
JAMECH 
Vol. 46, No. 1, January 2015, pp 21- 29 

21 

Optimal Design of Shell-and-Tube Heat Exchanger Based on Particle 

Swarm Optimization Technique 

S. Jalilirad*
, M. H. Cheraghali, H. Ahmadi Danesh Ashtiani 

Department of Mechatronics Engineering, College of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran 

Abstract 

The paper studies optimization of shell-and-tube heat exchangers using the particle swarm 

optimization technique. A total cost function is formulated based on initial and annual operating costs 

of the heat exchangers. Six variables – shell inside diameter, tube diameter, baffle spacing, baffle cut, 

number of tube passes and tube layouts (triangular or square) – are considered as the design 

parameters. The particle swarm optimization selects the parameters so that the system has minimum 

total cost. Although generalization is not possible for any case, for minimization of cost functions of 

the three different cases studied in this research, larger tube outer diameter, triangular layout, baffle 

cut equalling 0.25 of shell diameter and one pass for each tube result in optimum designs. The other 

two parameters show no fixed trend.   
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1. Introduction
 
 

Heat exchangers, in general, are devices 

containing two streams with different 

temperatures while the heat is transferred 

between them [1]. Although there are various 

kinds of these devices with different applications, 

the shell-and-tube heat exchanger has wide uses 

in industries, especially in chemical processing, 

refineries, air-conditioning systems and power 

plants. This type of heat exchanger possesses 

advantages such as high pressure endurance and 

easy maintenance. Due to its advantages, the 

shell-and-tube heat exchanger has found 

extensive applications in comparison to other 

types. Thus, its optimal design can help save 

greatly on costs and energy. 
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The problem to be investigated in this paper 

relates to one of the fundamental factors 

affecting the applicability of shell-and-tube 

heat exchangers – optimization of the cost 

function depending on discrete variables, 

explicitly and implicitly. As seen with other 

functions studied in the literature, using 

analytic methods for optimization is a 

complicated process, and may even be 

impossible in some cases. Researchers have 

proposed many objective functions for shell-

and-tube heat exchanger optimization, 

including total cost, pressure drop, exergy, 

entropy generation and heat transfer area [1–9]. 

Heuristic and meta-heuristic techniques have 

also been proposed. For example, Selbas et al. 

presented a total cost function for shell-and-

tube heat exchangers which was a function of 

certain variables, and then applied genetic 
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algorithm (GA) for its optimization [1]. In 

another study, Muralikrishana and Shenoy 

determined a feasible domain for design of 

heat exchangers by plotting geometrical and 

operational constraint curves on the pressure 

drop diagram, and designed the shell-and-tube 

heat exchangers optimally by trial and error 

[2]. Kara and Guraras developed a computer 

program calculating the heat transfer area by 

trying out all possible configurations for the 

design [3]. Serna and Jimenz related pressure 

drop to the tube and shell heat transfer rates 

using an analytical method [4]. Meanwhile, 

Eryner optimized exact baffle spacing by using 

a thermo-economic analysis method and 

compared the results with those yielded by the 

classical design method [5]. Ozcelik 

considered the total cost of the heat exchanger 

as the sum of the initial and exergy costs, then 

used GA for its optimization and obtained 

optimum design parameters [6]. Babu and 

Munawar used a differential evolution method 

to optimize the shell-and-tube heat exchangers 

using an improved version of GA [7]. They 

concluded that the proposed method was faster 

than the traditional GA. In another study, Costa 

and Queiroz reported an algorithm to optimize 

the heat transfer area of a shell-and-tube heat 

exchanger [8]. This algorithm eliminated 

designs which were not suitable for application 

and reduced algorithm repetition by searching 

along the tube count table and considering all 

of the design constraints. Guo et al. optimized 

a shell-and-tube heat exchanger using GA and 

computed optimum quantities for design 

variables by considering entropy generation as 

an objective function [9]. 

The particle swarm optimization (PSO) 

algorithm is a powerful optimization approach 

[10] and is applied in this paper. Here, a cost 

function is formulated for the shell-and-tube 

heat exchangers including their initial and 

operating costs. The operating cost includes 

power-loss costs of the shell and tube sides. 

PSO is applied to optimize the presented 

function. Some of the obtained results via 

application of PSO are compared with those 

computed using GA to verify the methods and 

results. 

The proposed cost function will be a 

function of six variables: shell inside diameter, 

tube diameter, baffle spacing, baffle cut, tube 

pass and tube layout. Tube diameter is selected 

from the standard table presented by BWG 

[11]. In addition to a more comprehensive 

analysis in comparison to similar research, this 

paper presents the application of PSO for 

design optimization of the shell-and-tube heat 

exchangers to reach the minimum possible 

cost. Obviously, it uses the advantages of PSO 

such as extra operations like crossover being 

unnecessary (unlike GA) and having fewer 

parameters to adjust. In addition, convergence 

of PSO to the optimum region of the cost 

functions, with many variables, is better and 

faster than for other algorithms such as GA and 

evolutionary algorithms. Lastly, constraining 

the variables in PSO is easier. 

2. Mathematical modelling 

To design the shell-and-tube heat exchanger, 

its duty should first be defined by determining 

some constant values for mass flow rates of the 

tube and shell sides as well as their inlet and 

outlet temperatures. Then, one can select 

appropriate quantities for design variables and 

calculate the heat transfer area. By calculating 

the pressure drop in the shell and tube sides 

and estimating the power losses, the operating 

cost of the heat exchanger can be evaluated. 

The PSO algorithm is used to calculate the 

total cost of the heat exchanger and to select 

optimum values for design parameters.  

To calculate the heat transfer area, a 

logarithmic mean temperature difference 

(LMTD) method is applied, as presented in 

Equation (1): 

 Q
A

K  F  LMTD
  (1) 

where A, Q, K and F are the heat transfer area, 

heat transfer rate, total heat transfer coefficient 

and dimensionless correction factor considered 

for correction of the flow configuration, 

respectively.  

The heat transfer rate, Q, can be calculated 

by balancing heat transfer rates between the 

fluid flows as follows: 

 

   h p ,h hi ho c p ,c co ciQ m C T T  m C T T     (2) 

where  m  , Cp , Ti and To denote the mass flow 

rate, specific heat capacity in constant pressure, 

inlet temperature and outlet temperature, 

respectively. The subscripts “h” and “c” stand 

respectively for the hot and cold flows.  
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The correction factor, F, is a function of 

temperature efficiency (P), ratio of heat 

capacity of the hot flow to cold flow (R), and 

flow configuration. The above parameters for 

single and multi-pass configurations of the 

shell-and-tube heat exchangers are presented in 

Equation (3) [1]. 
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where 
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The LMTD is obtained from Equation (6): 
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(6) 

The total heat transfer coefficient, K, 

depends on some parameters of both shell and 

tube. Thus, the design of shell-and-tube heat 

exchangers includes two separate sections. The 

first is for the design of the tubes and the next 

is for the design of the shells. In this paper, the 

former is conducted first.  

2.1. Tube side design 

The flow velocity in the tube can be calculated 

from the following Equation: 

 
 2

4i

t
T

m

d /
V

N

s

 
  (7) 

where Vt, di,  , NT and  represent the flow 

velocity through the tube, tube inner diameter, 

density, number of tubes and number of tube 

passes, respectively. The subscript “t” denotes 

the tube parameters. The number of tubes is 

obtained from Equation (8): 

 
0 02

n

G
T

o

D .
N C

d

 
  

 
 (8) 

where DG and do are shell diameter and outer 

diameter of the tube. C and n are two constants 

obtained from Table 1. 

The distance between the two adjacent tube 

centres, St, is illustrated in Figure 1 for two 

common tube layouts (triangle and square): 

 

Table 1. Values of C and n based on number of tube passes [1] 

Number of tube passes 1 2 4 6 8 

Triangular pitch St=1.25 do      

C 0.319 0.249 0.175 0.0743 0.0365 

n 2.142 2.207 2.285 2.499 2.675 

square pitch St=1.25 do      

C 0.215 0.156 0.158 0.0402 0.0331 

n 2.207 2.291 2.263 2.617 2.643 

 

 

Fig. 1. Two common layouts of tubes in shell 
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Reynolds and Prandtl numbers to be utilized 

in the following equations are presented in 

Equations (9) and (10): 

 iVd

ν
Re   (9) 

pµC

k
Pr   (10) 

where ,  and  are the kinematic viscosity, 

dynamic viscosity and heat conductivity 

coefficient, respectively.  

The convection heat transfer coefficient in 

the tube is obtained from Equations (11) to 

(13) based on the value of the Reynolds 

number [12, 13]: 
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 (13) 

where w ,t  is the dynamic viscosity of the 

fluid at the wall temperature and  is the Darcy 

friction coefficient formulated as in [14]. 

  
2

10 101 82 1 64t. log log Re .    (14) 

2.2. Shell side design 

The shell hydraulic diameter, De, is presented 

in Equations (15) and (16) for square and 

triangular tube layouts, respectively [1]. 

  2 21 27 0 785e t o
o

.D S . d
d

   (15) 

where St is the distance between two adjacent 

tubes equalling . 

  2 21 10 0 197e o
o

.D St . d
d

   (16) 

The cross-section normal to the flow 

direction, , can be computed from Equation 

(17). The subscript “s” represents the shell 

parameters. 

 
 t o G

s
t

S d eD
A

S


  (17) 

where e and  denote baffle space and shell 

diameter, respectively. 

The flow velocity in the shell side, , and 

the related Reynolds number, , are 

presented in Equations (18) and (19). 

 s
s

s s

m
V

A



 (18) 

s e
s

s

V D
Re

v
  (19) 

The convection coefficient in the shell side 

can be estimated from Equation (20) [15]. 
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where j is a non-dimensional constant obtained 

from the Kern diagram presented in Figure 2.  

 

Fig. 2. Non-dimensional thermal constant j based on 

Kern method [13] 

Hence, the total heat transfer coefficient can 

be determined using Equation (21).  

 1 1o o w
f fi o

t i i w s

d d X
R R

K h d d K h
      (21) 
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where f w wi
R ,X ,K  and f o

R  are the thermal 

fouling resistance in the tube, thickness of the 

tube, thermal conductivity of the tube and 

thermal fouling resistance out of the tube, 

respectively.  

Knowing the heat transfer area from 

Equation (1), the required length for the heat 

exchanger can be calculated from the following 

equation: 

 
o t

AL
d N




 (22) 

2.3. Effect of pressure loss 

In all heat exchangers, there are strict physical 

and economic relations between heat transfer 

and pressure loss. For a certain heat capacity, 

increased flow velocity leads to increased heat 

transfer coefficient and pressure loss. The 

former is desirable, whereas the latter is not. 

The reason is that the pressure loss should be 

compensated by more powerful pumps, 

requiring additional cost. Thus, in design of the 

heat exchangers, both the heat transfer and the 

pressure loss should be considered.  

The pressure loss in the tube side is 

formulated as below [1]. 
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 (23) 

Meanwhile, the pressure loss in the shell 

side is obtained from Equation (24). 
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where jf,k is the non-dimensional pressure 

constant based on the Kern method. The total 

pressure loss may be calculated from Equation 

(25). 

 1 t s
t s

t s

m m
P P P

 
        

 (25) 

where  is the pump efficiency.  

The goal of this research is to optimize the 

shell-and-tube heat exchanger from an 

economic point of view, maximizing the heat 

transfer while minimizing the costs. For this 

purpose, a total cost function, Ctot, including 

two initial, , and operational, , costs is 

considered [16]. 

 tot in opC C C   (26) 

The initial and operational costs are 

formulated in Equations. (27) to (29): 

 3
1 2

a

inC a a A   (27) 

where 1 2,   and 3  are the constants; 
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where ny, i, CE and H denote number of years, 

interest rate, cost of 1 kW energy and number 

of working hours per year, respectively.   

3. Particle Swarm Optimization 

In this algorithm, a number of particles are 

considered randomly. The position of each 

particle in n-dimensional space is indicated by 

an n-dimensional vector, where n equals the 

number of variables of the cost function. The 

particles move in the space with speed v. The 

positions and velocities of the particles are 

updated in each iteration. The criterion of 

updating the velocity is distance of each 

particle to local minimums and global 

minimum, computed by Equation (30a). The 

position of the particles can be calculated from 

Eqution (30b) [17]. 
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In some respects, PSO is similar to 

continuous GA, but the former has some 

advantages [18-20]. As mentioned above, this 

algorithm does not require extra operations 
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such as crossover and has fewer parameters to 

adjust. In addition, convergence of PSO to the 

optimum region of the cost functions, with 

many variables, is better and faster than with 

GA, and constraining the variables in PSO is 

easier. For these reasons, PSO was chosen to 

optimize the total cost of the shell-and-tube 

heat exchangers. 

4. Results and discussion 

In this paper, the optimal design of the heat 

exchanger uses six design variables, shell 

inside diameter (Ds), tube diameter (d), baffle 

spacing (B), baffle cut (Bc), number of tube 

passes (Np) and tube layout (TL), in order to 

reach the minimum total cost for the heat 

exchanger. The considered ranges for the 

design variables are applied as in Table 2. 

In addition to the constraints presented 

above, the pressure drop and tube and shell 

flow velocities should be in the limited ranges. 

Table 3 presents the constant values considered 

to conduct the research. 

One of the most important factors in 

economic analysis is the interest rate. This is 

simply the rate at which interest is paid by a 

borrower (debtor) for the use of money that 

they borrow from a lender (creditor). For 

example, a small company borrows capital 

from a bank (or an investor) to provide new 

assets for its business, and in return the lender 

receives interest at a predetermined interest 

rate for deferring the use of the funds. Interest 

rates are normally expressed as a percentage of 

the principal for a period of one year. This is 

considered here to be 0.1 but higher interest 

rates generally increase the cost of borrowing, 

which can reduce investment and output and 

increase unemployment. 

The following three cases, selected from 

[21], are taken as the case studies for 

optimization. Table 4 shows the design 

specifications and thermo-physical properties 

for each case study at i oT T

2

 . 

Table 2. Ranges of design parameters 

Number of cases Range of variation Design parameter 
10 10–28 mm Outer tube diameter 
2 Square & Triangle Tube layout 
4 1, 2, 4, 8 Number of passes 
20 150–530 mm Shell diameter 
5 0.2–0.4 of shell diameter Baffle space 
4 0.15, 0.25, 0.35, 0.45 of shell diameter Baffle cut 

 

Table 3. Numerical constant considered for optimization [21] 

Numerical value Parameter 

2 Tube thickness (mm) 
0.7 Pump efficiency 
0.1 Interest rate 
10 Operational time (yr) 

700 Operational hours per year (h/yr) 
8000 Numerical constant (€), a1 

259.2 Numerical constant (€/m
2
), a2 

0.91 Numerical constant, a3 

0.12  Energy cost (€/kW h), CE 

20 Population size 
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Table 4. Case studies for the optimization 

Case specification         

 Mass flow rate ( kg

s
) Tin (

°
C) Tout (

°
C) 3

kg
ρ( )

m
 p

kJc ( )
kg K

 μ(Pa s)  Wk( )
m K

 Rfouling(
2

m K
W

) 

Case 1 

Shell side: 

Methanol 
27.8 95 40 750 2.84 0.00034 0.19 0.00033 

Tube side: Sea 

water 
68.9 25 40 955 4.2 0.0008 0.59 0.0002 

Case 2 

Shell side: 

kerosene 
5.52 199 93.3 850 2.47 0.0004 0.13 0.00061 

Tube side: Crude oil 18.8 37.8 76.7 955 2.05 0.00358 0.13 0.00061 

Case 3 

Shell side: distilled 

water 
22.07 33.9 29.4 955 4.18 0.0008 0.62 0.00017 

Tube side: raw 

water 
35.31 23.9 26.7 999 4.18 0.00092 0.62 0.00017 

 

Figures 3 (a) and (b) show the cost functions 

obtained from GA and PSO. The former is not 

related to the goal of this study and is used only 

to demonstrate the effectiveness of the latter. 

GA results in the optimum total cost value of 

35,615.86 in iteration 16, but this value 

calculated with PSO is 35,500.7 in iteration 7. 

The values reveal that PSO dominates GA in 

both cost values and iteration numbers. 

In order to obtain the best results, the 

developed codes are executed 50 times. The 

results presented in Figures 4 (a) and (b) prove 

that once again PSO has better performance 

that GA. As depicted in the figures, both the 

minimum and average cost values calculated 

using PSO are smaller than the values 

computed via GA. The following relation is 

considered as a dispersal index: 

 
 tot,i tot,min1

γ

n

i
C C

n






 (31) 

This index is 1570€PSOγ   for PSO and 

1939€GAγ   for GA. The comparison between 

the two latter values is another piece of 

evidence for the effectiveness of PSO over GA.  

The aforementioned figures and 

explanations related to case 1, shown in Table 

4. The numerical values of the cost functions 

for the second and third cases vs. iteration 

computed using PSO are plotted in Figures 5 

(a) and (b). The figures also reveal the 

capability of the applied optimization 

technique for the two other cases.   

Table 5 presents the optimum values of the 

design parameters and other values 

formulated in this paper for the three case 

studies considered in Table 4. Using the 

obtained optimum design parameters, one can 

minimize the cost of the shell-and-tube heat 

exchangers.   

  
(b)‌(a)‌

Fig. 3. Total cost functions vs. iteration obtained from (a) GA, (b) PSO 



Jalilirad et al. 

 

28 

  
(b)‌(a)‌

Fig. 4. Comparison between the results obtained from (a) GA, (b) PSO in 50 runs 

  
(b)‌(a)‌

Fig. 5. Results of total cost values vs. iteration of the (a) second and (b) third cost functions 

 
Table 5. Optimum parameters and design values of the shell-and-tube heat exchanger 

 Case 1 Case 2 Case 3 

Parameters Optimum value Optimum value Optimum value 

Shell diameter,  (m) 0.33 0.15 0.27 

Baffle space (m) 0.132 0.06 0.108 

‌Tube outer diameter, do (m) 0.028 0.028 0.028 

Tube layout Triangle Triangle Triangle 

Baffle space 25% 25% 25% 

Number of tube passes 1 1 1 

‌Number of tubes, Nt 55 9 35 

Flow velocity in tube , vt (m/s) 2.9 5.09 2.25 

‌Reynolds number in tube, Ret 8.3e4 3.26e4 5.93e4 

‌Prandtl number in tube , Prt 5.7 56.45 6.14 

Convection coefficient in tube, ht (W/m
2
 K) 11847 2764 9629 

Pressure loss in tube, ΔPt (kPa) 19.41 66.68 12.7 

Shell cross section, As (m
2
) 0.087 0.0018 0.0058 

Shell equal diameter, De (m) 0.0199 0.019 0.0276 

Flow velocity in shell, Vs (m/s) 4.255 3.61 3.963 

Reynolds number in shell, Res 1.87e5 1.52e5 1.31e5 

Prandtl number un shell, Prs 5.1 7.6 5.39 

Convection coefficient in shell, hs (W/m
2
 K) 5990 4207 11859 

Pressure loss in shell, ΔPs (kPa) 51.22 41.74 40.68 

Total heat transfer coefficient, K (w/m
2
 K) 1142 493.1 1612 

‌Heat transfer area, A (m
2
) 152 38.78 43.19 

Total pressure loss (kPa) 4.71 2.262 1.98 

‌Initial cost, Cin (€) 33068 15232 15977 

Operational cost, Cop (€) 2432 1168 1024 

‌Total cost, Ctot (€) 35501 16400 17001 
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5. Conclusion  

This paper has investigated the problem of 

optimization of shell-and-tube heat exchangers 

for three different case studies. The PSO 

method was applied to minimize the total cost. 

The shell inside diameter, tube diameter, baffle 

spacing, baffle cut, number of tube passes and 

tube layouts (triangular or square) were taken 

as the design parameters, chosen by the 

developed code to achieve the minimum cost. 

The results obtained from the PSO algorithm 

were partly compared with those calculated 

using GA; the outcomes revealed better 

performance of PSO in design optimization of 

the heat exchangers.       
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