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Abstract 

In this study, the analysis of transient thermoelastic response of a functionally graded (FG) non-

axisymmetric viscoelastic cylinder is presented. The material properties are assumed to be time- 

dependent and radially and circumferentially non-homogeneous. The finite element (FE) formulations 

of the thermoelastic problem are obtained using the virtual work method and all the coupling terms are 

considered. According to material dependencies and nonlinearity of the constitutive equation, an 

iterative-based FE solution is suggested in order to solve thermo-elastic equations. The effects of 

material in homogeneities on the time-dependent response of mechanical and thermal components are 

investigated. From the results of this study, it is concluded that, using appropriate material 

inhomogeneities can improve the magnitudes of stress components, especially shear stress.  

Keywords: finite element method, functionally graded material, non-axisymmetric, transient 

thermoelasticity, viscoelastic. 

 

 

1. Introduction 

The thermoelastic analysis of different
 
 structures 

such as cylinders, disks, shafts among others 

have attracted much attention among researchers 

due to their applications in various industries. 

The analyses of thick-walled cylindrical vessels 

under thermal and mechanical loads have been 

widely studied, considering some assumption 

including plane strain and symmetry about axis 
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[1-3]. In many applications, the mentioned 

assumptions cannot be taken into account [4, 5]. 

For example, in a cylinder under hydrostatic 

pressure, the magnitude of pressure changes 

longitudinally, therefore the plane strain 

condition is not valid [6].  

For the cases of cylindrical vessels under 

non-axisymmetric loads, shear stress component 

is created which decreases the lifetime of 

cylinders. The analysis of thermoelastic 
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response of cylinders under non-axisymmetric 

thermal field was performed by Takeuti and 

Noda [7]. They solved uncoupled transient 

thermoelastic equations for an isotropic finite 

cylinder analytically.  

For the special purposes, functional graded 

(FG) materials have been used in some industries 

to endure high thermal stresses. The general 

solution for mechanical and thermal stresses in a 

FG cylinder under steady state non-axisymmetric 

loads was presented by Jabbari et al. [8]. They 

assumed a power-low function for the FG 

material and used the separation of variables and 

complex Fourier series to solve thermoelastic 

governing equations. Tokovyy and Ma [9] 

presented an analysis of 2D non-axisymmetric 

elastic and steady state thermoelastic of FG 

cylinders. They assumed the cylinder to be 

radially inhomogeneous and used the Vihak 

method which is based on the integration of the 

original differential equilibrium equations, 

independent of the stress–strain relations. They 

implemented the mentioned method for various 

inhomogeneous annular domains [10]. As a 

different study about non-axisymmetric FG 

cylinders, Li and Liu [11] analyzed the elastic 

behavior of a radially inhomogeneous hollow 

cylinder under non-axisymmetric arbitrary load 

using complex potential stress functions. The 

major shear stress with respect to other stress 

components was observed in their results. 

Transient thermoelastic analysis of structures 

due to dynamic loadings or time-dependent 

constitutive equations of the materials has been 

considered in many studies.. Coupled dynamic 

thermoelastic response of a thin-walled plate 

under thermal and mechanical shock loadings 

were analyzed by Zheng et al. [12]. They used a 

novel meshless local Petrov-Galerkin approach 

and backward difference time iteration to solve 

motion and heat equations, simultaneously. 

Their results showed that the values of stress 

components are increased remarkably under 

thermal shock with respect to steady state 

thermoelastic condition. In addition to dynamic 

loading cases, transient thermoelastic problems 

are important for materials with time-dependent 

structural properties. One of the most important 

materials with structural time-dependency is 

viscoelastic material.  

Viscoelastic properties have been found in 

many materials such as polymers and high 

temperature metals. The time-dependent 

constitute equations of these materials have 

profound effects on their elastic and 

thermoelastic responses especially in dynamic 

and transient problems. Applications of 

viscoelastic materials as the FG material have 

been studied in recent years [13-16].  

Temel et al. [17] presented the analysis of 

elastic and viscoelastic responses of radially 

inhomogeneous annular structures. They used 

Laplace transform to obtain a time-independent 

form of boundary-value problem in terms of 

spatial coordinates. The results were converted 

to primary time domain using the modified 

Durbin method.  

To the best of the present authors’ knowledge, 

circumferential inhomogeneity has not been 

considered so far for FG materials. Hence, in this 

research, a radially and circumferentially 

inhomogeneous viscoelastic material is considered 

and using an FE method, a transient thermoelastic 

problem for a non-axisymmetric viscoelastic FG 

cylinder is studied. To obtain FE formulations, the 

principle of virtual work is applied for equations of 

motion and energy balance. The thermal boundary 

conditions are assumed to be non-axisymmetric as 

a case-study and the results are presented for 

different times and material inhomogeneities. The 

results show that shear stress in the cylinder can be 

reduced and controlled by applying an appropriate 

material inhomogeneity. 

2. Material constitutive equation 

The constitutive equation of viscoelastic 

materials is demonstrated by the well-known 

hereditary integral as follows [18]: 

     
 

 
0

0

t

t t t d


 



  


C

σ C ε ε  (1) 

where (t) and (t) are history of stress and 

strain tensors, respectively, C(t) is relaxation 

stiffness and t denotes time.  

For a long cylinder, the plane strain condition 

can be assumed that the stress and strain tensors 

in polar coordinates are reduced to: 

 

 

T

rr r

T

rr r

 

 

  

  





σ

ε
 (2) 

where superscript T denotes transpose.  

The stiffness tensor, with respect to 

isotropic viscoelastic FG properties can be 

written as: 
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where E and v are unidirectional relaxation 

modulus and the Poisson’s ratio, respectively. 

According to the generalized Maxwell model 

[18] for viscoelastic materials, the relaxation 

modulus in terms of time is expressed as: 

 
PS

1

exp
N

i
i i

tE t E


   (4) 

Equation (4) is known as Prony series in 

which Ei, τi and NPS are elastic modulus in ith 

term of the series, relaxation time parameter 

and number of the series terms, respectively. 

On the other hand, in this research, all 

mechanical and thermal properties of the 

structure are assumed to be dependent on the 

radial and circumferential coordinates (r, θ) as: 

   0, 1 sin
2

m
P r P r n     (5) 

where P0 is the value of the property 

inhomogeneous material and m and n are radial 

and circumferential material inhomogeneity 

indices, respectively. 

It is worth mentioning that, in many 

thermoelastic problems, temperature 

dependency of the material is taken into 

account. However, for polymers under glass 

transition temperature, the structural properties 

are assumed to be independent of temperature 

[19, 20]. The temperature of the system in this 

study will be chosen to be below the glass 

transition temperature of the polymer. Hence, it 

is evident to say that the effect of temperature 

on structural properties of the material in this 

study is negligible. 

The strain tensor can be divided into 

mechanical and thermal parts as follows: 

M T
 ε ε ε  (6) 

in which 

   

1 1

1 Θ 1 1 0

T
M M M M

rr r

r r
r

T

u u uu u
u

r r r r r
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  

  

 

 

  
 

    
         

  

ε

ε

 (7) 

In Equation (7), ur and uθ are radial and 

circumferential components of displacement, α 

is coefficient of thermal expansion and θ is 

temperature change with respect to the 

reference temperature T0. 

3. Formulations 

In this section, the comprehensive FE 

formulations are derived for a general 

thermoelastic problem, implementing the 

principle of virtual work. In the process of the 

FE method, each element can be considered as 

homogenous with constant properties. 

3.1. Thermoelasticity 

Thermoelasticity problem in general, have two 

sets of equations; equations of motion and 

energy balance. These equations are [21]: 

,

, 0 ,Θ

ij j i i

i i i i

F u

q c T u R

 

 

 

  
 (8) 

where ij, Fi, ui and qi are components of stress 

tensor, body force vector, displacement vector 

and heat flux vector, respectively; ρ, c, R and β 

are density, thermal capacity, internal heat 

generation, and thermal modulus which is 

defined as:  
  

  

1 5

1 1 2

E t  


 




 
), respectively. In 

Equation (8) comma, over-dot and over-

double-dot denote derivation with respect to ith 

coordinate, first and second order time 

derivatives, respectively.  

3.2. Principle of virtual work 

According to the principle of virtual work, 

work done by forces due to virtual 

displacements on a structure in equilibrium 

state is zero [6]. In the FE thermoelasticity 

formulations, the principle of virtual work is 

implemented on the equations of motion and 

energy balance throughout the volume of an 

arbitrary element. It can be stated as: 

 ,
Ω

Ω 0ij j i i iF u u d      (9) 

where iu ,  Θ  are components of virtual 

displacement vector and temperature change, 

respectively and  denotes volume of the 

element. 

By applying the Divergence theorem, 

Equation (9) yields: 
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     

      

   
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  

   

∬

∬
 (10) 

In Equation (10), Ti and Q are traction 

vector components and heat flux on the 

boundary surface of element  .   

Finally, the tensorial form of Equation (10) 

for a general thermoelasticity problem can be 

written as: 

   

Ω Ω Ω
Γ

0
Ω Ω Ω Ω

Γ

ε σ Ω u u Ω u T Γ u F Ω

Θ q Ω Θ Θ Ω .u Θ Ω Θ Γ Θ Ω

T T T T

T

d d d d

d c d T d Q d R d

   

      

  

       

  

   

∬

∬
 (11) 

For a non-axisymmetric long cylinder with 

plane strain condition, the above formulations 

must be converted in polar coordinates (r,).  

The field variables in this problem are 

components of radial and circumferential 

displacement (ur,u) and temperature change , 

which can be presented by vector  as follows: 

 Θ
T

ru u   (12) 

Hence, the nodal values vector of the filed 

variables in an arbitrary element with  nodes 

is defined as: 

1 1 1
Θ Θ

T
e z z z

r ru u u u 
 
 

a  (13) 

The vector of field variables  , can be 

evaluated in terms of vector of nodal values  
e
a by means of approximation shape functions 

as follows: 

3

1

,
z

e e

i ij j
j

  


  ψaa  (14) 

where  is the matrix of the approximation 

shape functions. 

For convenience, the following matrices are 

defined to express some parameters used in 

Equation (11), in terms of nodal values vector 
e
a :  

1
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4
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where the parameters  1B  to 5B  are 

 

 

1

2

3

4

5

1 0 0

0 1 0

0 0 1

0 0

0 0

1 0

0 1

1 1

1 0

r

r

r r r

r

r

r r r





 

 




 
  
 

   

 
 

 
 

   
  

  
 

   
 

   
  

ψ

ψ

ψ

ψ

ψ

B

B

B

B

B

 

(16) 

Substituting Equation (15) in Equation (11), 

yields: 

5 1 1 1 1
Ω Ω Ω

Γ

3 2 2 0 2 4 2 2
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Γ
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

 

  

     

  
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q

∬

∬

B B Ba B B

B B Ba B Ba B B
 (17) 

Considering heat conduction and no heat 

generation in the cylinder, the vector of heat 

flux can be written in terms of temperature 

change Θ  and conductivity k, as follows [21]: 

Θk  q  (18) 

Substituting Equation (18) and hereditary 

constitutive equations of the material (Eq. 1) in 

Equation (17), the dynamics of FE 

formulations of the problem are obtained as: 
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These formulations can be reduced as 

follows: 

 e e e
t   M D K K fa a a  (20) 

where M represents the mass, D damping and 

K stiffness  and their matrices are thus: 
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0 Ω
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 (21) 

and time-dependent stiffness due to the 

viscoelasticity of the material is expressed as: 

     5 5
Ω

0

Ω

t
T e

t t d d  
 

   
 

 K CB Ba  (22) 

The force vector f in Equation (19) is 

obtained as: 

 

 
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Γ
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Ω
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r

T T Q d

F F R d




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f ψ

ψ

∬  (23) 

The natural boundary conditions of the 

structure including internal and external 

pressure and heat flux are taken into account in 

the first term of force vector. 

The form of the shape functions depends on 

the element configurations. In this study, a 

second order quadratic element, shown in 

Figure 1, is chosen. The shape functions of this 

element are as follows:  

1

1

1

0 00 0
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(25) 

in which,    and   are local coordinates as 

shown in Figure 1. 

 

  
(a) (b) 

Fig. 1. a) Local coordinates of quadratic brick solid element, b) Meshing of problem domain 
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3.3. Solution procedure 

Equation (20) is a set of nonlinear differential 

equations which cannot be solved explicitly 

due to the existence of term   tK . Hence, an 

iterative-based incremental method is proposed 

according to the following steps: 

Step 1: Neglect   tK , solve Equation (20) 

and obtain nodal values of field variables 
e
a . 

To solve the equations without considering 

 tK , the Laplace transform is applied as 

   

 

2
0 0

0

e e e

e e e

s s

s

   
 

   
 

M

D K f

a a

a
 (26) 

where  e e
A L a  . Regarding zero initial 

conditions, the vector of nodal values are 

calculated as 

 
1

1 2e
s s


    

 
M D K fa  (27) 

Step 2: Evaluate  tK using values obtained  

from the previous step. 

Step 3: Solve Equation (20), considering 

 tK of the previous step and obtain new e
a . 

Step 4: Compare old e
a with updated ones, 

if convergence is not achieved, steps 2 to 4 

must be repeated. 

The above procedure is performed until the 

maximum relative error between two 

successive iterations becomes less than a 

certain value such as 0.1%. 

4. Numerical results and discussion  

In this study, a cylindrical pressure vessel with 

0.2 and 0.5 m as inner and outer radii, 

respectively, made of poly methyl methacrylate 

(PMMA) is considered. The thermal and 

relaxation properties of the PMMA are shown 

in Table 1 [22, 23].  

Table 1. Material properties of PMMA [22 - 23] 

Relaxation parameters Thermal Density Poisson’s ratio 

(sec)i  (GPa)iE  i  

0 1.419 0 
9.1955e-1 0.298 1 
9.8120e0 0.064 2 
9.5268e1 0.158 3 
9.4318e2 0.181 4 
9.2066e3 0.239 5 
8.9974e4 0.278 6 
8.6852e5 0.328 7 
8.5143e6 0.323 8 
7.7396e7 0.405 9 

 

J1466
K kg

c
 

  
 

 

 6 170 10
K




   

 W0.2
m K

k   

3

kg
1180

m


 
  

 
 

0.44   

 

 

As mentioned in section 2, the temperature 

of the system must be under glass transition 

temperature of the material. The glass 

transition temperature of the PMMA is 

reported by Ashby [24] as 100-165°C. 

Therefore, the following internal and external 

pressures, with non-axisymmetric thermal 

loads are applied on the cylinder as: 

 
100MPa, 10MPa

400K, 300 1 0.3sinsin K
2

i o

i o

P P

T T 

 

  
 (28) 

The thermal boundary conditions are 

schematically illustrated in Figure 2. 

 
 

Fig. 2. Functionally graded viscoelastic cylinder under 

non-axisymmetric thermal boundary conditions 
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The initial conditions of the structure are  

   
   
   0

, ,0 , ,0 0

, ,0 , ,0 0

, ,0 Θ , ,0 0

r

r

u r u r

u r u r

T r T r





 

 

 

 

 

  

 (29) 

In time-dependent FE problems, results 

must be independent of mesh size and time 

increment. Tables 2 and 3 present the radial 

displacement in point (r,θ)=(0.35,0) for 

different number of elements and time 

increments, respectively. It is observed that 

using 12 radial and 40 circumferential elements 

with time increment  Δ 1 5sect e   gives 

adequate convergent results. 

Table 2. Results dependency to the number of elements 

Number of elements 
 0.35,0,100

r
u  

Radial Circumferential 

8 20 0.0040 

12 20 0.0041 

16 20 0.0044 

8 30 0.0044 

12 30 0.0049 

16 30 0.0048 

8 40 0.0051 

12 40 0.0050 

16 40 0.0050 

8 50 0.0050 

12 50 0.0050 

16 50 0.0050 

 

Table 3. Results dependency to the time incitement 

Δt   r
u e0.35,0,1 3   r

u e0.35,0,1 4  

1e-2 0.00626 0.00702 

1e-3 0.00622 0.00690 

1e-4 0.00610 0.00691 

1e-5 0.00603 0.00691 

1e-6 0.00602 0.00691 

4.1. Time-dependent responses of 

homogeneous cylinder 

The time dependent responses of parameters 

including temperature change, radial 

displacement and stress components were also 

described. The radial distributions of the 

mentioned parameters at different times in two 

directions θ=0 and 180, and a 3D distribution 

of parameters at 1e4 sec were shown and 

discussed. 

Figure 3 (a) shows the radial variation of 

temperature change θ during the time. It is 

observed that temperature distribution becomes 

smoother with time. As mentioned in Equation 

(25), the outer temperature of the cylinder is 

varied along the circumference. Therefore, the 

distribution of θ for two directions θ=0 and 

180 become considerably different near the 

outer radius at every time. Figure 3(b) shows in 

three dimensions, the radial and 

circumferential variation in temperature change 

is shown three dimensionally. 

 

  
(a) (b) 

Fig. 3. a) Radial distribution of temperature change for different times and directions, b) 3-D distribution of the 

temperature change for time 1e4 sec 
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The variations in radial displacement along 

the radius at different times and a 3-D 

distribution of ui in time 1e4 sec are illustrated 

in Figure 4. As can be seen from this figure, 

maximum displacement is observed in the 

inner surface for any condition. In addition, it 

is observed that by increasing the time, 

magnitudes of radial displacement are 

increased. It can also be observed that the 

difference between values in directions θ=0 

and 180 become remarkable with time. 

Figure 5 presents radial stress variation 

along the radius. A small change can be 

observed for radial stress by changing time and 

directions. From Figure 5 (b), it is found that 

radial stress is approximately independent of 

the circumferential coordinate, especially in a 

long time. 

Figures 6 (a) and (b) show the distribution 

of circumferential stress at various times and 3-

D variations with respect to r and θ in time 1e4 

sec, respectively. The magnitudes of 

circumferential stress are seen to increase with 

increasing time (Fig. 6a). It is also observed 

that, similar to radial stress, at long time. 

Changing circumferential stress along the θ 

coordinate is negligible.  

  

 

  
(a) (b) 

Fig. 4. a) Radial distribution of radial displacement for different times and directions, b) 3-D distribution of the radial 

displacement for time 1e4 sec 

 

  
(a) (b) 

Fig. 5. a) Radial distribution of radial stress for different times and directions, b) 3-D distribution of the radial stress 

for time 1e4 sec
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(a) (b) 

Fig. 6. a) Radial distribution of circumferential stress for different times and directions, b) 3-D distribution of the 

circumferential stress for time 1e4 sec 

As can be observed in Figures 5 and 6, 

radial and circumferential stresses are obtained 

approximately independent of θ coordinate. 

This can be justified by the magnitudes of 

thermal and mechanical boundary conditions, 

mentioned in Equation (28). In these loading 

conditions, the radial thermal gradient is 

considerably higher than circumferential 

thermal gradient. On the other hand, pressure 

gradient is applied radially and there is no 

pressure change in circumferential direction. 

Therefore, it can be observed that stress 

components are more dependent on radius than 

θ coordinate. 

The radial variation in shear stress is shown 

in Figure 7 (a). It can be observed that at the 

same time, considerable difference exists 

between two directions θ=0 and 180. Indeed, 

the non-axisymmetric loads introduced in 

Equation (25) create significant shear stress in 

the structure. The 3-D distribution of shear 

stress in time 1e4 sec is presented in Figure 

7(b). The strong dependency of shear stress to 

the circumferential direction can be observed 

in this figure.  

 

  
(a) (b) 

Fig. 7. a) Radial distribution of shear stress for different times and directions, b) 3-D distribution of the shear stress 

for time 1e4 sec 

 

 

JCAMECH, 



Ghajar et al. 

 

200 

 

To investigate structural damping effects of 

the viscoelastic material, time variations of 

radial and circumferential strain components for 

elastic and viscoelastic materials with same 

loading and geometrical conditions, are shown 

in Figure 8. It shows that for an elastic material, 

strain components tend to a constant value after 

some oscillations. However, in viscoelastic 

material, absolute magnitudes of the strain 

components are increased after fewer 

oscillations. From the comparison between 

elastic and viscoelastic materials, it is observed 

that viscoelastic materials have fewer 

oscillations and become smooth sooner than 

elastic materials. 

4.2. Effect of inhomogeneities 

In order to investigate the effects of radial and 

circumferential material inhomogeneities (m 

and n), the distribution of radial displacement 

and stress components along the radius in time 

1000 sec are presented in the Figure 9, 10, 11 

and 12. Due to the non-axisymmetric condition 

of the cylinder, the radial distribution of such 

parameters is shown for 4 directions: θ=0, 60, 

120 and 180.  

The distribution of radial displacement is 

presented in Figure 9. It is seen that, the 

displacement is increased with increasing 

radial and positive circumferential 

inhomogeneities. It can also be observed that 

the effect of radial inhomogeneity is major. 

Figure 10 shows the variation in radial 

stress for different inhomogeneities. It is 

observed that changing values of m and n have 

no considerable effect on radial stress and the 

mechanical boundary conditions (internal and 

external pressures) are prevalent. 

Figure 11 shows the distribution of 

circumferential stress. It can be concluded that 

increasing circumferential inhomogeneity to 

positive values, decreases circumferential 

stress throughout the radius and for negative 

inhomogeneities, circumferential stress 

becomes larger. On the other hand, increasing 

radial inhomogeneity, results in decreasing 

circumferential stress in the lower radii and an 

increase in upper radii. In fact, the radial 

dependency of the circumferential stress is 

decreased with increasing radial 

inhomogeneity. 

According to the non-axisymmetric thermal 

boundary conditions, shear stress is created in 

the cylinder. Figure 12 illustrates the 

distribution of shear stress. It is observed that 

the variation in material inhomogeneity changes 

the magnitudes of shear stress, so that 

circumferential inhomogeneity has a major 

effect in the regard. It can be observed that a 

positive value of circumferential inhomogeneity 

decreases the absolute magnitude of shear 

stress. It is also observed that increasing radial 

inhomogeneity can reduce radial dependency of 

shear stress, smoothly. 
   

 

  
(a) (b) 

Fig. 8. Time-dependent strain at (r,)=(0.35,0): a) Radial strain, b) circumferential strain 
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(a) (b) 

  
(c) (d) 

Fig. 9. Radial distribution of radial displacement in time=1e3 sec: a) , b) , c) , d)  

  

(a) (b) 

  
(c) (d) 

Fig. 10. Radial distribution of radial stress in time=1e3 sec: a) , b) , c) , d)  
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(a) (b) 

  
(c) (d) 

Fig. 11. Radial distribution of circumferential stress in time=1e3 sec: a)  , b)  , c)  , d)  

  
(a) (b) 

  
(c) (d) 

Fig. 12. Radial distribution of shear stress in time=1e3 sec: a)  , b)  , c)  , d)  
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4.3. Verification  

To verify the results, the solution method 

presented in this study was applied on a 

problem of non-axisymmetric elastic response 

of a thick-walled cylinder investigated by 

Jabbari et al. [8]. They presented a cylinder 

with ri=1 m and ro= 1.2m, and the following 

thermal and mechanical boundary conditions 

were chosen as follows: 

   
   
   

i o

rr i rθ i

r o θ o

T r θ θ T r θ

σ r θ σ r θ

u r θ u r θ

, 60coscos2 , , 0

, 0, , 0

, 0, , 0

 

 

 

 (30) 

All the mechanical and thermal properties 

were assumed to be radially dependent as  

  m
P r P r

0
 . The distribution of radial stress at  

πθ
3

  is shown in Figure 13 (a).  Agreement 

between results of this study with those 

obtained in Ref. [8] can be observed from this 

figure. 

The time-dependent results corresponding 

to viscoelasticity can be compared with results 

of Guedes [25]. According to Guedes [25], a 

homogenous axisymmetric viscoelastic 

cylinder with 0.6 m and 0.8 m as inner and 

outer radii respectively, under 100 MPa and 40 

MPa as inner and outer pressures, respectively 

is considered. The distributions of radial and 

circumferential stress in time 1e6 sec are 

illustrated in Figure 13 (b). It is observed that 

the time-dependent results are in agreement 

with Guedes [25]. 

 

  
(a) (b) 

Fig. 13. Verification of results: a) Distribution of radial stress for inhomogeneous elastic cylinder under non-

axisymmetric loads, b) Distribution of radial and circumferential stresses for a homogenous viscoelastic cylinder  

 

5. Conclusion 

The transient thermoelasticity problem for non-

axisymmetric cylinder, made of functionally 

graded viscoelastic materials is investigated in 

this research. The material is assumed to be 

radially and circumferentially nonhomogeneous. 

The comprehensive FE formulations of the 

problem considering all terms of balance and 

motion equations are derived. Results are 

presented for different times and various 

material inhomogeneities.  

The following remarks can be concluded: 

1. In homogenous material under non-

axisymmetric loads, radial and 

circumferential stress components are 

approximately independent of the θ 

coordinate. While radial displacement and 

shear stress have significant variations 

with respect to θ.  

2. Radial inhomogeneity has a considerable 

effect on displacement and circumferential 

stress. By increasing radial inhomogeneity, 

the displacement is increased and 

circumferential stress becomes radial-

independent.  

3. Circumferential inhomogeneity is much 

more effective on shear stress. Appropriate 

circumferential material inhomogeneity 

can reduce absolute values of shear stress, 

remarkably. 

Reduction in stress components especially 

shear stress due to non-axisymmetric loads is 

JCAMECH, 



Ghajar et al. 

 

204 

 

the most important issue for delaying failure 

and increasing the life of the structure. By 

using an appropriate radially and 

circumferentially inhomogeneous material 

proposed in this study, circumferential and 

shear stress can be controlled and decreased 

accordingly. 
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