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Abstract 

It is difficult to develop an algorithm which is able to generate the appropriate mesh around the 

interfaces in bimaterials. In this study, a corresponding algorithm is proposed for this class of unified 

structures made from different materials with arbitrary shapes. The non-uniform mesh is generated 

adaptively based on advancing front technique available in Abaqus software. Implementing several 

preliminary analyses, the output of each step prepared data source for the next step of mesh 

generation. After examining several criteria, the mean elemental stress derivative is selected as a 

suitable criterion to evaluate the performance of current mesh. The convergence indicates non-

isometric final mesh with appropriate and optimum distribution. In general, automatic mesh generators 

determine the mesh density only based on the geometry of the model; however, the developed 

algorithm modifies mesh after sensing the stress intensity due to various reasons including loading 

condition and any change in material and geometry. In addition, the proposed algorithm converges to 

accurate result fast enough if considering the numbers of remeshing steps. An adaptive mesh generator 

code can be programmed based on the developed procedure to automatically generate mesh if 

implementing in Abaqus as a subroutine. 
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1. Introduction 

Since 1960 that finite element (FE) method 
 
was 

born, several engineering softwares have been 

provided and presented to the market. User-

friendly application of the FE softwares 

motivates the users to progressively implement 

this especial tool to solve differential equations 

governing sophisticated engineering problems. 

Each FE code, including Abaqus [1] and Ansys 

                                                
* Corresponding author Email: m.vaziri@ut.ac.ir 

[2] uses especial mesh generation algorithms as 

its own characteristics. In general, in order to 

access optimum mesh, several models with 

increasing numbers of elements are examined; 

the convergence is the main criterion to stop this 

procedure [3]. As an example, Van Miegroet and 

Duysinx [4] applied a novel shape optimization 

approach based on the level set description of the 

geometry and the extended finite element method 

(X-FEM). However, they only examined their 
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approach for problems with stress concentration 

only due to geometry. Performing this 

optimization approach especially for isometric 

mesh is very time-consuming. The adaptive 

meshing has been introduced as a solution. In this 

approach some pre-solution steps indicates where 

finer mesh is needed [5, 6, 7, 8]. As the pioneer, 

Paulino et al. [9] introduces a methodology for 

self adaptive numerical procedures, which relies 

on the various components of an integrated, 

object-oriented, computational environment 

involving pre- analysis, and post-processing 

modules. The mesh (re-) generation process is 

accomplished by means of proposed methods 

combining quadtree, and Delaunay triangulation 

techniques. Murthy and Mukhopadhyay [10] 

developed a fully automatic advancing front type 

mesh generator for especial application. The 

refinement methodology depends on the concept 

of strain energy concentration for completely 

automatic adaptive analysis of mixed-mode crack 

problems. 

The main focus for some adaptive meshing 

procedure is on geometry. Zhao et al. [11] 

argued that the exact description of complex 

geometric features such as holes, slots, and 

curved surfaces is crucial to the accuracy of 

finite element analysis. They presented an 

algorithm for the adaptive generation of the 

initial hexahedral element mesh based on the 

geometric features of the solid model. Liang 

and Zhang [12] presented a novel octree-based 

dual contouring (DC) algorithm for adaptive 

triangular or tetrahedral mesh generation. The 

main purpose was to maintain angle range for 

triangle mesh in the desired range. Sun and 

Zhao [13] presented an adaptive mesh 

generation algorithm for the thin features with 

small thickness of the geometric model, to 

successfully implementing each meshing step, 

containing the techniques for adaptive 

refinement, boundary match, topological 

optimization and local refinement. 

Other adaptive meshing procedures are 

developed in a way to sense any change in 

material. In order to consider real treatment of 

material in crack propagation simulation, 

Alshoaibi and Ariffin [14] developed a finite 

element (FE) program implementing elastic-

plastic property. At each propagation step, the 

adaptive mesh is automatically refined based 

on a posteriori h-type refinement using norm 

stress error estimator. Ruiz-Girones et al. [15] 

propose to combine the size-preserving method 

with a smoothing technique that takes into 

account both the element shape and size. The 

size-preserving technique allows directly 

generating a quadrilateral mesh that reproduces 

the size function, while the proposed smoother 

allows obtaining a high-quality mesh during 

the maintenance of the element size. 

Some researchers specifically studied the 

problems regarding adaptive meshing 

performance at interfaces of biomaterials. 

Rajagopal and Sivakumar [16] proposed an 

adaptive strategy which involves a 

combination of the configurational force based 

r-adaption with weighted laplacian smoothing 

and mesh enrichment by h-refinement. The 

study confirms that the proposed combined r-h 

adaption is more efficient than a purely h-

adaptive approach and more flexible than a 

purely r-adaptive approach with better 

convergence characteristics and helps in 

obtaining optimal finite element meshes for a 

specified accuracy. Carson et al. [17] studied 

the biomechanical problems including the fluid 

and solid phases share a common interface 

geometrically. They argued that spatial 

discretization of complex imaging derived 

fluid–solid geometries, such as the cardiac 

environment, is a critical but often overlooked 

challenge in biomechanical computations. This 

application opens a new window for the future 

of this field. More recently Li et al. [18] 

evaluated interface cracks in piezoelectric 

bimaterials by extending the scaled boundary 

finite element method (SBFEM). In this 

method, a piezoelectric plate is divided into 

polygons. Each polygon is treated as a scaled 

boundary finite element subdomain. Only the 

boundaries of the subdomains need to be 

discretized by line elements. The benefit of this 

approach is that no asymptotic solution, local 

mesh refinement or other special treatments 

around a crack tip are required. 

In this study in order to generate mesh for 

bimaterials adaptively, an algorithm is 

developed to sense different reasons of locally 

rapid changes. The small enough elements are 

generated in the corresponding region. In order 

to evaluate the performance of the procedure, 

different sources of stress concentration are 

investigated individually and simultaneously in 

some benchmark problems. 
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2. The algorithm for mesh generation 

The procedure of mesh refinement starts with 

coarse uniform mesh. After conducting one 

step of solution, the result is evaluated by 

identified criterion and the decision is made 

regarding the size and distribution of the 

elements for the next step. This procedure is 

continued to reach the convergence, where the 

outcome of the analysis does not change in 

further refinement steps. Figure 1 indicates the 

steps for developed algorithm. 

 
Fig. 1. Developed adaptive mesh generation algorithm 
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3. The criteria for mesh refinement  

To find a suitable criterion, a well-known 

benchmark problem having closed form solution 

is investigated [19]. A rectangular plate 
31 0.5 0.01m   with a 15 cm diameter circular 

hole is considered subjected to uniformly 

distributed 10 /kN m load on parallel lateral 

sides. The 207E GPa  and 0.3   are 

considered as property for material. The Abaqus 

software is used to build plane stress 2D model. 

Figure 2a shows the geometry and loading 

condition of the whole model partitioned to four 

similar sections; while Figures 2b and 2c 

demonstrate initial coarse mesh generated for 

one quarter of the whole symmetric model and 

the selected paths around the model, 

respectively. The paths are selected in a way to 

be able to implement advancing front mesh 

generation technique available in Abaqus 

software. In this technique, the user controls the 

meshing procedure via selecting proper number 

and distribution of nodes along each path. As 

boundary condition, the nodes in paths 1 and 4 

are prevented to move in horizontal and vertical 

directions, respectively. 

After each solution step, the stress values are 

extracted from the output file for the nodes 

along the paths shown in Figure 2c. Each 

refinement criterion introduces its own special 

principal parameter that should not be greater 

than the identified value. Several criteria are 

evaluated including deviation from shape 

function, the average of the maximum and 

minimum of the derivatives of stress, the 

average of all nodal stress derivatives, and the 

average of stress variation along each element. 

However, dividing element based on these 

criteria leads to unexpected finer mesh in 

improper regions, as well as very slow 

convergence or even divergence. In some cases, 

the mesh changes significantly after each 

refinement step. Figure 3 demonstrates the 

generated mesh after identified refining steps. 

3.1. Appropriate stress intensity criterion  

It is expected that the mesh in the stress 

concentration zone should be finer; therefore, 

the criteria based on the stress derivative is 

examined as, representative of intensity of 

stress variation. The definition provided by 

finite difference method [20] is used to 

calculate elemental derivative. It is basically 

the slope of the straight line connecting the 

nodal stress values for two neighboring nodes 

in stress variation curve along the path. After 

examining several limitations, the mean 

elemental stress derivatives are identified as 

suitable limit for refinement criterion. Each 

element with elemental stress derivative 

greater than this limit is divided into two 

elements in the mesh refined for the next step 

of algorithm (Fig. 1).    

Considering the initial coarse mesh, the 

local intensity of stress located near one side of 

the element may be vanished; therefore, in 

each refinement step, one element closed to the 

improper element is also divided into two 

elements. 

In order to investigate the convergence, a 

suitable path among the paths shows in Figure 

2c is selected; if the curve representing 

variation of the stress along mentioned path 

does not change considerably after refining 

process, the process is converged to the 

optimum mesh and the refining procedure is 

ended. Figure 4 shows the trend of 

convergence along the path 5 (Fig. 2c). 
It can be seen that the solution converges 

after only 5 refining steps. The authors also 

investigated the convergence in other paths. 

Figure 5 shows generated mesh after the noted 

number of the refining process. 

It is demonstrated in Figures 4 and 5 that 

the solution converges properly. Since the 

mesh is sufficiently fine in the stress 

concentrated zone, the fine and coarse regions 

of optimum mesh are distributed properly. 

Figure 6 shows the optimum mesh for the 

whole model. 

3.2. Evaluation of the generated mesh 

Two different sources are used to evaluate the 

performance of described algorithm. One is the 

result obtained for the mesh generated by 

adaptive mesh option available in Abaqus; the 

other one is the exact analytical solution 

available in some elasticity reference book for 

this benchmark problem [19]. Using the default 

setting for adaptive meshing option is available 

in Abaqus, the convergence is reached after 6 

steps; while only 5 refining steps are needed 

using the developed algorithm. However, there 

are more elements in optimum mesh 

corresponding to algorithm. Figure 7 compares 

the proposed mesh by algorithm and Abaqus. 
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Fig. 2. (a) The geometry and loading condition; (b) mesh generated for a partition; (c) paths around the model 

 

Fig. 3. Proposed mesh

 

 

Fig. 4. Convergence of mesh refining process along the path 5 

(a) After 25 refining steps with deviation 

from shape function criterion 

(b) After 10 refining steps with average of 

maximum and minimum of the derivatives of stress 

criterion 

(c) After 10 refining with average of all 

nodal stress derivative criterion 
(d) After 10 refining with the criterion as average 

of stress variations along each element 

(a) (b) (c) 

1 

2 

3 
4 

5 
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Fig. 5. Generated meshes after the identified number of the refining process 

 

Fig. 6. Optimum mesh obtained by presented algorithm 

 

 

Fig. 7. Mesh proposed by: (a) Abaqus; (b) algorithm 

Although the general pattern of meshes is 

similar in Figure 7, the detailed look reveals 

the slightly different distribution. To investigat 

the accuracy, the predicted stress is compared 

along the paths 1 and 5 (Fig. 2c) in Figures 8 

and 9 with the exact solution [19]. 

(b) 

 

(a) 

 

After 5 iterations 

 

After 1 iteration After 2 iterations 

 

After 3 iterations 

 

After 4 iterations 

 



Vol.46, No.2, July 2015 
 

183 

 

 

Fig. 8. Predicted stress along path 1 

 
Fig. 9. Predicted stress along path 5 

As it can be seen in Figures 8 and 9, good 

agreement is seen between the results of all 

three approaches. Therefore, the developed 

algorithm converges fast enough and presents 

high quality mesh. Considering that path 5 

goes through the stress concentration region, 

the Figure 5 demonstrates the proper 

performance of developed algorithm in 

capturing the stress intensity compared to the 

available adaptive meshing of Abaqus. 

4. Practical application of algorithm 

To investigate more general cases, the 

performance of developed algorithm is 

evaluated in some practical examples including 

other sources for stress concentration. 

4.1. Rectangular plate with concentrated load 

Rectangular plate 
36 2 0.01m  with a 

longitudinal concentrated force 0.01 N made 

from a material with 207E GPa  and 

0.3   is considered, as representative of the 

problem with stress concentration due to 

concentrated force. Figure 10 demonstrates the 

geometry and loading condition of the whole 

model, initial coarse mesh generated for a 

quarter of the whole symmetric model and the 

selected paths around the model. 

 

 

Fig. 10. The geometry, load, initial coarse mesh and paths for the model 

2 

3 

4 
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The Mesh refinement process is conducted 

based on the developed algorithm. Figure 11 

shows the trend of convergence along the path 

4. As it shows, the convergence has reached 

properly after only 4 mesh refining processes 

except for the end part of the path 4 which is 

closed to the loading point. From the elasticity 

equations governing the problems with 

concentrated load (Flamant problem), the 

loading point is a single point having infinite 

stress value [19]. Therefore, the refining 

process stopped based on the convergence in 

other paths. Figure 12 shows this convergence 

along the path 2. Figure 13 shows generated 

mesh after the noted number of the refining 

process. 

 

 
Fig. 11. Convergence trend along the path 4 

 

Fig. 12. Convergence trend along the path 2 

 

Fig. 13. Generated meshes after the noted number of the refining process 

 

After 1 iteration 

 

After 2 iterations 

 

After 3 iterations 

 

After 4 iterations 
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Figure13 demonstrates that the algorithm 

works properly; since the mesh is significantly 

fine closed to loading region. Figure 14 shows 

the proposed optimum mesh for the whole 

model. 

4.2. Rectangular bimaterial plate with 

distributed load 

Square plate 
34 4 0.01 m   with a square 

hole 
31.5 1.5 0.01 m  at the center is loaded 

with 1 MPa distributed pressure in all four 

sides, the internal square hole is filled with a 

material with 0.01inE GPa  and 0.49in  , 

while the surrounding square is made of a 

material with 207outE GPa , 0.3out  . 

This example represents stress concentration 

due to sudden change in material. Figure 15 

demonstrates the geometry and loading 

condition of the whole model, initial coarse 

mesh generated for a quarter of the whole 

symmetric model and the selected paths around 

the model. The mesh refinement process is 

conducted based on the developed algorithm. 

Figure 16 shows the trend of convergence 

along the path 2. Figure 17 shows generated 

mesh after the noted number of the refining 

process. 
 

 

Fig. 14. Optimum mesh obtained by presented algorithm 

 

Fig. 15. The geometry, load, initial coarse mesh and paths for the model 

 
Fig. 16. Trend of convergence along the path 2 
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Fig. 17. Generated meshes after the noted number of the refining process 

As it can be seen in Figure 16 the solution 

converges properly; since the fine mesh is 

generated around the region corresponding to 

sudden material changes (Fig. 17). Figure 18 

shows the optimum mesh for the whole model. 

4.3. Mesh generation of fiber reinforced 

polymer materials 

Gonzalez and Lorca [3] studied the mechanical 

behavior of fiber reinforced polymer materials. 

They built the FE model implementing uniform 

mesh. To obtain convergence for the solution, 

they used extremely fine mesh. This example 

includes a combination of several stress 

concentration sources including concentrated 

force and sudden changes in geometry and 

material. As a more general problem, an 

arbitrary part of the whole geometry is 

considered which includes a complete circular 

section of one fiber as well as small parts of 

two other fibers. 

The model is built based on the same 

material property in plane strain condition with 

6-node quadratic is oparametric triangle 

elements (CPE6M) [1]. Figure 19 demonstrates 

the geometry and loading condition of the 

model, initial coarse mesh, and the selected 

paths around the model. The mesh refinement 

process is conducted based on the developed 

algorithm. Figure 20 shows the trend of 

convergence along the path 3. 

 
Fig. 18. Optimum mesh obtained by presented 

algorithm 

 

Fig. 19. The geometry, load, initial coarse mesh and 

paths for the model 
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After 1 iteration 

 

After 2 iterations 

 

After 3 iterations 

 

After 4 iterations 

 



Vol.46, No.2, July 2015 
 

187 

 

 
  Fig. 20. Trend of convergence along the path 3 

As it shows ,in Figure 20 the solution 

convergence is only after 3 refining steps 

except at the load exertion point. Similar 

discussion as mentioned in Figure 11 can be 

noted again here. 

To investigate the convergence, the other 

paths are considered. Figures 21 to 24 

demonstrate proper convergence of stress 

curves along paths 1, 2, 4 and 5, respectively. 

Figure 25 shows generated mesh after the 

identified number of the refining process. 

 

 

Fig. 21. Trend of convergence along the path 1 

 
Fig. 22. Trend of convergence along the path 2 

 
Fig. 23. Trend of convergence along the path 4 
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Fig. 24. Trend of convergence along the path 5 

 

Fig. 25. Generated meshes after the noted numbers of the refining process 

In this example, there exist all three types of 

stress concentration sources; while Figure 25 

shows distinguishably finer mesh in the region 

of force exerted. As mentioned before, this is a 

single point with infinite stress value. Because 

of extremely rapid change in the stress in this 

point, the element only in this region is 

recognized as the main improper elements in 

each step of refining procedure. 

Since the convergence is obtained suitably, 

the mesh refined at the third refining step is 

proposed as optimum mesh which is compared 

with the mesh used by Gonzalez and Lorca [3] 

in Figure 26. 

 

 

Fig. 26. (a) Uniform mesh used by Gonzalez and Lorca [3]; (b) optimum mesh identified by the algorithm 

(a) (b) 

After 1 iteration 

 

After 2 iterations 

 

After 3 iterations 

 



Vol.46, No.2, July 2015 
 

189 

 

Figures 27 and 28 compare the variation of 

stress along paths 2 and 4 obtained using two 

meshes shown in Figure 26. 

In Figures 27 and 28 good agreement can be 

observed seen between the results obtained 

using two meshes, except at the load point; 

Therefore, the developed algorithm presents 

mesh with less number of elements as well as 

more desired distribution. 

  

 

Fig. 27. Stress along path 2 

 

Fig. 28. Stress along path 4 

5. Conclusions  

This adaptive mesh generation procedure is 

able to distribute element with different size of 

element in the analysis domain properly. This 

is a great modification compared to 

convergence procedure required for uniform 

mesh generation. In addition, it usually 

converges after a few refinement steps. The 

average of elemental stress derivatives is 

indicated as suitable limit value for the element 

refining process. Implementing this algorithm 

the convergence is fast and accurate enough 

compared to options available in Abaqus. 

Several examples studied in this study 

demonstrate that the described mesh generator 

senses all sources for sudden changes in output 

parameters successfully. Therefore, it proposes 

the optimum mesh to capture the behavior of 

bimaterials specifically at interfaces. This 

procedure has the potential to be computerized 

as a subroutine for commercial FE software in 

order to automatically generate optimum mesh 

after some preliminary solutions. 
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