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Abstract 

Quadruped robots have unique capabilities for motion over uneven natural environments. This article 

presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics 

control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a 

novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics 

control will be introduced using this model. Next, a dynamically stable condition under sufficient 

friction assumption for the motion of the robot on uneven terrains will be obtained. Satisfaction of this 

condition assures that the robot does not tip over all the support polygon edges. Based on this stability 

condition, a constrained optimization problem is defined to compute a stable and smooth center of 

gravity (COG) path. The main feature of the COG path is that the height of the robot can be adjusted 

to follow the terrain. Then, a path generation algorithm for tip of the swing legs will be developed. 

This smooth path is planned so that any collision with the environment is avoided. Finally, the 

effectiveness of the proposed method will be verified.  

Keywords: constraint elimination method, dynamics modeling, dynamic stability, inverse-dynamics 

control, quadruped robot, uneven terrains. 

 

1. Introduction 

Legged robots have attracted considerable
 
 

attention in recent decades owing to their 

interesting potentials. One of the main 

advantages of these robots is the unique 

characteristics in traversing uneven 

environments and overcoming obstacles while 

wheeled mobile and tracked robots may not be 

able to move in such conditions. Thus, there 

are some complicated issues that are associated 
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with the development of legged robots. The 

challenging problems to achieve a dexterous 

and versatile legged robot are preserving the 

robot balance, the high number of degrees of 

freedom, and the under-actuated nature.  

One of the main issues in the field of legged 

robots is the assurance of stability (balance) for 

motion on even and uneven terrains. For 

instance, a quadruped robot can continue to 

move towards its target as long as the robot 

remains stable. Thus far, many quadruped 

robots have been built [1-3], while only a few 
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of them have acceptable performance. 

However, their performance is still not 

comparable with their biological counterparts. 

The zero-moment point (ZMP) criterion is a 

well-known stability criterion that is used in 

many works to generate a stable motion [4, 5]. 

However, this criterion in its usual form is 

limited to the case where the robot walks on 

even terrains [6-8]. Many attempts have been 

made to propose a stability criterion for motion 

on uneven terrains [9-11]. However, most 

previous studies propose complicated 

algorithms to measure robot stability instead of 

proposing an algorithm in order to generate a 

stable center of gravity (COG) path trajectory. 

The path planning problem of legged robots 

for motion on uneven terrains has been 

investigated by various researchers. In [12], the 

ZMP criterion was employed to plan a stable and 

optimal path for a quadruped robot to walk on 

uneven terrains. In this method, the ZMP 

dynamic equations have been used in the COG 

path generation algorithm. However, the Z-

component of ZMP has been ignored, whereas 

the Z-component of this point is no longer zero in 

motion over uneven terrains. This assumption 

over moderately uneven terrains may lead to 

acceptable results, but this does not guarantee 

robot stability over severely rough terrains. 

Zheng et al proposed the contact wrench sum as a 

dynamic stability criterion on uneven 

terrains[13]. Computational complexity is the 

main drawback of this method. The maximum 

hoop stress (MHS) criterion has been used for 

stability investigation of wheeled mobile robotic 

manipulators [14]. This measure is based on 

stabilizing/ destabilizing moments exerted on the 

main platform which direct the rotational 

behavior, and has been effectively used for 

various wheeled robots. Therefore, one of the 

main concerns of this paper was to develop a 

stability condition for quadruped robots moving 

on uneven terrains. 

The design of a model-based controller for 

a quadruped robot requires having an explicit 

dynamics model. However, deriving an explicit 

dynamics model for legged robots is not a 

simple task as serial robots. This is due to the 

fact that quadruped robots usually have much 

higher number of degrees of freedom. 

Furthermore, such robots are in contact with 

the environment, which introduces some 

restrictive constraints to the dynamics model. 

The conventional methods for deriving the 

dynamics model are Newton-Euler and 

Lagrange methods [15]. However, the 

equations of motion obtained by these methods 

suffer from high computational complexities 

and they are not suitable for real-time 

implementation. Thus, many attempts have 

been made to tackle this problem. Featherstone 

presented the spatial notation which reduces 

the computational complexities of the 

equations of motion [16]. Moosavian et al. 

proposed the explicit dynamics method based 

on Lagrangian formulation to obtain the 

dynamics model for a space robot [17]. In this 

paper, this method will be used to drive the 

dynamics equations of a quadruped robot. 

Having a free-constraint dynamics model is 

required to solve the forward or inverse 

dynamics problems. Actually, contact forces 

are unknown and should be removed from the 

equations by considering the kinematics 

constraints. Consequently, to remove the 

contact forces from the equations of motion, 

the constraint elimination problem is solved. 

The main objective of the proposed methods 

was to derive two independent equations in 

terms of the contact forces and joint torques. 

Mistry et al. presented the orthogonal 

decomposition method to solve the inverse-

dynamics problem without the need to compute 

the contact forces [18]. Aghili proposed a 

linear operator to map the dynamics model into 

a constraint-free space [19]. Righetti et al. 

considered the inverse dynamics problem and 

through the definition of an optimization 

algorithm proposed a solution for this problem 

[20]. In this article, a free-constraint space will 

be defined with its dimension being equal to 

the system degrees of freedom (DOFs) minus 

the number of kinematic constraints. The 

dynamics equations will be mapped into this 

space by an operator which is obtained by 

using the kinematic constraints. 

In this paper, a dynamics model for a 

quadruped robot will first be derived. Then, by 

considering the kinematics constraints, the 

contact forces are eliminated from the 

dynamics equations. Then, an inverse-

dynamics controller is introduced based on 

using the developed dynamics model. A 

stability condition will be developed to ensure 

the robot stability on uneven terrains. Then, a 

path planning algorithm for the center of 
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gravity will be introduced on the basis of the 

defined condition by using a constrained 

optimization algorithm. Finally, a smooth path 

for the tip of the swing legs will be planned. 

The proposed algorithm will be implemented 

on a quadruped by simulation, and the obtained 

results will be discussed. 

2. Dynamics modeling 

In this section, the model of quadruped robot 

will first be introduced. Then, an explicit 

dynamics model will be derived. Finally, the 

constraint elimination method to obtain the 

free-constraint equations of motion will be 

introduced. 

2.1. The model of quadruped robot 

To model a quadruped robot, a rectangular base 

was used as the main body with four legs 

attached to its corners. This robot is shown in 

Figure 2. Each leg consists of two rigid links 

connected to each other with revolute joints. 

The main body has six passive degrees of 

freedom: three translational and three rotational. 

Three degrees of freedom were chosen for each 

leg, in order to increase the workspace of each 

leg and consequently the mobility and kinematic 

reachability of the robot. Thus, each leg has the 

ability to place its foot anywhere in 3D space. 

There are two revolute joints in the hip, one 

along the roll axis and the other along the pitch 

axis and one revolute joint in the knee along the 

pitch axis. Thus, the robot has nine rigid-body 

links with eighteen degrees of freedom. It was 

assumed that the contact between the stance legs 

and the ground occurs at a point. In addition, the 

friction between the stance legs and the ground 

is assumed to be large enough, prohibiting any 

slippage. 

 

Fig. 1. The quadruped robot model and the joint 

angles of each leg 

2.2. Dynamics model 

To obtain full dynamics equations of the robot, 

the explicit dynamics method is employed. On 

the basis of the defined model, the robot 

configuration can be defined as: 

q q q
T

T T

B L
     (1) 

where is the vector of the position 

and orientation of the frame is attached to the 

main body with respect to the world frame. 

Also, q
n

L  denotes the joint angles of all the 

legs. The dynamics equations of the robot can 

be written as: 

     , T

LegM q q V q q G q B J F     (2) 

where M(q)
 
denotes the mass matrix, is 

the Coriolis and centrifugal forces, G(q)
 

represents the gravitational forces. In addition, 

B is the under-actuation matrix which its 

elements are one for the actuated joints, that is, 

the joints of all the legs and are zero for the 

virtual joints of the main body, τ defines the 

joint torques, represents the Jacobian matrix 

for the contact positions and 
Leg

F
 
is the contact 

forces applied on the robot at the contact 

points. Due to the contact of the stance legs 

with the environment, the last term was added 

to the dynamics equations. All terms of the 

dynamics equations can easily be calculated 

using the formulations presented in [17], and 

are detailed in Appendix A. Since the kinetic 

energy of each rigid link is divided into three 

different terms and each term is differentiated 

separately and there after summed to compute 

the dynamics terms, the resultant dynamics 

equations are very computationally efficient. 

2.3. Constraint elimination method 

When trying to control the robot or calculate 

the joint torques required to perform a specific 

maneuver of the main body, the exact values of 

contact forces should be known. There are two 

solutions for this problem: (1) measuring the 

contact forces directly and (2) elimination of 

the contact forces from the dynamics 

equations. The first method does not yield 

precise results, because the output of force 

sensors is a noisy signal which leads to 

inaccurate values. However, in the second 

method, the contact forces are removed from 

the dynamics equations using the kinematics 

6 1
qB



V(q,q)

J
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constraints. The second method will be used to 

derive free-constraint dynamics equations 

subsequently. 

Given that legged robots are in contact with 

the environment, some constraints are imposed 

on the dynamics equations. If it is assumed that 

the stance legs do not slip during the robot 

motion, this requires having sufficient friction 

between the stance legs and the ground, and 

then, the velocities of the tip of stance legs 

become zero. Thus, the kinematic constraints 

can be defined as: 

, 3 1 1,..., tantip i pV O for i if i s ce leg    (3) 

The above equation can be expressed in the 

Jacobian form as: 

3 1pJq O   (4) 

where  denotes the number of stance legs.  

In the following, these constraints will be 

exploited to obtain the free-constraint of 

dynamics equations from Equation 1. In other 

words, the contact forces from the dynamics 

equations will be eliminated. In doing this, a 

new space is defined, called the independent 

space. If k  constraints are applied on the robot 

through the contact of the stance legs with the 

ground, the dimension of this space will be 

. The variables of this space consist of 

the position and orientation of the main body 

and also the joint angles of the swing legs. The 

reason for the selection of such space is that 

the control of the variables of the independent 

space guarantees that the whole configurations 

of the robot will be controlled as long as the 

stance legs remain stationary during the robot 

motion. Let us define this space as: 

T T

B SLβ q q
T

     (5) 

where  denotes the joint angles of the 

swing legs. At present, we want to rewrite the 

dynamics equations in terms of β such that the 

contact forces are removed from the dynamics 

equations. The relation between the whole 

configuration and the variables of the 

independent space can be expressed as:  

q S   (6) 

where S is a matrix which maps the robot 

configuration space onto the independent 

space. This matrix is defined based on the 

kinematic constraints. It can be stated as 

follow: 

 

(7) 

where 
1,i

F
 
and  can be given as: 

3 6

3 3

     when leg i  is in the stance phase

           when leg i  is in the swing phase

          when leg i  is in the stance phase

           when leg i  is in th

-1

L,i b,i

1,i

2,i

3×3

-J J
F

O

O
F

I

th

th

th

th






 



e swing phase





 (8) 

b,i
J

 
and 

L,i
J

 
are the Jacobian matrices of 

the main body and the i
th 

swing leg, 

respectively, which can be computed as: 

, ,

,

,
b,i ,i

X X
J J

q q

L i L i

L

b L i

 
 

 
 (9) 

where 
,XL i  

represents the position of the tip of 

the i
th 

stance leg. Since the robot has the under-

actuated structure due to its floating main 

body, the whole joints were partitioned into 

two components: the under-actuated and the 

actuated. This partition was performed to 

eliminate the contact forces from the dynamics 

equations. In order for this to be done, the 

whole joint velocities were divided based on 

being actuated or under-actuated. Thus, 

Equation 6 can be rewritten as: 

q S
β

q S

ua ua

a a

   
   

   
 (10) 

where subscript “a” means the actuated joints 

and subscript “ua” represents the under-

actuated joints. Time derivate of Equation 10 

yields: 

,q S β S β q S β S βua ua ua a a a     (11) 

In the following equations, the dynamics 

equations were partitioned into the actuated 

and the under-actuated components as follows: 

1 2

2 2

6 1

ua ua ua ua ua

a a a a a

T

ua

T

a



       
       
       

  
  

   
Leg

a

M M q V G
+ + =

M M q V G

O J
+ F

τ J

 (12) 

If the above equations were rewritten to 

obtain two independent equations, then we 

have: 

p

6n k 

SL
q

6 6 6 3 6 3

3 3 3 3

3 3 3 3

1,i 2,i

1,n 2,n

I O O

F F O O
S

F O O F

  

 

 

 
 
 
 
 
  

2,i
F
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1 2 Leg

2 2 Leg 

M q M q V G J F       (a)

M q M q V G τ J F     (b)

T

ua ua ua a ua ua ua

T

a ua a a a a a

   

    
 (13) 

By multiplying Equation 13 a by S
T

ua
 and 

Equation 13-b by S
T

a
 and the summation of the 

resultant equations, we have: 

  Leg

1 2 2 2

M q M q S V S V S G

S G S τ J S + J S F

M S M S M ;  M S M S M         

T T T

ua ua a a ua ua a a ua ua

T
T T

a a a a a ua ua

T T T T

ua ua ua a a a ua ua a a

   

  

   

 (14) 

Based on the definition of the Sa  and Sua , 

we can easily prove that + J S J S Oa a ua ua  . 

Thus, we have: 

M q M q S V S V

S G S G S τ  

T T

ua ua a a ua ua a a

T T T

ua ua a a a

  

  
 (15) 

As shown in the above equation, the contact 

forces are eliminated from the dynamics 

equations. Now, we want to map the above 

equation into the independent space. By 

substituting Equation 11 in Equation 15, we 

have: 

M β V G S τT

a      (16) 

where 

M M S M S

V S V S V M S β M S β

G S G S G

ua ua a a

T T

ua ua a a ua ua a a

T T

ua ua a a







 

   

 

 (17) 

Equation 16 introduces an inverse dynamics 

controller for a constrained quadruped robot. 

Joint torques can be calculated by the Moore–

Penrose pseudo inverse of S
T

a
, when the joint 

angles, velocities and accelerations of the 

independent variables are known This equation 

allows us to calculate the joint torques without 

the need to compute the contact forces and also 

the inversion of mass matrix. In addition, the 

contact forces can be calculated as follow: 

 

 

#

Leg

1 2 1 2

F = J

M S β M S β M S β M S β V G

T

ua

ua ua ua a ua ua ua a ua ua    
 (18) 

3. Stability condition of quadruped robots 

over uneven terrains 

A quadruped robot should remain stable in 

motion over even and uneven terrains in order 

to avoid falling down. Thus, a particular path 

should be designed for the COG. In order to 

design a particular path for the COG, a proper 

condition should be developed to guarantee 

robot stability. Since the focus of the current 

paper is on the robot motion over uneven 

terrains, first, a stability condition to guarantee 

robot stability will be proposed. This condition 

yields a stable motion over uneven terrain 

under sufficient friction assumption between 

the stance legs and the environment. The main 

feature of this condition is that the robot can 

vary its height to follow the terrain. In other 

words, the height of main body does not 

remain constant when compared with 

conventional stability criteria. On the other 

hand, the motion of the main body along z-axis 

may help the robot to keep its balance, 

especially over uneven terrains. 

Conventional stability conditions yields 

acceptable results in cases when the robot 

moves on an even terrain or the height of the 

main body during its motion is constant. For 

instance, the COG path can be generated for 

motion on a horizontal surface based on the 

ZMP [21], because this point is defined on the 

horizontal surface. Whereas, for uneven terrains, 

the ZMP should stay inside the support polygon 

which is no longer coincident with the 

horizontal ground [9]. Therefore, a stability 

condition needs to be introduced for uneven 

terrains. Here, the reasons for robot instability 

are divided in general into the rotation about the 

edges of support polygon and the slippage of the 

stance legs. Moments around the edges of 

support polygon is taken as the main cause of 

instability, since it is assumed that there is 

sufficient friction between the stance legs and 

the ground. Thus, the robot should move such 

that the tumbling moments produced by the 

external forces, about all edges of the support 

polygon, would hold the contact between the 

stance legs and the ground. A point-mass model 

is taken into consideration to reduce 

computational complexities in the derivation 

procedure of obtaining a stability condition. In 

other words, it is assumed that the masses of all 

legs are concentrated in a point called COG. 

Since the masses of all the legs are ignored, the 

gravitational and inertial forces of the main 

body are the main forces which influence robot 

stability.  

The edges of support polygon should be 

formulated in the first step, because the edges 
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of support polygon are the key variables to 

determine robot stability. If the positions of 

stance legs are defined as 1 2, ,...,STL STL STLnP P P , the 

unit vectors of the edges of support polygon 

can be defined as: 

1

1

1

1

P - P
κ     1: -1  

P - P

P - P
κ  

P - P

STL STL

i i

i STL STL

i i

STL STL

n
n STL STL

n

i n clockwise



 



 (19) 

The sequence of two contact points for 

calculating the unit vector should be chosen 

such that this vector goes around the support 

polygon in a clockwise direction. A quadruped 

robot in motion on uneven terrains remains 

stable if the tumbling moments about all edges 

of the support polygon do not tend to separate 

the contact between the stance legs and the 

ground. In other words, the following condition 

must be satisfied for t 0  
T

i iκ M >      for all i  and > 0   (20) 

where 
i

M  
denotes the moment of external 

forces (that is, inertial and gravitational forces) 

about the i
th 

 edge and  stands for the stability 

margin. The above inequality equation can be 

expressed in terms of the COG accelerations 

and the variables of the edges of support 

polygon for the i
th 

edge of support polygon as 

follow: 

κ M

( )

x y z

i i i

T x x y y z z

i i G i G i G i

x y z

G G G

P p P p P p

mP mP m g P

  

     

   

 (21) 

where 
x

ip , 
y

ip  and 
z

ip  indicate the position 

of an arbitrary point on the i
th 

edge of support 

polygon. In addition, 
x

GP , 
y

GP  and 
z

GP  indicate 

the position of the COG expressed in the 

world frame. As such, it is assumed that the 

gravitational acceleration only points along 

negative Z-axis. To guarantee robot stability, 

the COG path must be planned so that the 

moments about all edges of support polygon 

have positive values during the robot motion. 

Since there is no assumption about the type of 

the terrain, this stability condition can be used 

to determine robot stability over uneven 

terrains. Since all tumbling moments should 

be positive to maintain robot stability, the 

stability index is defined as the minimum 

value of tumbling moments about all edges of 

the support polygon. For instance, when the 

leg 4 is in the swing phase, it can be 

expressed as: 

 23 3212min , ,
l ll

stab stab stab stabM M M M  (22) 

where, for instance, 12l

stabM  
is given as: 

12

12 12

1 2

12

2 1

κ M

P - P
κ  

P - P

l T

stab

STL STL

STL STL

M 


 (23) 

To guarantee robot stability, the stability 

index should be positive during the robot 

motion. The stability condition, that is, Equation 

21, which is expressed as an inequality 

equation, only describes robot stability at certain 

instant of the time when all motion parameters 

of the robot motion are known. However, the 

main objective is to generate a stable COG path 

by using this equation. Thus, a procedure should 

be introduced to plan the COG path, so that the 

stability condition is satisfied. The procedure for 

obtaining the stable COG path based on this 

stability condition will be discussed in the 

following. 

4. Stable COG path planning on uneven 

terrains 

Here, an algorithm for generating a stable COG 

path based on the stability condition will be 

proposed. In the real-time path planning, the 

COG path is generated for each step of a single 

gait before the robot starts the step. An 

optimization problem is defined to calculate 

the COG path since the stability condition is 

expressed as an inequality equation and the 

stability condition is considered as a nonlinear 

and inequality constraint of the optimization. 

In addition, the COG path should satisfy 

smoothness conditions especially at the instant 

of switching swing leg. Furthermore, the COG 

path should cross through the predefined points 

at the start and the end of each step within a 

single gait. To guarantee smoothness 

conditions of the COG path within a gait, the 

robot goes to a four-leg support phase at the 

start, middle and the end of a cycle. Thus, the 

middle of a walking cycle means that the 

instant in which all legs of one side performed 

their motions, the first leg of the other side 

should start its motion. 
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Using a four-leg support phase is a common 

method to guarantee robot stability by 

enlarging the support polygon used particularly 

at the instant in which the transferring leg is 

the front leg and the next transferring leg is the 

rear leg [12, 22]. This is due to the fact that the 

triangles of the stability (which its vertexes are 

the tip of stance legs), change drastically at the 

instant, and the use of this phase helps the 

robot to change the COG path smoothly to start 

the next step stability by increasing the support 

polygon. In this paper, the robot uses the wave 

gait for walking over uneven terrains. This gait 

is an optimal pattern of leg lifting in terms of 

stability and velocity [23, 24], which is 

motivated by the locomotion of animals. 

However, the four-leg support phase may not 

been seen in mammal locomotion. This 

difference is due to the simplifications which 

are made to model a quadruped mammal.  

To obtain the stable COG path, an eighth-

order polynomial function of the time is chosen 

for each step of a gait and along each direction. 

The trajectory equation for the j
th 

step of a 

single gait is defined as: 

1 8 2 7 3 6 4 5 5 4

6 3 7 2 8 9

P ( ) a a a a a

a a a a     

G

j j j j j j

s f

j j j j j j

t t t t t t

t t t t t t

    

     
 (24) 

where s

jt  and f

jt
 
mean the start and the end 

times of the j
th
 step, respectively. The 

coefficients of the polynomials will be 

computed based on the smoothness and 

stability conditions. 

The COG path should pass through the 

prescribed points determined by the footstep 

planning algorithm. Since these points are only 

computed based on the reachability and terrain 

adaptability conditions, they may be 

inappropriate in terms of robot stability. 

Therefore, we attempt to obtain the closest 

possible points to the desired ones. For this 

purpose, the errors between the desired and 

resultant COG positions at the start and end of 

each step within a single gait are chosen as the 

cost function of the optimization. Since the 

path should be continuous at the instants of 

switching swing leg at the levels of position, 

velocity and acceleration, these conditions 

impose some constraints on the optimization 

problem. Furthermore, the stability condition 

for each step of a single gait is taken as a 

nonlinear and inequality constraint of the 

optimization problem. The optimization 

problem for computing the COG path is 

defined as: 

   
6

1 1 1 1

1

1 1 1 1 1 1 1

     ( ) ( ) ( ) ( )

subject to 0 about all edges of the support polygon 

and for all steps of a gait

( ) ( ), ( ) ( ), ( )

min
j

T

G G G G

j j des j j j des j

j

T

i i

G G G G G

j j j i j j j i j j

t t t t

t t t t t

   



      



 


a

P - P W P - P

κ M

P P P P P 1 1

0 1 0 0 1 0 0 1 0

7 8 7 8 7 8

( ) j=1,..,7

( ) , ( ) , ( )

( ) , ( ) , ( )  

G

j i

G G G G G G

G G G G G G

f f j

t

t t t

t t t

 

  

  

P

P P P P P P

P P P P P P

 (25) 

The solution of the above optimization 

problem yields the coefficients of the defined 

polynomials. After that, the smooth and stable 

COG path can be calculated using Equation 24. 

Here, a single gait is divided into seven 

segments. Therefore, six intermediate points 

are chosen to define the cost function. The 

algorithm for the calculation of the COG path 

is summarized in Figure 2.  

5. Tip of swing leg path planning 

In this section, an appropriate path for the tip 

of swing legs will be planned. In the path 

generation of the tip of swing legs, obstacle 

avoidance and smoothness conditions will be 

taken into account. In other words, the main 

objective of tip of swing leg path generation 

algorithm is to obtain a smooth path without 

any collision with the environment. In order for 

this to be done, the path of the tip of each 

swing leg is divided into N-1 segments and a 

third-order polynomial function of time is 

selected for each segment. It is assumed that 

time interval of ,i i

s ft t   , which is the i
th
 leg is in 

the swing phase, and is divided into 1N   

segments. Through the selection of a third-

order polynomial function of the time for each 

segment, the trajectory equation of the j
th 

segment of the i
th
 leg, for instance, is stated as: 
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3 3 2 2

, , , , ,

1 0

, , ,

, ,

P ( ) a ( ) a ( )

a ( ) a

1,..., 1

i i i i i

swl j swl j s j swl j s j

i i i

swl j s j swl j

i i

s j f j

t t t t t

t t

if t t t for j N

   

  

   

 

      

 (26) 

where 

, , ,

, , , , 0,...,3a   
T

i m i m x i m y i m z

swl j swl j swl j swl ja a a m     (27) 

The trajectory equation for all segments of 

i
th
 swing leg during a single step can be defined 

as: 

,1 ,1 ,1

, 1 , 1 , 1

P ( )         

P ( )

P  ( )      

i i i

swl s f

i

swl

i i i

swl N s N f N

t t t t

t

t t t t  

  


 


 

 (28) 

 

 

Fig. 2. Stable COG and tip of swing leg path planning algorithms for walking on uneven terrains 

To calculate the coefficients of each swing 

leg trajectory equation, appropriate conditions 

should be defined. As the first stage, the proper 

intermediate points are selected between the 

lifting and landing positions. These points are 

selected based on avoiding any collision with 

the environment. The workspace for each 

swing leg can be calculated easily, because the 

COG path has been calculated in the previous 

section. The intermediate points for each swing 

leg will be chosen from an area, which is the 

intersection of the workspace of that leg and 

the corresponding free-collision area was 

calculated through the geometry equation of 

the environment which is assumed to be 

known. These points can be defined as: 

 intP ( ) X (X) 0,X     1: - 2i it H FW j N     (29) 

where iFW  denotes the workspace of the i
th 

swing leg and ( )XH  is the terrain geometry 

equation. Since N-1 polynomial functions are 

selected for the path of tip of each swing leg, 

some additional restrictions should be added 

into the problem to obtain a smooth path. One 

of these restrictions is the smoothness 

condition. Since the path of the tip of each 

swing leg is a piecewise continuous function of 

the time, in order to obtain a smooth path, it 

should be continuous in the levels of position, 

velocity and acceleration at the instant of 

switching swing leg. These conditions for the 

i
th 

swing leg can be defined as: 

, , , 1 , 1

, , , 1 , 1

, , , 1 , 1

P ( ) P ( )

      1,..., -1P ( ) P ( )

P ( ) P ( )

i i i i

swl j f j swl j s j

i i i i

swl j f j swl j s j

i i i i

swl j f j swl j s j

t t

j Nt t

t t

 

 

 







 (30) 

Furthermore, the path must be planned such 

that each swing leg begins its motion from the 

current location and reaches to the target 

within a single gait and also it should pass 

through the intermediate points. These 

conditions are defined as: 

,1 ,1 ,0 ,( 1) , 1 ,

,1 ,1 0 ,( 1) , 1 ,

, , int, , 1 , 1 int,

P ( ) P ,P ( ) P

P ( ) P ( ),P ( ) P

P ( ) P ,P ( ) P    1: ... : - 2

i i i i i i

swl s swl swl N f N swl f

i i i i i i

swl s SWL swl N f N swl f

i i i i i i

swl j f j j swl j s j j

t t

t t t

t t j N

 

 

 

 

 

  

 (31) 

Given that the effect of the impact between 

the swing legs and the ground is not considered 

on robot stability in the current study, the 
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initial and final velocities of the tip of each 

swing leg was set equal to zero. To obtain the 

coefficients of polynomials and consequently 

compute the path of the tip of the i
th
 swing leg, 

Equation 30 and Equation 31 must be solved. 

Along each direction, the above conditions 

offer a matrix equation to obtain the unknown 

coefficients. For instance, z-directional 

equation for obtaining the coefficients of the i
th
 

swing leg trajectory can be defined as: 

H Z = Ni i i  (32) 

where X
i  and i

N  are given by: 

0, 1, 2, 3, 0, 1, 2, 3,
,1 ,1 ,1 ,1 , 1 , 1 , 1 , 1

, , , , , ,
int,1 int, 1 ,0 , ,0 ,

3( 2)
2 4

0 0
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i i z i z i z i z i z i z i z i z
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i i z i z i z i z i z i z
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 
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 
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 
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T
 (33) 

The matrix of H
i  is calculated as follow: 
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(34) 

The tip of swing leg path planning 

algorithm is shown in Figure 2. First, proper 

intermediate points are chosen for each swing 

leg. If these points are placed inside the 

workspace of that leg and also not located 

inside the environment, they are selected as the 

intermediate points. Then, the trajectory 

equation for tip of each swing leg can be 

calculated by Equation 26 and Equation 32.   

6. Obtained results 

In order to evaluate the proposed COG and tip 

of swing leg path planning algorithms, a 

quadruped robot in the simulation in walking on 

an uneven terrain was used for the test. The 

simulation was performed with the assumption 

of sufficient friction between the stance legs and 

the ground. As mentioned earlier, a walk gait 

was used to move on uneven terrain. The 

sequence of the leg lifting is the right hind, right 

front, left hind and left front. The robot starts its 

motion with a four-leg support phase to be 

prepared for lifting its leg. Then, the rear and 

front legs of one side go to the swing phase 

according to the leg lifting sequence. A four-leg 

support phase also is chosen at the middle of a 

cycle. Then, the legs of the other side go to the 

swing phase. The robot finishes its motion at the 

end of a cycle with a four-leg support phase. 

Since one of the main contributions of this 

paper is to walk on uneven natural terrains, the 

uneven terrain must be modeled in the first 

step. The uneven terrain, which is considered 

in this paper, is shown in Figure 3. The color 

circles represent the footprints of all legs when 

the robot motion form was in their initial 

location to their final location. The green, red, 

blue and yellow circles show the footholds of 
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the left hind, right hind, left front and right 

front legs, respectively. Here, it is assumed that 

an expert user decides about the footprints on 

the terrain by considering the geometry of the 

terrain and also the physical properties of the 

robot. As seen, when the robot walks on this 

terrain, footprints are located on non-coplanar 

surfaces. In other words, the height of the 

footprints is not the same. Thus, conventional 

stability conditions do not lead to accurate 

results in this case. To simplify the problem, 

the y-component of the footprints is chosen to 

be the same. To plan a path for the robot, the 

specifications of the robot and some essential 

COG path parameters are gathered as show in 

Table . The geometric and mass properties of 

the robot are similar to the Starl ETH [25]. 

 
Fig. 3. An uneven terrain on which the robot should walk. The color circles represent the footholds of all legs when the 

robot in motion form move from the initial location to the target. Green, red, blue and yellow circles show the 

footholds of left hind, right hind, left front and right front legs, respectively. 

Table 1. The physical specifications of the robot and the required data for the COG path generation  

Parameter Values (unit) Description 
m  40(kg) Mass of main body 

IB
 2

0.4897 0 0

0 0.8667 0 ( . )

0 0 1.2879

 kg m

 
 
 
  

 Rotational of inertia of main body 

 T[0.01 0 0.544] (m)  Initial COG position 

 T[0.21 0 0.5743] m) (  final COG position 

 
0.2 (m) The length of the thigh 

2l  0.22 (m) The length of the shank 

 2 (kg) Mass of  the thigh 

1
I   Rotational of inertia of the thigh 

2m  0.5 (kg) Mass of the shank 

 2

0 0 0

0 0.002 0 ( . )

0 0 0.002

 kg m

 
 
 
  

 Rotational of inertia of the shank 

 0.5 (m) Length of body 

bW  0.37 (m) width of body 

 0.1 (m) height of body 

1cl  0.02 (m) The distance between the COG of the thigh and hip joint 

 0.08 (m) The distance between the COG of the shank and the knee joint 


 

0.1 Stability margin 

0( )PG t

( )PG ft

1l

1m

2

0 0 0

0 0.0067 0 ( . )

0 0 0.0067

 kg m

 
 
 
  

2I

bL

bh

2cl
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The path of tip of each swing leg within a 

single gait is shown in Figure 4. As seen, each 

swing leg leaves the ground and reaches to the 

prescribed target without any collision with the 

environment. In the design of the path of the 

main body, it is assumed that the orientation of 

main body remains fixed when the robot is in 

motion and their values are zero. The position, 

velocity and acceleration of the COG during a 

single gait are represented in Figure 5. The 

duration of each step of a gait and also the 

duration of the initial and final four leg-support 

phases is selected as 1 sec. However, to 

increase the velocity of the robot, the duration 

of the four-leg support phase at the middle of 

the gait is chosen as a small value, 0.1 sec. As 

expected, the COG path has the desired 

characteristics. In other words, the COG path is 

a continuous function in the levels of position, 

velocity and acceleration, particularly, at the 

instant of switching swing leg. In addition, the 

stability of the robot is guaranteed because the 

stability index when the robot is in motion is 

positive. The stability index is shown in Figure 

6. When compared with the previous methods 

[12], this algorithm has some merits. First, in 

this algorithm, moments about the support 

edges are taken as the robot stability criterion, 

thus the designed path is more reliable for the 

real robot. Second, the design of the path along 

the Z-axis may help the robot to keep its 

balance over uneven terrains. This is due to the 

fact that acceleration along Z-axis may 

increase the moments about all edges of 

support polygon in cases when the 

accelerations of main body along x-and y-axes 

are limited due to following their desired paths 

towards the target and the robot becomes 

unstable by using these accelerations. In other 

words, since the stability index is a function of 

the motion variables along Z-axis, the motion 

along that axis may increase this index to 

improve robot stability through increasing or 

decreasing the height of the main body. On the 

other hand, the height of the main body should 

change accordingly to the variation of the 

terrain geometry to adapt to it. Here, the z-

directional COG path is designed based on the 

robot stability whereas in conventional 

methods, there is no specific method for the 

design of the COG path along the z-axis.  

Fig. 4. The path of tip of all swing legs and the terrains which each leg should cross over it without any collision  
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Fig. 5. The position, velocity and acceleration of the COG in motion on the terrain along x-, y- and z-axes for a single 

gait 
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Fig. 6. The stability index in the motion over an uneven terrain during a single gait 

The explicit dynamics model of the robot 

was obtained by the proposed method. The 

validity of the dynamics equations was 

confirmed with a simulated model. The joint 

torques for generating the designed path 

calculated using the inverse dynamics 

controller, are shown in Figure 7. 

The contact forces exerted on the tip of the 

stance legs are depicted in Figure 8. These 

forces become zero when the leg goes to the 

swing phase. As shown, the forces along the z-

axis during all the steps are positive. This 

means that the stance legs remain stationary on 

the ground for the period of all steps. The main 
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feature of the inverse dynamics control is its 

computational efficiency and the joint torques 

when a single gait is computed in a small 

computation time. This is a good characteristic 

which makes the algorithm to be used in real-

time. The stick-animation of the quadruped 

robot to perform its motion during a single gait 

is shown in Figure 9. 
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Fig. 7. The joint torques applied to generate the defined path  
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Fig. 8. The constraint forces exerted on the tip of the stance legs. When each leg goes to the swing phase, these forces 

become zero 
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Fig. 9. The stick-animation of the quadruped robot in 

the motion on the uneven terrain 

7. Conclusion 

In this study, the dynamics modeling of a 

quadruped robot was investigated. In addition, a 

stable and smooth path for the COG in motion 

over an uneven terrain was generated. The 

explicit dynamics equations with good 

computational characteristic were derived by 

utilizing the explicit dynamics algorithm. A 

constraint elimination method was proposed to 

obtain free-constraint dynamics equations. Based 

on this model, an inverse dynamics controller 

was introduced to compute the joint torques. A 

stability condition was developed and a stable 

and smooth path was calculated through the 

definition of an optimization problem to obtain a 

stable path for the main body of the quadruped 

robot in motion on uneven terrain. Finally, an 

algorithm was proposed to compute a smooth 

and free-collision path for tip of swing legs. The 

proposed algorithm was tested on a quadruped 

robot in the simulation. The obtained results 

proved the merits of the proposed algorithm. A 

stable path was designed for robot in motion over 

an uneven terrain and this path was generated by 

using an efficient inverse-dynamics controller.  

Appendix A 

Through kinematic calculations, the linear and 

angular velocities of each rigid-body link are 

known. At this time, the terms of dynamics 

equations can easily be computed. The mass 

matrix can be calculated as [17]. 
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where bR
 
and b  are the position and angular 

velocity of the COG of the main body, 

respectively. In addition, 
( )

K

m

cR  and 
( )m

k  are 

the position and angular velocity of the COG 

of the k
th
 rigid body link of the m

th
 leg, 

respectively. The vector of the nonlinear terms 

can be defined as: 

1 2qV C C   (36) 

where 
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and 2iC  is given by: 
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The gravitational forces, G , can be 

computed as: 
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