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Abstract 

In the present research, nonlinear vibration in a coupled system of Boron-Nitride nano-tube reinforced 
composite (BNNTRC) oil pipes is studied. Single-walled Boron-Nitride nano-tubes (SWBNNTs) are 
arranged in a longitudinal direction inside Poly-vinylidene fluoride (PVDF) matrix. Damping and 
shearing effects of surrounded medium are taken into account by visco-Pasternak model. Based on 
piezoelectric fiber reinforced composite (PFRC) theory, properties of smart coupled BNNTRC oil 
pipes are obtained. The equations of motion as well as the boundary conditions are derived using 
Hamilton’s principle. The effects of various parameters such as volume fraction and orientation angle 
of fibers, viscosity and density of fluid on stability of coupled BNNTRC oil pipes are investigated. 
Results indicate that stability of smart composite system is strongly dependent on angle orientation 
and volume percent of BNNTs. Results of this investigation can be used in oil refineries. 

Keywords: Coupled oil pipes, Polymeric nano-composite, Visco-elastic foundation, PFRC theory. 

 

1. Introduction

 

In the past several years, many researchers have 
focused on nano-tube reinforced composite 
properties and discovered that mechanical, 
electrical and thermal properties of polymer 
composites can be significantly improved when 
small percent of nano-tube such as carbon nano-
tubes (CNTs) and BNNTs add as fibers. 
Although, the main purpose of these 
investigations are development of this advanced 
material in actual structures. Premium features 
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of nano-tubes (high strength and stiffness) 
causes to utilize it as reinforcement instead of 
conventional fibers in nano/ micro-composite 
structures such as beam, plate and shell. 
Introduction of BNNT as a piezoelectric 
material which have coupled the electro-
mechanical effects into polymer matrix, upgrade 
the application of nano/ micro-composites and 
make a system of smart materials.  

In recent years, various researches have 
been carried out to analyze buckling, dynamic 
stability, and free vibration of the smart 
structures in which the shell theory have been 
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employed. Using generalized differential 
quadrature method (GDQM), Shu [1] 
investigated free vibration of composite 
conical shell reinforced with a piezoelectric 
layer. Free vibration and buckling analysis of 
composite cylindrical shells conveying hot 
fluid was studied by Kadoli and Ganesan [2].  

The axisymmetric temperature variation and 
the steady flow of hot fluid in the composite 
shell were assumed in their study. They utilized 
first order shear deformation theory to model 
the elastic shells. Their results demonstrated that 
the influence of fiber angle on the critical mean 
axial velocities is considerable.  

A three-dimensional solution of smart 
laminated anisotropic circular cylindrical shells 
with imperfect bonding was presented by Wang 
and Zhang [3]. Salehi-Khojin and Jalili [4] 
studied the buckling behaviour of BNNT 
reinforced PVDF under combined electro-
thermo-mechanical loadings. They used Donnell 
shell theory to obtain governing equations of 
motion. In addition, they developed a new 
equivalent spring constant model of piezoelectric 
matrix under electro-thermo-mechanical loadings 
based on Whitney–Riley model. Their results 
showed that applying direct and reverse voltages 
to BNNT changes the buckling loads for any 
axial and circumferential wave numbers.  

Amabili et al. [5] researched fluid filed, 
conveying fluid and empty tubes as a circular 
cylindrical shell. Both Donnell and Sanders–
Koiter nonlinear theories were used to obtain 
stain-displacement relations of the shell. The 
fluid was modelled by potential flow theory 
but the effect of steady viscous forces was 
taken into account. They used Non-classical 
boundary conditions to simulate the conditions 
of experimental tests in a water tunnel. In 
addition, the comparison between numerical 
and experimental results was performed in 
their study. Free vibration response of 
composite sandwich cylindrical shell with 
flexible core was studied by Rahmani et al. [6]. 
Their results revealed that the sandwich shells 
with flexible core  exhibit a complex behaviour 
and the vibration patterns of the sandwich 
cylindrical shells are more complex than those 
of the homogeneous shells. Furthermore, it was 
observed that the natural modes of the 
sandwich shell are different from those of the 
sandwich plate and have a mixed mode nature. 

Vibration and stability of micro-scale 

cylindrical shell conveying fluid was 
conducted by Zhou and Wang [7]. They 
employed modified couple stress theory to 
consider size effect. Governing equations are 
obtained by means of classical shell theory. 

It was concluded that larger size effect of 
the natural frequencies is shown for smaller-
size micro-scale shell containing static fluid, 
and much larger size effect is shown for the 
micro-scale shells conveying fluid with a 
certain flow velocity, as compared with that of 
the empty shell. 

Based on nonlocal piezo-electricity theory, 
vibration and buckling behaviour of double-
walled Boron-Nitride nano-tubes (DWBNNTs) 
embedded in an elastic medium with and 
without fluid was studied by Ghorbanpour 
Arani et al. [8-9]. They showed that the electric 
field effect on the frequency is approximately 
constant, while it decreases with increasing 
temperature change. Also, they concluded that 
the electric field and its direction have affected 
the magnitude of the critical buckling load. In 
the other work, Ghorbanpour Arani et al. [10] 
researched into the nonlinear nonlocal 
vibration and instability of conveyed micro-
tube reinforced by BNNT using Donnell’s shell 
theory. Their results showed that increasing 
volume fraction and angle orientation of fiber 
causes to increase stiffness of micro-tube.  

Based on modified couple stress theory, 
Ghorbanpour Arani et al. [11] studied on 
nonlinear vibration of embedded smart 
composite microtube conveying fluid. They 
used Timoshenko beam (TB) model to obtain 
governing equations of motion. They 
demonstrated that the material properties of 
matrix and reinforcement have a significant 
role on stability of microtube. 

However, vibration analysis of coupled 
system of BNNTRC oil pipes conveying 
viscous fluid embedded in an elastic medium is 
a novel topic that it hasn’t been found in 
literature. Motivated by these considerations, 
our aim is to study of electro-thermal vibration 
analysis of coupled composite oil pipes which 
is placed in uniform temperature and electric 
fields. Oil pipes are simulated by cylindrical 
shell model and they have been coupled 
together with visco-Pasternak medium. Higher-
order equations of motion have been derived 
based on Hamilton’s principle and differential 
quadrature method (DQM) is applied to obtain 
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vibrational response of coupled composite 
system. Results of this investigation can be 
used in oil refineries. 

2. Constitutive equations based on PEFRC 

theory 

To obtain properties of coupled composite oil 
pipes, a representative volume element (RVE) 
has been considered and micro-mechanical 
method known as "XY PEFRC" or "YX 
PEFRC" [12-13] is employed. In this modelling, 
both matrix and reinforcement are assumed to 
be smart and the BNNTs are considered as a 
longitudinal straight fibers in both oil pipes. 
According to the XYPEFRC micro-mechanical 
method, the constitutive equations for the 
electro-thermo-mechanical behavior of the 
selected RVE are expressed as [10]: 
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(1) 

where { i },{ ij }, {  },{ ij }, {D} and {E} are 
normal stresses, shear stresses, normal strains, 
shear strains, electric displacement and electric 
field vectors, respectively. Also, [C], [e] and 
[] are matrices of elastic stiffness, 
piezoelectric and dielectric parameters, 
respectively. Furthermore, the coefficients of 
thermal expansion and pyroelectric are shown 
by {  } and { p }, respectively, and the 
temperature change is represented by T . 
Assuming plane stress condition and 
unidirectional electric field along the pipe, 
equation (1) can be simplified as follows [7]: 
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 (2) 

where x  and   are longitudinal and 
circumferential coordinates with the origin 
located at the mid-plane of the oil pipes and 
matrix [Q] is defined as: 
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The longitudinal component of electric field 
in terms of electric potential is defined as [7]: 

,xE
x


 


 (4) 

where   denotes the scalar function of electric 
potential. To consider the effects of orientation 
angle of the BNNTs with respect to the 
longitudinal axis, the following transformation 
matrix can be employed as: 

      .
~ TTQTQ   (5) 

The transformation matrix [T] is [14]: 
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where   is the angle of BNNTs with respect to 
the pipes axis. 

3. Donnel’s shell theory 

Figure 1 demonstrates two composite oil pipes 
which are coupled with visco-Pasternak 
medium. PVDF and BNNTs are selected as a 
matrix and reinforcement, respectively. Both 
oil pipes are conveying viscose fluid and 
nonlinear vibration of coupled smart system is 
investigated using shell theory. 

 
Fig. 1. Schematic of the coupled composite BNNTRC 

oil pipes embedded in visco-Pasternak medium 
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The displacement components of cylindrical 
shell in the axial ( x ), circumferential ( ), and 
radial ( z ) directions can be written as [15]: 
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where ii vu ,  and iw  refer to the displacement 
components of the middle surface of the shell 
in the axial, circumferential and radial 
directions, respectively. Also, z  is the distance 
from an arbitrary point to the middle surface. 
Note that iR  is the mean radius of composite 
oil pipes. Here, 2,1i  represent the upper and 
lower oil pipes, respectively. Based on 
Donnell’s shell theory and applying equation 
(7), strain-displacement relationships may be 
written as [15]:  
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4. Strain energy 

Based on shell theory, the strain energy of oil 
pipes is expressed as: 
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where  ,xx  and  x  are axial, 
circumferential and  shear stresses, respectively. 

5. Kinetic Energy 

Velocity field vector ( ),,( zx VVVV 


) for the 
fluid conveying through the composite oil 
pipes is the relative velocity of fluid and oil 
pipes which can be expressed as [15]: 
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of fluid and X  is the ratio of fluid velocity in 
lower pipe than upper one. 

According to Equation (11), the kinetic 
energy of coupled composite oil pipes and the 
kinetic energy associated with the fluid flow 
are, respectively, given by [15]: 
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To evaluate the viscosity effect on the 
frequencies of coupled microtubes, Navier-
stokes equation can be used as follows [16, 
17]: 
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to Equation (13) viscosity terms were derived 
and added to the equations of motion. 
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6. External work 

The forces due to surrounding elastic medium 
which is simulated by visco-Pasternak model 
are expressed as follows [18-21]: 
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where 1F  is the external forces applied on 
upper pipe and 2F  is applied force on lower 
pipe. wk , Gk  and dC  are spring, shear and 
damping modulus, respectively. The external 
work due to surrounding elastic medium can be 
written as: 
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7. Hamilton’s principle 

Based on Hamilton’s principle, the variational 
form of equations of motion can be written as 
[21]: 
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Nonlinear coupled differential equations are 
derived with rearranging the governing 
equations in terms of mechanical displacement 
( u , v and w ) as well as electric potential (  ). 
For the sake of brevity, the relations are 
presented in Appendix A. In order to change 
the equations of motion in a dimensionless 
form, some parameters are defined in Table 1. 

Table 1. Dimensionless parameters 
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It should be noted that identical geometric 
parameters are considered for both pipes in this 
study. 

8. Solution method 

Due to existence of nonlinear terms in equations 
of motion, they could not be solved analytically. 
Therefore numerical method must be employed 
to obtain frequency of coupled system. In this 
research, DQM is used to approximate the 
partial derivative of a function, with respect to a 
spatial variable at a specific discrete point, as a 
weighted linear sum of the function values at all 
discrete points chosen in the solution domain of 

the spatial variable. Let F be a function 
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where )(n
ikA  and )(m

jlB  are the weighting 
coefficients associated with nth-order partial 
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derivative of ),( F  with respect to   at the 
discrete point i  and mth-order derivative with 
respect to   at i , respectively [22]. Chebyshev 
polynomials [22] are selected for positions of 
the grid points. At first the solution of the 
equations of motion can be assumed as follows: 
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natural frequency. 

According to DQM, boundary conditions for 
clamped-clamped shell can be written as [22]: 

1 1 1 1 2
1

( 1)
1

0 0,

0 0.
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i i i i j ji
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(19) 

 
 

Imposing the above boundary conditions 
into equations of motion lead to the following 
constitutive matrix equation as: 

{ } { } 0,NL L NL LMY C C Y K K Y      (20) 

where Y is the displacement vector, M  is the 
mass matrix, }{ LNL CC   is the damping matrix 
and }{ LNL KK   is the stiffness matrix. 

Considering above boundary conditions, the 
matrix form of the equation (20) can be written 
as follows: 

 

 

 

 

 

 

      0          0

           

 0           0
0,
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db dddb dd d d
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db dd d
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Y

M M Y

                       
      

                        

          
   
            

 (21) 

 

where db and dd represent boundary and 
domain points. As it was already said by 
assuming {{ },{ }} { , }b d b dY Y y y e  the 
following standard eigenvalue problem yields: 

,               {{ },{ }} ,T
b bAZ Z Z Y Y   (22) 

where   is the eigenvalues and matrix A can be 
defined as ,

       
                 0      

11 











C-M KM
I

A --

that I  is unit matrix. 

9. Numerical results and discussion 

As mentioned in the previous sections, 
nonlinear frequency and critical fluid velocity 
for coupled composite pipes embedded in 
visco-Pasternak foundation was studied where 
PVDF and BNNT have been taken into 
account for smart matrix and piezoelectric fiber 
of the composite pipes, respectively. The 
structural properties of these materials are 
given in Table 2 [7, 23]. 

Table 2. Mechanical, electrical and thermal properties of PVDF and BNNTs 

PVDF [23] BNNT [7] 

/Nm10385 212
332211

 SSS  GPaCCC 2035332211   
/Nm10165 212

231312
 SSS  GPaCCC 692132312   

/Nm101330 212
665544

 SSS  GPaCCC 672665544   
Vmd /1020 12

31
  mCe /95.033   

Vmd /103 12
32

      
Vmd /10)1446( 12

33
  12

0 8.854185 10 ( / )F m    
01524  dd   

 
In addition, the geometrical properties of 

composite pipes and the constants of elastic 
medium are given follows: 

31 , 0.05 , 800 , / 15,

100, 0.1, 0.01.

f

w G d

Kgr m h m l r
m

K K C

   

  

  
(23) 

Figures 2a and 2b illustrate the effect of 

orientation angle on vibration of coupled 
system. Since the orientation angle of fiber can 
be affected the feature of materials, it is a very 
important factor. This coupled system has been 
reinforced by BNNTs that can be aligned in 
different direction. It is obvious from Figures 
2a that increasing angle cause to decrease the 
frequency and critical fluid velocity. Also, the 
stiffness of coupled system increases when the 
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fibers are arranged along the axis of oil pipes. 
Therefore, 0 is the best fiber angle to obtain 
more stability. 

Figures 3a and 3b show the effect of 
volume fraction of BNNT in composite oil 
pipes on vibration of coupled system. It is 
found that the strength of composite pipes 
increase significantly by increasing the volume 
fraction of BNNT, and consequently the 
stability of coupled system enhances. Designer 
could meet their purposes to manufacturing the 
resistant structures by selecting the suitable 
percent of fiber. 

Figures 4a and 4b illustrate the effect of 
different elastic medium on dimensionless 
frequency versus dimensionless fluid velocity. It 
is obvious that existence of Winkler and 
Pasternak foundation enlarge the stability region 

of coupled system and increase the frequency 
too. It is worth to note that in the presence of 
damping the positive effect of the elastic medium 
reduces in both cases including Winkler and 
Pasternak types. It is seen that )Im( increases by 
increasing the elastic foundation stiffness and 
decrease as uf  increases. It is clear that the elastic 
foundation increases the stability of coupled 
system. 

Figure 5a and 5b depict the effect of 
temperature changes on imaginary and real part 
of coupled system frequencies. It is evident 
from these figures that increasing temperature 
change causes to decrease critical fluid velocity. 
Therefore, minimum temperature change should 
be selected in such coupled system. 
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Fig. 2. Effect of angle orientation of BNNTS on dimensionless natural and damping frequencies 
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Fig. 3. Dimensionless natural and damping frequencies versus dimensionless fluid velocity for various volume 

fractions of BNNTs 

JCAMECH, 



Ghorbanpour Arani et al. 
 

100 
 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

u
f
(Dimensionless velocity)

D
im

e
n
s
io

n
le

s
s
 f

re
q
u
e
n
c
y
,I

m
( 

)

 

 

Winkler foundation

Pasternak foundation

visco-Pasternak foundation

 
0 0.5 1 1.5 2 2.5 3 3.5 4

-4

-3

-2

-1

0

1

2

3

4

u
f
(Dimensionless velocity)

D
im

e
n
s
io

n
le

s
s
 f

re
q
u
e
n
c
y
,R

e
( 

)

 

 

visco-Pasternak foundation

Winkler foundation

Pasternak foundation

 
(a) (b) 

Fig. 4. Effect of elastic medium on stability of coupled BNNTRC oil pipes 
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Fig. 5. Effect of Temperature changes on imaginary and real part of frequencies of coupled BNNTRC oil pipes 

Figure 6 demonstrates the effects of density 
of fluid on the nonlinear vibration of coupled 
system. Two kind of oil with different Iso 
grades have been selected to study the effect of 
density of fluid. Results show that the density 
of fluid is an important parameter that affects 
the results.  So that by increasing the density, 
both frequency and critical velocity increase. 

Figure 7 illustrates the dimensionless 
transverse displacement of two composite 
tubes along the longitudinal axis. This figure 
shows both in phase (synchronous) and out of 
phase (asynchronous) vibrations. In addition, 
clamped-clamped boundary conditions at the 
both ends of composite tubes are satisfied. As 
can be seen, in the synchronous vibration both 
tubes are moved together, while the motion of 

upper and lower tubes is opposite in 
asynchronous case. 

Figure 8 depicts distribution of electric 
potential ( ) in the coupled system for various 

fu . As can be seen, constant electrical 
boundary conditions at the both ends of 
composite tubes are satisfied. In Figure 8, 
electric potential,  , is directly related to fu . 
Due to coupling between mechanical and 
electrical fields in piezoelectric materials, 
stress and deformation of tubes lead to higher 
electric potential as fluid velocity increases. It 
can be used in the warning system and sensors.  
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Fig. 6. Effect of density of oil conveyed in composite oil pipes on dimensionless natural frequency 
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Fig. 7. Dimensionless transverse displacement of two composite tubes along the longitudinal axis 
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Conclusion  

In this study, nonlinear vibration and stability 
of a smart coupled composite oil pipes 
reinforced by BNNTs conveying viscose fluid 
embedded in a visco-Pasternak foundation was 
considered. The composite consist of fibers 
and matrix, PVDF was used as a matrix and 
BNNTs as smart nano-fibers in longitudinal 
direction. The governing equations of motion 
were obtained using Hamilton principle. The 
nonlinear frequency and critical fluid velocity 
were the result of solving equations of motion 
with clamped–clamped boundary conditions 
using DQ method. The results showed that 
angle and volume percent of fibers can affect 
the system stability, also, the material of matrix 
and fibers change the mechanical behaviour of 
coupled system, in this regard, piezo-electrics 

can be utilized as smart fibers in composite 
structure. Also, it can be seen that the trend of 
figures have good agreement with the previous 
researches. Results of this investigation can be 
used in oil refineries. 
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Governing equations of motion: 
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