and toe-off motions are needed. 

Keywords: dynamic model, gait optimization, heel-off and toe-off motions, humanoid robot. 

 

1. Introduction 

In robotic studies, one of the most challenging

 

problems, which is the main goal of the design 

and fabricating a humanoid robot, is achieving 

a fast, human-like, and stable walking in 

                                                 
 Corresponding Author E-mail: aykoma@ut.ac.ir 

different environments. To this end, some 

preliminary steps are needed. Normally, the 

first step is the gait planning. Developing a 

walking pattern, in spite of all constraints and 

necessities, gives us a wide variety of choices. 

To choose the best and the optimum gait 
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among all choices, some criteria are needed. 

Some of them are dynamic-based performance 

criteria, e.g., joint actuating torques [1] and 

energy consumption [2]. 

There are two major methods for walking gait 

planning of a humanoid robot: online and offline. 

In online path planning, all computations are 

done during the robot motion. This will increase 

calculation costs, which is an important problem. 

Necessarily, some simplified models of robots, 

such as inverted pendulum model [3], cart table 

model [4], two masses model [5] and three 

masses model [6] are used.  

In offline path planning, all walking patterns, 

which have been calculated in advance, are 

stored in a memory card. Since walking pattern 

generation is an offline process, a full dynamic 

model could be used, which is one of the most 

advantages of this method [7]. It should be noted 

that both online and offline methods need an 

online control algorithm to reject the disturbance 

while walking. 

Almost all the optimization criteria, such as 

energy consumption, maximum torque, 

maximum power, speed, stability, etc. are 

directly or indirectly related to the robot 

dynamic model [2, 8-12]. On the other hand, 

using an appropriate and accurate dynamic 

model leads to an improved hardware 

selection. An identical utilization could be seen 

in Carbone and Buschmann studies [13, 14]. 

The dynamic model may be obtained by 

different methods. Some of the recent studies 

are based on Lagrange or Kane methods [15-

21]. Others have used Newton-Euler approach, 

demanding lower computational load, but 

calculate all components of joint reacting 

forces and moments, which is not needed here 

[13, 22-24]. 

To analyze the stability of a humanoid robot, 

different criteria are suggested. ZMP
1
 is the 

mostly used stability criterion in humanoid robot 

which will be employed in this paper. This 

criterion was first introduced by Vukobratovicin 

in 1969 [25]. Other stability criteria are FRI [26], 

MFRI [27], and CWC [28]. 

In this paper, first an offline path planning 

algorithm is introduced to calculate the 

trajectories of joint angles. Then, the robot 

dynamic equations are derived using two 

                                                 
1. Zero Moment Point 

analytical approaches: Kane and Lagrange 

methods. These two approaches are used to 

develop a dynamic model for different walking 

phases. Finally, two verifications are done; First, 

by comparing the Kane and Lagrange methods’ 

results and, then, by adopting a stability criterion. 

In other words, the position of ZMP point is 

calculated by two different methods and the 

results are compared to verify the dynamic 

model. In the last section, the optimization 

process is done using GA. Some parameters are 

selected as the optimization parameters and two 

different objective functions are used to be 

optimized. At the end, the results of these two 

optimizations are compared. 

2. Model Features and Gait Planning 

In this section, the procedure of gait planning 

of a 2D humanoid robot is described. The 

modelled Robot is a 2D humanoid Robot with 

7 links and 6 DOFs. Each leg has 3 DOFs. 

Each hip, knee, and ankle joints have 1 DOF. 

The schematic of this 2D humanoid robot has 

been shown in Fig 1. 

The parameters of the studied model, 

representing the characteristics of the robot, are 

shown in Table 1 and Table 2. It should be 

noted that the moment of inertia of each link is 

calculated with respect to its center of mass. 

The values of these parameters are according 

to SURENA III, a humanoid robot designed 

and fabricated at the Center of Advanced 

Systems and Technologies (CAST), located at 

the University of Tehran. 

 

Fig. 1. Schematic of a biped robot with 7 links and 6 

DOFs 

ure 
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Table 1. Length of the links 

Parameter Length (m) 

Ltr 0.630 

Lth 0.360 

Lsh 0.360 

Lan 0.093 

Laf 0.099 

Lab 0.163 

Table 2. Mass and moment of inertia of the links 

Moment of 

Inertia (Kg.m
2
) 

Mass(Kg) Link 

0.251 20.15 Trunk 

0.054 4.43 Thigh 

0.063 3.49 Shank 

0.029 3.25 Foot 

 Fig. 2. Walking phases 

Table 3. Walking pattern parameters 

Parameters Values Dimension Description 

Td 0.4Tc Second DSP time period 

Ts Tc-Td Second SSP time period 

Tsm 0.4Ts Second Middle time in SSP 

Tdm1 0.3Td Second First middle time in DSP 

Tdm2 0.7Td Second Second middle time in DSP 

Tc Dc/V Second Walking step period 

qff 10 Degree Orientation of heel at the start of DSP (heel-off angle) 

qfm 0 Degree 
Orientation of swing foot with respect to ground at 

Tsm 

qfb 10 Degree Orientation of toe at the end of DSP (toe-off angle) 

xed 0.15Dc Meter 
Distance between hip and support ankle at the end of 

SSP 

xsd 0.1Dc Meter 
Distance between hip and support ankle at the start of 

SSP 

Zh-min 0.87(Lan+Lsh+Lth) Meter Minimum hip height 

Zh-max 0.9(Lan+Lsh+Lth) Meter Maximum hip height 

Dc 0.4 Meter Step length 

 

 

The motion of the robot is consisted of two 

phases: single support (SS) and double support 

(DS), which are illustrated in Figure 2. 

Different walking pattern parameters are 

introduced in Table 3. 

In this section, path planning for the gait 

with heel-off and toe-off motions is presented. 

The first step is to generate the position 
trajectory of ankle and hip joints. Some notable 

hints should be considered in this step. As the 

robot moves, the feet will not penetrate the 

level ground; also the generated spline curves 

should satisfy the continuity of speed and 

acceleration. Therefore, these steps will be 

done according to the constraints which exist 

for the robot motion. Finally, the position of the 

knee joint and all joint angles are calculated 

using inverse kinematics. 
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2.1. Ankle Joint Trajectories 

At this stage, the orientation of the foot, with 

respect to the ground and the position of ankle 

in X and Z directions, are calculated. The 

orientations of foot (qf) must have these 

constraints in a walking cycle: 

2

1

0 0

 

20

dm

fb d

d smfm

cff

c dm c

t T

q t T

t T Tq

t Tq

T T t T


 

 


 
 


   




 (1) 

The position of the ankle joint in X 

direction ( a) must have these constraints in a 

walking cycle: 

 

   

2

1

0 0

(1 cos ) sin

 

2 (cos 1)

22

dm

af f an f d

f am d sm

cc ab f ab f

c dm cc

t T

L q L q t T

q x t T T
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   
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   
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   



 (2) 

In Equation (2) Xam is considered to be Dc/2. 

The constraints assumed is consistent with 

heel-off and toe-off motions. If the heel-off 

motion is omitted, then qfb=0 and Tdm2=0 . In 

the same way, if the toe-off motion is omitted, 

then  qff=0 and  Tdm1=0 . If the toe-off and 

heel-off motions are omitted simultaneously, 

then both cases occur together. 

Also, the constraints for the position of the 

ankle joint in Z direction (za) are considered as 

follows: 

 

   

2

1

0

sin (1 cos )

 

2

an dm

af f an f d

an am d sm

cab f an f

c dm can

L t T

L q L q t T

L z t T T

t TL sin q L cos q

T T t TL




 
   


  
  
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
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 (3) 

In Equation (3), zam is a gait parameter and 

is considered to be equal to 0.1 meter. 

Knowing these constraints and using 

appropriate spline curves, ankle joint trajectories 

could be determined. 

2.2. Hip Joint Trajectories 

To plan hip joint trajectories, position of hip in 

X and Z directions are needed same as before. 

For the sake of simplicity, the trunk is 

supposed to be vertical during motion. 

For the position of hip joint in X direction 

(xh), the following constraints are assumed: 

0

2

2 2

ed

c sd d

h c ed c

c sd c d

c ed c

x t

D x t T

x D x t T

D x t T T

D x t T



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  


  
   

  



 
(4) 

Also, for the position of hip in Z direction 

(zh), the following constraints are considered: 

x 

 xa 

za 
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2
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 (5) 

2.3. Inverse Kinematics 

The obtained positions of the ankle and hip 

joints are utilized to calculate knee joint 

position. According to Fig 3, the inverse 

kinematics leads to the following equations: 

   

   

2 2 2

2 2 2

k h k h th

k a k a sh

x x z z L

x x z z L

    


   

 (6) 

 

Fig. 3. Derivation of inverse kinematics formulation 

These sets of equations have more than one 

answer, but the desired answer is determined 

according to the fact that the knee can only 

bend in one direction. 

The joint angles are still unknown. The 

angle of each joint relative to the previous link 

can be calculated using the following relations: 

1

1

tan

tan

k h
tr h

k h

a h
tr h k

a h

tr h k a f

x x
q q

z z

x x
q q q

z z

q q q q q





  
   

 


 
    

 
    




 (7) 

qtr and qf are the orientations of trunk and 

foot and  qh, , qh and  qa  are the hip, knee and 

ankle joint angles respectively. 

Obtained position trajectories of all joints 

are shown in Fig 4 and 5. Also the joint 

angles calculated using inverse kinematics are 

shown in Fig 6. 
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Fig. 4. The positions of joints in Z direction  
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Fig. 5. The positions of joints in X direction  
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3. Dynamic Modelling 

Here, the dynamic model of a 2D humanoid 

robot is obtained using two different methods: 

Lagrange and Kane. To this end, upper-body of 

the robot is assumed to be fixed, and the whole 

upper-body is modelled as a single rigid body. 

3.1. Dynamic model  

The vector of generalized coordinate system 

describing the motion of the robot is defined as: 

                         
T

hR kR aR hl kl al h h hq q q q q q q x z q     
(8) 

The general form of the dynamic model of 

the robot is defined as follows: 

     9 9 9 1 9 1,M q q C q q G q Q       
(9) 

M(q) shows the inertia matrix,   ,C q q  

denotes the Coriolis and centrifugal effects, and 

 G q represents the effects of gravitational 

forces. 

The dynamic model based on Lagrange 

method is calculated according to the following 

equations: 

6 6
2 2 2

0 0

6

0

1 1
( )

2 2
i i i

i i

i i

i

d T T U
Q

dt q q q

T m x z J q

U m gz

 


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   

   

  



 



 (10) 

and the Kane method is as follows: 

 
6 6

0 0

( z ) ( )

i

i
i i i i i

ii i

x

q q
m g J Q

z
x q

q

q
 

 
     
  
 
 

   (11) 

Equation (9) could be obtained by 

simplifying each of the Equations (10) or (11). 

The right side of the Equation (9), which is 

the same as that of the Equations (10) and (11), 

changes with variations in the phase of the 

motion. The ground reaction forces, which are 

a part of the Q also change in different phases. 

These changes and the relation of Q and the 

ground forces are described in Table 4. 

In Table 4, J is the Jacobian matrix of foot 

in the global coordinate system. Also , which 

represents joint torques, is stated as: 

                   
T

hR kR aR hL kL aL           (12) 

In order to complete the procedure, by 

substituting the term Q for each phase in 

Equation (9), the dynamic model of a 2D 

humanoid robot with heel-off and toe-off 

motion will be obtained, which is represented 

in the last column of  Table 4.  

To solve the dynamic model equations, 

firstly, the known and unknown parameters of 

the dynamic model equation should be 

specified. Based on the result of gait planning 

section, the left side of the Equation (9), which 

is a function of  q  ,  q  and, q , was known. 

The unknown parameters are joint torques and 

ground reactions, which represented as 
τ

F

 
 
 

 in 

dynamic model equations. After substituting 

the known parameters in dynamic model 

Equations (9) and change the name of the 

unknown matrix to, X the general form of the 

dynamic model for each phase can be written 

as follows: 

     ,B M q q V q q G q

AX B

  


 (13) 

As represented in Table 4, the number of 

unknowns in DS phase is more than SS phase. 

Therefore, there are infinite numbers of 

answers for inverse dynamic problems in DS 

phase. All these infinite answers can be written 

in the following form: 

 † †X A B I A A k    (14) 

†A represents Moore-Penrose pseudo-

inverse of matrix A, I is identity  matrix, and k
 is an arbitrary constant vector. 

Two answers, among these infinite answers 

are near to our goal: 

  †X A B  , in which norm of 

 

X is 

smaller than the norm of any other 

solution. 

 X, which is calculated based on Gaussian 

elimination. It has the fewest possible 

nonzero components. 

The second answer yields to some zero 

ground reaction components which is not 

congruous with reality. Therefore, the first 

answer is chosen for solving inverse dynamic 

problem in DS. 

 

where 
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Table 4. Walking pattern parameters 

Motion Phase Schema Ground Reaction & Q Dynamic Model 

SS with Right 

Sole 

 

r r r

T

sr x z y

T

sr 9 9
sr 9 1

F F ,F ,M

τ
Q B J

F


   

 
    

 

 

     9 9 9 1 9 1

T
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M q q V q,q G q

τ
B J
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  
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

  

 
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r r r
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T
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T
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T T

sr sl sr9 12
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Heel 

 

r r r
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T

sr x z y

T

hl x z x z
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Sole 
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DS with Right 

Toe and Left 

Heel 

 

r r r r
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T
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T T
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T T
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M q q V q,q G q

τ

B J J F
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



  
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  

 

 
Based on obtained equations of dynamic 

model, the unknown joint torques and ground 

reactions are calculated. In Fig  7 and 8, 

the calculated torques and ground reactions 

using the dynamic model are shown. 

3.2. Verification of Dynamic Model 

In order to verify the obtained dynamic model, 

two different methods are adopted: the first one 

computes the left side of the equation (9) with 

both Kane and Lagrange methods and 

compares the results of these two methods. 

Both obtained results are the same; therefore, 

the obtained dynamic model is validated in one 

way. 

The second method is based on the position 

of ZMP point calculated by two different 

approaches. The first approach is based on the 

kinematics of the robot as follows: 

 

 
1 1 1

1

i i i i i i
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n n n
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i i i
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g z m I
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m g
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 (15) 

ures 
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Fig. 7. Joint torques calculated by obtained dynamic model 
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 Fig. 8. a) Ground reaction Fx. b) Ground reaction  Fz . c) Ground reaction  

ZMP position may as well  be obtained 

using ground reactions. In this case, the 

position of ZMP point in X direction is 

obtained using the following relation: 

zR soleR zL soleL yR yL

zmp
zR zL

F X F X M M
x

F F

  



 (16) 

The ZMP position calculated using the 

kinematics of robot and ground reaction is 

similar as shown in Fig 9. 
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Fig. 9. The ZMP based on ground reaction and the 

ZMP based on kinematics 
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4. Optimization  

The main goal of this article is to obtain the 

optimized heel-off and toe-off angles. To this 

end, some optimization parameters should be 

determined first. Afterwards, objective functions 

should be defined which depend on the 

optimization parameters. Here, the objective is to 

optimize the energy consumption and the 

stability of the robot. At the end, the objective 

functions will be optimized using GA. 

4.1. Optimization Parameters 

As mentioned, the first step is to determine the 

optimization parameters. The optimum value 

of these parameters will be determined during 

the optimization process. The candidate 

parameters for optimization are shown in Table 

5. These parameters have already been 

introduced in Table 3. 

Table 5. Optimization parameters 

# Optimization parameters 

1 Dc 

2 Xed 

3 sdX  

4 h minZ   

5 h maxZ   

6 fbq  

7 ffq  

8 fmq  

4.2. Objective Functions 

Setting appropriate objective functions is one 

of the most challenging and important parts of 

the optimization process. Here, two main 

objective functions are introduced: 

1. The first one calculates energy 

consumption per meter and is defined as 

follows: 

 
2

0

1

2
 

cT

a a k k h h

c

J

q q q dt
D

  




 
 

(17) 

In Equation (17) , hτ , kτ , and aτ  show hip, 

knee, and ankle joint torques and hq , k q , and 

aq  show the velocity of these joints 

respectively. 

According to Equation (17), the value of J 

is always negative. As the energy consumption 

decreases, the value of J becomes smaller. 

2. The second objective function defines the 

stability and could be defined as follows: 

 1000 zmpJ min x SP     (18) 

In this function, minimum distances 

between the ZMP point and the support 

polygon [29] borders are calculated in 

millimeters. As the Equation (18) shows, if the 

motion is stable, then the ZMP point is inside 

the support polygon and the value of J 

becomes negative. Obviously, as the value of J 

becomes smaller, the stability increases. 

These objective functions may lead to some 

undesired cases, including “singularity”, “foot 

impact” and “power limit”. To avoid these, 

some penalty functions are used. “Singularity” 

happens when the knee joint angle becomes 

zero. To avoid near singularity condition, knee 

joint must not become less than  5 . “Foot 

impact” occurs when the Z component of any 

point of foot becomes less than zero (ground 

level). Also, “power limit” means that the 

required power of joints exceed the maximum 

limit of actuators. These limitations translate 

into some functions called penalty functions. In 

this way, when each of these cases occurs, the 

penalty functions generate a large positive 

value as the goal function of GA algorithm. 

5. Results  

After lots of trial and errors, the GA algorithm 

parameters are chosen as follows: 

Population Size 100,Crossover Fraction

0.8,Mutation Fraction 0.2

 


 (19) 

In Fig 10a, the optimized energy 

consumption for both optimizations are shown. 

The blue curve shows the optimized energy 

consumption for minimum energy 

consumption optimization and the red one 

shows the same results for the maximum 

stability optimization. 

In Fig 10b, the optimized stability for 

both optimizations are shown. Same as Fig 10a, 

one of  the curves  shows  the optimized 

stability for minimum energy consumption 
optimization, while the other shows the same 

results for maximum stability optimization. 
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In Fig 10c and 10d, the optimized 

heel-off and toe-off angles for both 

optimizations are illustrated, respectively. 

Moreover, in Figure 11, the optimized values 

of the other optimization parameters are 

depicted. 
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Fig. 10. a) The energy consumption of minimum energy consumption and maximum stability optimizations. b) The 

stability of minimum energy consumption and maximum stability optimizations. c) The toe-off angle with respect to 

velocity for two different optimizations. d) The heel-off angle with respect to velocity for two different optimizations. 
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Fig. 11. a) The stride length with respect to velocity for two different optimizations. b) The fmq  with respect to 
velocity for two different optimizations. c) The edX with respect to velocity for two different optimizations. d) The 

 with respect to velocity for two different optimizations. e) The 
h maxZ with respect to velocity for two different 

optimizations. f) The h minZ  with respect to velocity for two different optimizations. 
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In addition to optimization results, a 

parametric analysis has been done to inspect 

the effects of heel-off and toe-off motions on 

both objective functions more accurately. 

Therefore, two surfaces have been depicted for 

this inspection. Fig 12 and 13 show the 

results for the velocity of 1km/h. In Fig

 and 13, the energy consumption and stability 

margin for different heel-off and toe-off angles 

are shown, respectively. The optimum result 

for energy consumption objective function at 

this velocity is as follows: 

Min Energy Consumption

7 ,  7ff fbq q 



 
 (20) 

Fig. 12. Effects of  
ffq  and 

fbq  on the optimization of energy consumption 

Fig. 13. Effects of  ffq  and fbq  on the optimization of stability 

6. Discussion 

As it was shown in Fig  10a, the energy 

consumption for minimum energy consumption 

optimization is less than the energy consumption 

for maximum stability optimization in all 

velocities and there is a dramatic difference 

between these two curves.  

In Fig 10b, the stability for maximum 

stability optimization is more than the stability 

for minimum energy consumption optimization 

in all velocities. Like the previous graph, there 

is a dramatic difference between the two 

curves. These two graphs show that the 

adopted objective functions minimize their 

objective functions truly.  
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In Fig 10c and 10d, qff and qfb are 

represented with respect to velocity for two 

different optimizations, respectively. In both 

figures, the absolute value of  qff  and  qfb for 

the minimum energy consumption optimization 

is less than the maximum stability 

optimization. Therefore, for the maximum 

stability optimization, larger heel-off and toe-

off angles are needed compared to the 

minimum energy consumption optimization. 

To interpret this behavior, it could be said that, 

the joints must prevent from dramatic changes 

of angle in order to consume less energy. 

As represented in Fig 10c and 10d, as 

the velocity increases, the difference between 

two curves (minimum energy consumption and 

maximum stability) is decreased. That is 

because in high velocities there is a small 

number of feasible motions according to 

optimization limits. Therefore, the answers of 

both optimizations become similar and the two 

curves approach each other. 

In Figure 11a-f, the results of other 6 

optimization parameters, which have been 

introduced in Table 5, are depicted. As 

represented in Figure 11a, the step length 

increases with respect to the velocity for the 

minimum energy consumption optimization. 

However, the value of the step length does not 

have any considerable changes for the 

maximum stability optimization. Also, it could 

be observed that the optimum step length is 

small in low velocities for the minimum energy 

consumption optimization. 

Some notable results are deduced from 

Figure 11f. As depicted in Figure 11f, the value 

of h minZ   for minimum energy consumption 

optimization is always more than the value of 

this parameter for maximum stability 

optimization. On the other hand, large values 

for h maxZ   and h minZ   

 it could 
be concluded that, to consume less energy, the 

robot should walk with stretched knees. 

As represented in Fig 12 and 13, there 

exists an optimum value for heel-off and toe-

off angles which minimizes the energy 

consumption in each velocity. Another 

important conclusion results from Fig 13 

which shows the trend of qff  and qfb for 

different stability margins. As depicted in Fig

13, the stability increases by increasing qfb  and 

it approximately does not change by qff. The 

cause of this behavior returns to the fact that 

the robot tends to collapse backward, so the 

toe-off angle (qfb ) plays an important role in 

the stability of robot. It should be noted that, if 

the heel-off angle increases more than human-

like walking, then the walking pattern would 

not be natural and the energy consumption 

would increase abnormally. Hence, large toe-

off angle is not desirable and should be 

avoided. As depicted in Fig 13, the robot will 

lose its stability if the heel-off angle becomes 

less than 10 . 

In brief, to access stable motions in high 

velocities, less heel-off and toe-off motions are 

needed. Consequently, more heel-off and toe-

off motions are needed for stable motions in 

low velocities. On the contrary, for minimum 

energy consumption optimization, large heel-

off and toe-off angles lead to less energy 

consumption in high velocities and vice versa. 

7. Conclusion 

In this paper, the effects of heel-off and toe-off 

motions were studied on the motion of a 2D 

humanoid robot through the presented 

optimizations and parametric analysis. To this 

end, firstly a gait planning was done. Then, the 

dynamic model of the robot was derived using 

the Kane and Lagrange methods and it was 

verified by two different approaches. Finally, 

the optimization procedure using GA was done 

with two different objective functions which 

minimizes the energy consumption and 

maximizes the stability. According to the 

results, to have a more stable motion in low 

velocities, large heel-off and toe-off angles are 

needed. In high velocities, there exist a few 

numbers of feasible motions, therefore the 

results of both optimizations approach each 

other. On the other hand, to consume less 

energy in high velocities, large heel-off and 

toe-off angles are needed. The parametric 

analysis also inspected the effects of both heel-

off and toe-off motions together on two 

different objective functions and found the 

optimum values for a specified velocity. 
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