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Abstract 

In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide 

stable walking or running gaits for legged robots. This method is realized by developing a semi-

analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, 

several control methods based on passive dynamic walking have been proposed by researchers to 

provide an efficient human-like biped walking robot. For most of these passive based controllers the 

main idea is to shape the robot’s energy level during each SSP to restore the mechanical energy which 

has been lost in the previous Impact Phases (IP); however, the EDRC method provides stable gaits for 

legged robots just by controlling the robot’s energy level during each IP. In this paper EDRC is 

applied to a Six-Link Three-Point Foot (6L3PF) model, to realize an active dynamic galloping gait on 

level ground. As the point-foot contact assumption for the 6L3PF imposes one degree of under-

actuation in the ankle joint, it is not clear how to specify the forward kinematic defining the swing leg 

position and velocity as a function of actuated joint angles. So, a new strategy for solving the dynamic 

and kinematic equations of the robot is introduced for deriving suitable joint trajectories during each 

SSP. Simulation results show that the proposed methods in this paper are effective and the robot 

exhibits a stable dynamic galloping gait on level ground.  

 

Keywords: Inverted Pendulum Model (IPM), passive dynamic walking, point-foot contact assumption, 

semi-analytical pattern generation. 

 

1. Introduction
 
 

Passive dynamic walking, as proposed by 

McGeer, is known as the most energy-efficient 

approach, in which a biped robot walks down a 

gentle slope continuously and stably just by 

utilizing its natural dynamics [1,2]. But 

deployment of such robots is faced with 

problems. On one hand steady gait cannot be 
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obtained easily without suitable parameter 

choice; on the other, steady gait is very 

sensitive to initial states and ground slope [3]. 

To overcome these problems, the concept of 

passive based controllers was developed, 

which uses the minimal actuations such as 

ankle torque or hip torque to achieve stable 

limit cycle [4]. Consequently, several 

researchers have shown their interest in the 

applications of passive dynamic walking to 
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realize efficient dynamic walking on level 

ground. For most of these passive based 

controllers, the pattern-generation mechanism 

during each SSP is based on the idea of 

restoring the mechanical energy which has 

been lost in the previous IPs, for example 

energy shaping control [5,6], virtual gravity 

control [7–10], or parametric excitation control 

[11]. But this is a complicated task, as during 

each SSP the total mechanical energy of the 

robot is a function of the robot’s position and 

velocity simultaneously. Also, controlling the 

robot’s energy level during SSP makes the 

walking pattern almost arbitrary. Based on the 

fact that during an IP, the robot does not 

exhibit significant movements and the level of 

mechanical energy is just a function of the 

robot’s velocity, in this paper the EDRC 

method is introduced, which proposes the idea 

of controlling the amount of energy lost in each 

IP by controlling the robot’s velocity just 

before each IP. Also, elimination of the robot’s 

energy-level constraint enables us to control 

the robot’s walking pattern during each SSP, 

which is very desirable for robots that work on 

irregular terrains. 

As mentioned above, applying the EDRC 

method demands exact control of swing-limb 

velocity just before each IP, but for legged 

robots with point-foot contact assumption there 

is no actuation at the ankle joint. Therefore, 

there is no direct control over the foot angle 

with the ground, and it is not clear how to 

specify the forward kinematics defining the 

swing-limb position and velocity as a function 

of actuated joint angles [12]. In fact, in such 

mechanisms the kinematic equations of the 

actuated element are coupled to the dynamic 

equations of the under-actuated elements. This 

paper therefore introduces how the kinematic 

and dynamic equations of a 6L3PF robot with 

one degree of under-actuation in the ankle joint 

could be written as an Ordinary Differential 

Equation (ODE) system to generate suitable 

trajectories for actuated joint during each SSP. 

Also, the uniqueness of this ODE’s answer 

avoids any redundancy problem during the 

pattern generation. 

The rest of this paper is organized as follows. 

Section II introduces mechanical structure and 

galloping methodology. Section III describes 

dynamic equations of the robot for SSP. Section 

IV explains the proposed semi-analytical 

trajectory-generation algorithms. Section V 

presents control law and stability criteria, and 

finally in section VI effectiveness of the 

proposed methods is examined by numerical 

simulations. Results show that the proposed 

under-actuated quadruped robot can gallop on 

level ground, firmly and continuously. 

2. Model Description 

2.1. Mechanical Structure 

Figure 1 shows the model of the planar 

quadruped robot dealt with in this paper. This 

mechanical arrangement consists of one torso and 

three separate legs, such that there is a thigh, a 

shank, and a point foot  F

ST SWm m  for each 

one of the fore legs, and a leg and a point foot 

 H
SWm  for the hind leg. Physical parameters for 

each rigid link (torso/leg/thighs/shanks) include 

the mass (mi), the length (Li), the distance 

between the centre of mass and distal point (ai), 

and the inertia moment (Ii). Also, this robot is 

composed of six frictionless pin joints (ɵi, i= 1, 2, 

3, 4, 5, 6) measured counter clock-wise (CCW) 

with respect to the horizontal line. They are 

introduced separately as: stance ankle joint (J1), 

connecting the foot and the shank of the stance 

leg together; stance knee joint (J2), connecting the 

shank and the thigh of the stance leg together; 

shoulder joint (J3), connecting the swing-fore-leg 

and the stance leg together; swing knee joint (J4), 

connecting the thigh and the shank of the swing-

fore-leg together; torso joint (J5), connecting the 

torso and the stance leg together; and hip joint 

(J6), connecting the swing-hind-leg and the torso 

together. 

 

Fig. 1. Six-Link Three-Point Mass (6L3PM) Model 
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During each SSP the stance knee joint (J2) 

is assumed to be locked with an offset and via 

a knee stopper to avoid the singularity problem 

in analytical calculation. So, during each SSP 

the stance leg is considered as a conjunct link 

with virtual length of L, as represented by the 

dashed line in Figure 1. 

2 1 , 0  θ θ φ φ  (1) 

2.2. Bouncing methodology 

In this article no Double Support Phase (DSP) is 

considered; therefore a complete cycle of 

galloping gait is composed of one Jump-Off 

(JO), one Flight Phase (FP), one Touch-Down 

(TD), two SSP, and two IP. A complete cycle of 

galloping starts with a JO such that the angular 

velocity of the joints increase during a very 

short time, after which the robot enters FP such 

that the whole robot behaves as a ballistic 

throw; FP ends by a plastic collision between 

the fore feet and the ground as TD. After that, 

during the first SSP, one of the fore legs is 

considered as an IPM, stance leg, which rotates 

around its contact point passively [13,14]; on 

the one hand the whole torso and hind leg and 

on the other hand the swing-fore-leg are 

considered as two Fully-Actuated-Double-

Pendulum-Model (FADPM) mounted at hip 

level of the stance leg. In this manner, during 

the SSP the hind leg, torso and swing-fore-leg 

come forward fully actuated, while the stance 

leg rotates around its contact point passively. As 

soon as the swing-fore-foot reaches the ground, 

the first SSP ends and the first IP takes place 

instantaneously. During IP a completely plastic 

collision occurs between the swing-fore-foot 

and the ground, and the velocity of the elements 

change [15]. The second SSP starts just after the 

first IP. As in the first SSP, the hind leg and the 

torso act as a FADPM, but the role of swing and 

stance leg is exchanged between the two fore 

legs. This whole cycle repeats continuously to 

produce a galloping gait. 

3. Driving the Dynamic Equation 

Since during both SSPs the stance knee joint is 

locked, the whole robot is to be considered as 

an open kinematic chain with five links and 

five Degrees of Freedom (DOF). Therefore, 

using the well-known Newton’s Second Law 

or the Euler-Lagrange approach, dynamic 

equations of the model can be obtained as: 

     M θ θ C θ,θ θ g θ ST    (2) 

where  
T

1 3 4 5 6θ θ θ θ θ θ is the generalized 

coordinate vector of the robot, M(ɵ)= [5×5] is 

the inertia matrix,   C θ,θ [5 5]   is the 

centripetal and coriolis forces matrix, and  

 g θ [5 1]    is the gravitational effects 

vector. Also,   
T

3 4 5 6T 0T T T T  represents the 

generalized internal torque vector, and  

S [5 5]   is a matrix which selects the 

actuator torques for each segment such that T3, 

T4,T5 and  T6 appear at the shoulder joint (J3), 

the swing knee joint (J4), the torso joint (J5), 

and the hip joint (J6) respectively.  

4. Trajectory Generation 
Using the kinematic and dynamic equations of 

the robot during SSP, here a systematic 

approach is presented to generate robot 

trajectories from the solution of an ODE 

system. 

4.1. Dynamic analysis 

Equation (2) contains five coupled ODEs. By 

eliminating  and  in these five 

equations:   

1 3 4 5 6 1 3 4 5 6

1 3 4 5 6

f (θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,

θ ,θ ,θ ,θ ,θ ) 0
 (4) 

This is an ODE with five unknowns 

i(θ ,i 1,3,4,5,6)  where four more equations 

needs to be solved. In the following describes 

how the kinematic equations of the robot are 

used to form these four extra equations. 

4.2. Kinematic analysis 

If 
T

[ , ]
F F

SW SWx y  and 
T

[ , ]
H H

SW SWx y  represent the 

position of the swing-fore-foot and swing-

1 1 0 1 0

0 1 1 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1

  
 
 
 

 
  

S  (3) 
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hind-foot, respectively, and the origin of the 

local coordinate system lies in the stance foot’s 

ankle, as depicted in Figure 1. The position of 

the swing feet could be written as: 

 

 
1 1 3 4

2 1 3 4

q θ ,θ ,θ

q θ ,θ ,θ





F

SW

F

SW

x

y
 (5) 

 

 
3 1 5 6

4 1 5 6

q θ ,θ ,θ

q θ ,θ ,θ





H

SW

H

SW

x

y
 (6) 

By differentiating Equations (5) and (6) the 

velocity and acceleration of swing feet can be 

written as: 

 
 

5 1 3 4 1 3 4

6 1 3 4 1 3 4

q θ ,θ ,θ ,θ ,θ ,θ

q θ ,θ ,θ ,θ ,θ ,θ





F

SW

F

SW

x

y
 (7) 

 
 

7 1 3 4 1 3 4 1 3 4

8 1 3 4 1 3 4 1 3 4

q θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ

q θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ





F

SW

F

SW

x

y
 (8) 

 
 

9 1 5 6 1 5 6

10 1 5 6 1 5 6

q θ ,θ ,θ ,θ ,θ ,θ

q θ ,θ ,θ ,θ ,θ ,θ





H

SW

H

SW

x

y
 (9) 

 
 

11 1 5 6 1 5 6 1 5 6

12 1 5 6 1 5 6 1 5 6

q θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ

q θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ





H

SW

H

SW

x

y
 (10) 

By taking , 
 

F F

SW SWx y  and , 
 

T
H H

SW SWx y  

as known parameters, Equations (4), (8) and 

(10) make a five-ODE and five-unknown 

system, which can be written according to the 

explicit form of 1θ  , 3 4,θ θ  , 5θ  and 6θ  as: 

1 1 1 2 3 4 5 1 2 3 4 5

3 3 1 2 3 4 5 1 2 3 4 5

4 4 1 2 3 4 5 1 2 3 4 5

θ f (θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,

, , , )

θ f (θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,

, , , )

θ f (θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,

, ,







F F H H

SW SW SW SW

F F H H

SW SW SW SW

F F

SW SW

x y x y

x y x y

x y

5 5 1 2 3 4 5 1 2 3 4 5

6 6 1 2 3 4 5 1 2 3 4 5

, )

θ f (θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,

, , , )

θ f (θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,θ ,

, , , )





H H

SW SW

F F H H

SW SW SW SW

F F H H

SW SW SW SW

x y

x y x y

x y x y

 (11) 

4.3. Inverted kinematics analysis 

By solving Equation (5) according to 3 and 4, 

Equation (6) according to 5 and 6, Equation 

(7) according to 3  and 4 , Equation (9) 

according to 5   and  6  , respectively: 

 3 1 1θ z θ , ,
F F

SW SWx y  

 4 2 1θ z θ , ,
F F

SW SWx y  
(12) 

 5 5 1θ z θ , ,
H H

SW SWx y  

 6 6 1θ z θ , ,
H H

SW SWx y  
(13) 

 
 

3 3 1 3 4 1

4 4 1 3 4 1

θ z θ ,θ ,θ ,θ , ,

θ z θ ,θ ,θ ,θ , ,





F F

SW SW

F F

SW SW

x y

x y
 (14) 

 
 

5 7 1 5 6 1

6 8 1 5 6 1

θ z θ ,θ ,θ ,θ , ,

θ z θ ,θ ,θ ,θ , ,





H H

SW SW

H H

SW SW

x y

x y
 (15) 

Substituting Equation (12) into Equation 

(11) and Equation (14), and also substituting 

Equation (13) into Equations (11) and (15) 

have the following result: 

 

g (θ  ,θ  ,  θ ,θ ,θ ,θ ,  , ,

 , , x  , y , x  , y )

θ g θ  ,θ ,    , ,  ,

g (θ  ,θ  ,  θ ,θ ,θ ,θ ,  , ,

 , , x  , y , x







 

F F

SW SW

H H F F H H

SW SW SW SW SW SW

F F F F

SW SW SW SW

F F

SW SW

H H F F

SW SW SW SW

 x y

x y

x y x y

 x y

x y

1 1 1 3 4 5 6

3 2 1 1

1 1 1 3 4 5 6

1

3

 

 

 , y )

θ g θ  ,θ ,    , ,  ,

g (θ  ,θ  ,  θ ,θ ,θ ,θ ,  , ,

 , , x  , y , x  , y )

θ g θ  ,θ ,    , ,  ,

g (θ  ,θ  ,  θ ,θ













H H

SW SW

F F F F

SW SW SW SW

F F

SW SW

H H F F H H

SW SW SW SW SW SW

H H H H

SW SW SW SW

x y x y

 x y

x y

x y x y

4

5

4 2 1 1

1 1 1 3 4 5 6

5 2 1 1

1 1 1 3 4

 

,θ ,θ ,  , ,

 , , x  , y , x  , y )

θ g θ  ,θ ,    , ,  ,

g (θ  ,θ  ,  θ ,θ ,θ ,θ ,  , ,

 , , x  , y , x  , y )





F F

SW SW

H H F F H H

SW SW SW SW SW SW

H H H H

SW SW SW SW

F F

SW SW

H H F F H H

SW SW SW SW SW SW

 x y

x y

x y x y

 x y

x y

5 6

6 2 1 1

1 1 1 3 4 5 66
 

(16) 
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Considering that the stance leg functions 

passively: 

dθ
θ

dt
 

1
1 1

 (17) 

Equation (16) could be written as a set of 

nonlinear state spaces, which are solvable with 

known initial conditions θ θ θ θ θ θ θ θ θ θ 
    1 3 4 5 6 1 3 4 5 6  

and a specific smooth trajectory for swing feet. 

4.4. Swing-feet trajectory  

In this paper the swing-feet trajectories are 

determined by two SP-line functions. This is based 

on a few parameters in each SSP, such as the 

initial swing-foot positions and velocities, and the 

final desired swing-foot positions and velocities. 

5. Control and Stability 

5.1. Control 

A feed-forward controller is used here for 

controlling the robot during each SSP, which is 

a model-based controller with feedback from 

both position and velocity [16]. 

 

Fig. 2.  Feed-forward control scheme 

5.2. Stability  

The main difficulty in controlling legged 

robots is the problem of instability and the risk 

of falling. The first criterion for providing a 

stable and continuous galloping gait is 

mechanical energy restoration or existence of 

the limit cycle. In this paper an EDRC method 

ensured this by controlling the swing-foot 

velocity just before each IP. The second 

criterion for avoiding the robot’s falling during 

galloping is to retain the contact-point reaction 

forces within an appropriate range, such that 

the robot’s stance foot does not slip or leave 

the ground. Therefore, in this paper during 

each JO, TD, SSP and IP, the stance foot is 

assumed to be stuck to the ground. 

6. Numerical Simulations 

In this section the simulation results of the 

proposed methods are presented, using 

Simulink and SimMechanic toolboxes in the 

MATLAB program. The physical parameter 

values used in our numerical simulation are 

listed in Table 1, based on anatomical 

measurements of a real cheetah [17]. 

6.1. Modelling contact point 

Establishing a good contact assumption 

between the stance foot and the ground is the 

main problem in simulating the walking or 

running of a legged robot in digital computer 

software.  

 

Table 1. Parameters of the proposed robot 

Symbol Quantity Value 

m1, m4 the forelimb’s shank mass (kg) 5 

m2, m3 the forelimb’s thing mass (kg) 6 

m5 the torso mass (kg) 48 

m6 the hindlimb mass (kg) 11 

mFF, mHF the point foot mass (kg) 0.5 

L1, L4 the forelimb’s shank length (m) 0.37 

L2, L3 the forelimb’s thigh length (m) 0.3 

L2 the torso length (m) 0.92 

L3 the hindlimb length (m) 0.82 

ai the distance between COM and 

distal point (m) 

0.5 Li 

ɸ the knee locking angle (deg) 10 
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For the point-foot contact assumption, three 

DOF for each robot's foot is assumed here, 

with two different joint blocks for the stance 

foot during the galloping gait, as depicted in 

Figure 3. Two Joint-Stiction-Actuator blocks, 

depicted in Figure 4, are connected to the in-

plane joint. This allows locking of the joint in 

both x and y directions when the foot is 

supposed to be on the ground, and while the 

revolute joint is unlocked and the robot’s 

stance leg is free to rotate around the contact 

point. 

 

Fig. 3.  Scheme of foot contact modelling 

 

Fig. 4.  A joint-stiction-actuator block 

6.2. Numerical results 

To provide a stable and steady galloping gait 

on level ground, it is necessary for the hind leg 

to have the same initial angular velocity in the 

beginning of each single cycle of galloping. 

This has been realized by choosing appropriate 

swing-feet velocities just before each IP. In the 

following the simulation results for two cycles 

of galloping gait are presented: the stick 

diagram of 6L3PM during the first and second 

SSPs is pictured in Figures 5a and 5b, 

respectively. The figures show the IPM-like 

behaviour of the stance leg during each SSP, 

where the robot’s shoulder level moves on a 

circular curve with radius equal to the virtual 

length of the stance leg. Figure 6 shows the 

phase plane of the hind leg during these two 

cycles of galloping, and the graphical result of 

a complete cycle of galloping gait is depicted 

in Figure 7.  

 

Fig. 5a. Stick diagram of 6L3PM during the first SSP 

 

Fig. 5b.  Stick diagram of 6L3PM during the second 

SSP 

 

 

Fig. 6. The phase plane of hind limb 
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Fig. 7. Simulation of 6L3PM model 

7. Conclusions and Future works 

In this paper a 6L3PM model of a planar three-

legged robot is used to gallop on level ground 

with 5.7848 (m/s) mean forward velocity. A 

new strategy is proposed to ensure the 

existence of limit cycle by controlling the 

energy dissipation rate during each IP instead 

of controlling the energy restoration during 

SSP. Also, a new semi-analytical trajectory-

generation algorithm is provided for a five-

linked model of the legged robot with one 

degree of under-actuation in the ankle joint by 

using the dynamic equations of the robot along 

with solving the inverse kinematic problem. 

Simulation results show that these 

improvements are effective and the robot 

exhibits a stable dynamic galloping gait with 

minimum computational effort.  

Since the main idea of EDRC is to control 

the robot’s velocity during each IP, future 

studies should aim to derive the impact 

dynamic equations of the robot and solve these 

for different pre-impact velocities causing the 

desired after-impact velocities. Deriving and 

analysing the robot’s dynamic model for 

phases which are not studied in this paper, like 

JO, FP, TD, and DSP, would also represent 

useful future work. The solution to Equation 

(16), which shows the designed robot’s joint 

trajectories during an SSP, is just a function of 

designed swing-feet trajectories, which have a 

significant effect on the stance leg behaviour. 

But using SP-line function for designing 

swing-feet trajectories is not very desirable. 

Therefore, using other mathematical tools for 

providing suitable swing-feet trajectories is 

necessary in future works. 

8. Appendix 
Here the kinematic and dynamic equations of 

the proposed robot during an SSP are 

presented. 

8.1. Deriving kinematic equations 

As depicted in Figure 1, by considering the 

local coordinate system mounted in the ankle 

joint of the stance leg, the positions of the 

swing feet are expressed as: 

cos cos cos  F

SW eq eqx L θ L θ L θ3 3 4 4  (18) 

sin sin sin  F

SW eq eqy L θ L θ L θ3 3 4 4  (19) 

cos cos cos  H

SW eq eqx L θ L θ L θ5 5 6 6  (20) 

sin sin sin  H

SW eq eqy L θ L θ L θ5 5 6 6  (21) 

The velocities of the swing feet are obtained 

by differentiating Equations (18) to (21): 

sin sin sin   F

SW eq eq eqx L θ θ L θ θ L θ θ3 3 3 4 4 4  (22) 

cos cos cos   F

SW eq eq eqy L θ θ L θ θ L θ θ3 3 3 4 4 4
 (23) 

sin sin sin   H

SW eq eq eqx L θ θ L θ θ L θ θ5 5 5 6 6 6  (24) 

cos cos cos   H

SW eq eq eqy L θ θ L θ θ L θ θ5 5 5 6 6 6
 (25) 

Similarly, the accelerations of the swing 

feet are obtained by differentiating Equations 

(22) to (25): 
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x cos cos cos

sin sin sin

   

     

F

SW eq eq eq

eq eq eq

L θ θ L θ θ L θ θ

L θ L θ L θ

2 2 2
3 3 3 4 4 4

3 3 3 4 4 4

 (26) 

2 2 2
3 3 3 4 4 4

3 3 3 4 4 4

sin sin sin sin sin sin

coscos coscos coscos

   

  

F
SW eq eq eq

eq eq eq

y L θ θ L θ θ L θ θ

L θ θ L θ θ L θ θ
 (27) 

2 2 2
5 5 5 6 6 6

5 5 5 6 6 6

coscos coscos coscos

sin sin sin sin sin sin

   

  

H
SW eq eq eq

eq eq eq

x L θ θ L θ θ L θ θ

L θ θ L θ θ L θ θ
 (28) 

2 2 2
5 5 5 6 6 6

5 5 5 6 6 6

sin sin sin sin sin sin

coscos coscos coscos

   

  

H
SW eq eq eq

eq eq eq

y L θ θ L θ θ L θ θ

L θ θ L θ θ L θ θ
 

(29) 

Considering the same methodology, the 

center of mass acceleration of the robot’s other 

links are written as: 

2 2
3 3 3 3

3 3 3

coscos coscos

sin sin sin sin

  

 

eq eq eq

eq eq eq

x L θ θ a θ θ

L θ θ a θ θ
 (30) 

2 2
3 3 3 3

3 3 3

sin sin sin sin

coscos coscos

  

 

eq eq eq

eq eq eq

y L θ θ a θ θ

L θ θ a θ θ
 (31) 

2 2 2
4 3 3 3 4 4 4

3 3 3 4 4 4

coscos coscos coscos

sin sin sin sin sin sin

   

  

eq eq eq

eq eq eq

x L θ θ L θ θ a θ θ

L θ θ L θ θ a θ θ
 (32) 

2 2 2
4 3 3 3 4 4 4

3 3 3 4 4 4

sin sin sin sin sin sin

coscos coscos coscos

   

  

eq eq eq

eq eq eq

y L θ θ L θ θ a θ θ

L θ θ L θ θ a θ θ
 (33) 

2 2
5 5 5 5

5 5 5

coscos coscos

sin sin sin sin

  

 

eq eq eq

eq eq eq

x L θ θ a θ θ

L θ θ a θ θ
 (34) 

2 2
5 5 5 5

5 5 5

sin sin sin sin

coscos coscos

  

 

eq eq eq

eq eq eq

y L θ θ a θ θ

L θ θ a θ θ
 (35) 

2 2 2
6 5 5 5 6 6 6

5 5 5 6 6 6

coscos coscos coscos

sin sin sin sin sin sin

   

  

eq eq eq

eq eq eq

x L θ θ L θ θ L θ θ

L θ θ L θ θ a θ θ
 (36) 

2 2 2
6 5 5 5 6 6 6

5 5 5 6 6 6

sin sin sin sin sin sin

coscos coscos coscos

   

  

eq eq eq

eq eq eq

y L θ θ L θ θ L θ θ

L θ θ L θ θ a θ θ
 (37) 

A) Deriving dynamic equations 

Considering Fix and Fiy as the horizontal and 

vertical internal forces between links i and -1, 

and using Newton’s Second Law for foot, 

thigh, and shank of the front swing leg in the x 

direction: 


F F F

SWx SW SWF m x  (38) 

4 4 4 
F

y SWxF F m x  (39) 

3 4 3 3 y xF F m x  (40) 

And in y directions: 

 
F F F F

SWy SW SW SWF m y m g  (41) 

4 4 4 4  
F

y SWyF F m y m g  (42) 

3 4 3 3 3  y yF F m y m g  (43) 

 

Writing Newton’s Second Law for the hind 

foot, hind leg, and trunk in the x direction: 


H H H

SWx SW SWF m x  (44) 

6 6 6 
H

x SWxF F m x  (45) 

5 6 5 5 x xF F m x  (46) 

And in y directions: 

 
H H H H

SWy SW SW SWF m y m g  (47) 

6 6 6 6  
H

y SWyF F m y m g  (48) 

5 6 5 5 5  y yF F m y m g  
(49) 

Writing Newton’s Second Law in a circular 

direction for stance links (i=1,2) around the 

contact point, and for swing links (i=3,4,5,6)  

around the centre of mass, respectively:  

   
6 6 6 6 6 6 6 6 6

6 6 6 6 6 6

sin sin coscos

sin sin coscos

  

   

x y

SWx SWy

T I θ F a θ F a θ

F L a θ F L a θ
 (50) 

   
5 5 5 5 5 5 5 5 5

6 5 5 5 6 5 5 5 6

sin sin coscos

sin sin coscos

  

    

x y

x y

T I θ F a θ F a θ

F L a θ F L a θ T
 (51) 

   
4 4 4 4 4 4 4 4 4

4 4 4 4 4 4

sin sin coscos

sin sin coscos

  

   

x y

SWx SWy

T I θ F a θ F a θ

F L a θ F L a θ
 (52) 

   
3 3 3 3 3 3 3 3 3

4 3 3 3 4 3 3 3 4

sin sin coscos

sin sin coscos

  

    

x y

x y

T I θ F a θ F a θ

F L a θ F L a θ T
 (53) 

 
 
 
 
 

1 1 1 1

2 1 1 2 2

3 1 1 2 2

3 1 1 2 2

5 1 1 2 2

5 1 1 2 2

coscos

coscos coscos

sin sin sin sin

coscos coscos

sin sin sin sin

coscos coscos

  

 

 

 

 



eq eq

x

y

x

y

T I θ m ga θ

m g L θ a θ

F L θ L θ

F L θ L θ

F L θ L θ

F L θ L θ

 
(54) 
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