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Abstract 

In this study, nonlocal nonlinear instability and the vibration of a double carbon nanotube (CNT) system 

have been investigated. The Visco-Pasternak model is used to simulate the elastic medium between 

nanotubes, on which the effect of the spring, shear and damping of the elastic medium is considered. 

Both of the CNTs convey a viscose fluid and a uniform longitudinal magnetic field is applied to them. 

The fluid velocity is modified by small-size effects on the bulk viscosity and the slip boundary 

conditions of nano flow through the Knudsen number (Kn). Using von Kármán geometric nonlinearity, 

Hamilton’s principle and considering longitudinal magnetic field, the nonlinear higher order governing 

equations for Reddy beam (RB) theory are derived. The differential quadrature method (DQM) is used to 

obtain the nonlinear frequency and critical fluid velocity (CFV) of the fluid conveying a coupled system. 

A detailed parametric study is conducted, focusing on the effects of parameters such as magnetic field 

strength, Knudsen number, aspect ratio, small scale and elastic foundation on the in-phase and out-of-

phase vibration of the nanotube. The results indicate that the natural frequency and the critical fluid 

velocity of double bonded Reddy beams increase with an increase in the longitudinal magnetic 

field and elastic medium module. Furthermore, the results of this study can be useful for 

designing and manufacturing micro/nano- double-mechanical systems in advanced mechanics 

applications by controlling nonlinear frequency with an applied magnetic field. 

Keywords: conveying fluid, double nanosystem, flutter phenomena, nonlinear vibration, nonlocal 

theory, Reddy beam. 

 

1. Introduction
 
 

Beam models are the most important and 

applicable theories for simulating many 
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structures. They are widely used in some 

branches of engineering sciences such as 

mechanical and civil engineering. The study of 

the behaviour of beam structures has been 

lionized by many researchers during recent 



Ghorbanpour Arani et al. 

 

2 

 

years. A large number of studies have looked at 

the vibration and buckling analysis of beams 

that do and do not convey fluid. Reddy [1] 

proposed nonlocal theories for the bending, 

buckling and vibration of beams using nonlocal 

elasticity theory. He reported nonlocal 

governing equations of different beams such as 

the Euler-Bernoulli beam (EBB), the 

Timoshenko beam (TB) and the Reddy beam 

(RB) theories. Reddy and Wang [2] studied the 

dynamic characteristics of fluid-conveying EBB 

and TB using finite element models. Lin and 

Qiao [3] investigated the vibration and 

instability of CNTs conveying fluid where the 

DQM is utilized to discretize the equations of 

motion. They showed that a couple mode flutter 

occurs at a higher flow velocity and the resonant 

frequencies were obtained by solving a 

generalized eigenvalue problem. Chang [4] 

presented the thermal-mechanical vibration and 

instability of a fluid-conveying single-walled 

carbon nanotube (SWCNT) embedded in an 

elastic medium based on nonlocal elasticity 

theory. He found that the fundamental natural 

frequency for the SWCNT decreases as the 

nonlocal parameter increases. Furthermore, both 

the fundamental natural frequency and critical 

flow velocity increase as the elastic medium 

constantly increases. Ghorbanpour Arani et al. 

[5] investigated the nonlinear nonlocal vibration 

of an embedded double-walled carbon nanotube 

(DWCNT) conveying fluid using a shell model. 

According to their study, the critical flow 

velocity of DWCNT is inversely related to the 

nonlocal parameter. 

Double systems have received considerable 

attention from researchers recently. 

Ghorbanpour Arani and Amir [6] analysed the 

electro-thermal vibration behaviour of a double 

BNNT system that is coupled by a Visco-

Pasternak medium using EBB theory. Two 

BNNTs were placed in uniform temperature 

and electric fields, the latter being applied 

through electrodes attached at both ends. 

Murmu and Adhikari [7] studied the axial 

instability of double-nanobeam-systems. Their 

results demonstrate that increasing the stiffness 

of the coupling elastic medium in a double-

nanobeam-system reduces the small scale 

effects during the out-of-phase buckling 

modes. Nonlocal effects in the forced vibration 

of an elastically connected double-CNT system 

under a moving nanoparticle were studied by 

Simsek [8]. He showed that the velocity of the 

nanoparticle and the stiffness of the elastic 

layer have significant effects on the dynamic 

behaviour of DWCNT. Murmu and Adhikari 

[9] presented nonlocal elasticity-based 

vibration of initially pre-stressed coupled 

nanobeam systems. Based on their obtained 

results, it appears that there is a considerable 

difference by which the pre-load affects the 

nonlocal frequency in the in-phase type and 

out-of-phase type vibration modes of nonlocal 

double-nanobeam-systems. 

Among all the beam theories, there are few 

published papers about RB in the literature. 

Hence, in this study, our aim is to study the 

vibration of a double CNT system based on 

nonlocal elasticity theory where both of them 

are simulated as an RB model and are 

considered to be fluid-conveyed. The CNTs are 

coupled together via a Visco-Pasternak 

medium and the whole system is placed in a 

uniform magnetic field. Higher-order equations 

of motion have been derived based on 

Hamilton’s principle and DQM is applied to 

solve them. Finally, the influences of various 

factors such as aspect ratio, elastic medium and 

magnetic field on the frequency response of the 

system are studied. The results show 

significant effects of nonlocal parameters, 

magnetic field and the velocity of the fluid 

flow on the fundamental natural frequency of 

the system. 

2. Modelling SWCNT Coupled System 

Figure 1 illustrates a SWCNT coupled system 

conveying fluid surrounded by a Visco-

Pasternak foundation under a longitudinal 

magnetic field. The boundary conditions are 

assumed as being clamped-clamped for both 

nanotubes. In this investigation, nanotubes are 

simulated by RB where the displacement field 

along three directions of  , ,x y z  in this model 

is given respectively as follows [1]: 

     
 

 

3
1 1

2

3

,
, , ,

0

,

 
      





w x t
u u x t z x t c z x t

x

u

u w x t

 

 
(1)

 

where u and w  denote the axial and transverse 
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displacements of a point located on the neutral 

axis of the beam, respectively, and   is the 

rotation of the cross section. 

 

Fig. 1. Schematic of a double CNT system conveying 

fluid, under a magnetic field and a Visco-Pasternak 

foundation 

The linear kinematic relations for the RB 

model are [1]: 

 

 

2
2 3

1 1 2

2
2

1

2 1

  
   
  

 
    

 

xx

xz xz

u w
z c z c z

x x x

w
c z

x



  



 
(2)

 

where 

2 2
1 24 / 3 , 4 / C h C h

 
(3)

 

h  is the cross section height of the beam. 

The stress-strain relationship of anelastic 

structure is expressed generally as: 

     C   (4)
 

where    and    are classical stress and 

strain vectors, respectively and C    is 

expressed as an elastic stiffness matrix. 

Considering one-dimensional elasticity, 

Equation (4) may be reduced to [1]: 

11 55, xx xx xz xzc c     (5)
 

where 11c  and 55c  are linear elastic constants. 

In this study, Hamilton’s principle is used to 

obtain equations of motion. Before utilizing 

this principle, the following preliminary 

functions must be calculated: 

a) Strain energy 

 
0

1
2

2
  

L

s xx xx xz xz

A

U dAdx     (6)
 

where A  is an area of the cross section of the 

nanotube. Equation (2) must be substituted in 

this equation. It should be noted that by 

simplifying Equation (6), we will encounter 

definitions of stress and couple resultants as 

follows: 

2 3

,

,

 

 



 

 



xx xx
A A

xz xx
A A

xz
A

N dA M z dA

R dA P dA

Q dA

z z

 

 



  
(7)

 

b) Kinetic energy 

The total kinetic energy of this double-system 

is divided into two parts: the kinetic energy of 

the nanotube and the kinetic energy of the 

fluid. Their values have been calculated as: 

22

31

0

1

2

    
     

      
 

L

tube t A

uu
dAdx

t t
K   (8)

 

where t  is the density of the nanotube. The 

values of the axial and lateral displacements are 

replaced by their equivalences where defined in 

Equation (1). On the other hand, the velocity 

vector of the flow   , x zV V V through the 

nanotube in the two-dimensional beam model is 

the relative velocity of the fluid and nanotube. 

This vector was introduced by Reddy and Wang 

[2] at a macro scale and then used by Kuang et 

al. [10] at a nano scale. This vector can be 

expressed as: 

1

3

cos

sin


 



 



x mf

z mf

u
V V

t

u
V V

t





 
(9) 

where 
w

x



 


 and mfV  is the modified fluid 

velocity using Knudsen number. According to 

the above relations, the kinetic energy of the 

fluid flow is given as: 

 2 2

0

1

2

L

fluid f x z fK V V dA dx 
 

(10) 

where f  represents the density of the fluid. 
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c) External works 

The external works applied to the system are 

due to the Visco-Pasternak foundation, the 

magnetic field and the centrifugal force of the 

fluid. The effects of the elastic medium on the 

nanotubes are considered as [6]: 

   

 

   

 

2
1 1 2 1 2

2
1 2 1 1 1

2
2 2 1 2 1

2
2 1 2 2 2





     

    

     

    

vp w p

v w p v

vp w p

v w p v

F K w w G w w

c w w K w G w c w

F K w w G w w

c w w K w G w c w

 (11) 

where wK , PG and vc are the spring, shear and 

damping modulus, respectively. The Lorentz force 

induced by the magnetic field is given by [11]: 

2
2

2






m
L x

w
F AH

x
  (12) 

where m
 and Hx are the magnetic field 

permeability and magnetic field vector 

component along x direction, respectively. 

Therefore, the work done by the Visco-

Pasternak foundation and the magnetic field is: 

 

 

1 1 1

0

1 1

0

1
,

2

1

2

L

vp vp

L

L L

W F W dx

W F W dx

 



 
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



 
(13) 

The external force due to the centrifugal 

force of the fluid is expressed as [2]: 

2
2 1

12

2
0 2 1

12

cos

sin

  
  

   
   

  
     

 

f mf
L

f f

Af
f mf

w
m V w

x
w dA dx

w
m V u

x





 (14) 

where f f fm A  is the mass density of the 

fluid and subscript f refers to the fluid. 

d) Viscosity of the fluid 

To evaluate the viscosity effect for this system, 

the Navier-Stokes equation can be used [12]: 

2
   f

dV
P V

dt
  (15) 

where 
dt

d  denotes the material derivative and 

is defined as follows: 

  
    

mf

d

dt t x
V  (16) 

Substituting the fluid velocity from 

Equation (9) and then Equation (16) in 

Equation (15), applying surface integrals to the 

above equation, viscosity terms were elicited 

and added to the equation of motion. 

The governing equations for the 

conventional fluid-structure interaction 

problems have been derived by the assumption 

of no-slip boundary conditions. To implement 

slip boundary conditions, considering a fully 

developed flow for a Newtonian fluid with a 

constant pressure gradient irrespective of 

gravitational body force, the Navier-Stokes 

equations may be given as: 

2   f e

dV
P V

dt
 

 
(17) 

where e  is effective viscosity in which the 

following relation has been suggested for the 

viscosity of fluid as a function of Kn [13]: 

0

1

1

 
  

 
e

bKn
   (18) 

where 0  is the bulk viscosity and b  is a 

coefficient and can vary from zero to a 

constant value and their values can be found in 

[13]. On the other hand, the velocity correction 

factor is [14]: 

2
1 1 4

1



 

    
        

mf

avg no slip

v

v

V
VCF

V

Kn
b Kn

Kn





 (19) 

v  is the tangential moment accommodation 

coefficient and for most practical problems it is 

considered as being 0.7. Therefore, the motion 

equations of the embedded coupled SWCNT 

conveying viscose fluid can be derived by 

Hamilton’s principle as follows: 

  cos

0

0    
t

tube fluid s s vis ityK K U W W dt  (20) 

where sW denotes the total work done by the 

Lorentz force, the Visco-Pasternak foundation 

and the centrifugal force of the fluid. 

Integrating Equation (20) by parts and setting 

the coefficient of mechanical to zero leads to 

the following local motion equations for 

nanotube No. 1 and for nanotube No. 2 the 

notations 1 and 2 are replaced to gather.  
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 
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2
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:
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3. Nonlocal Continuum Model for RB 

According to the nonlocal elasticity theory 

proposed by Eringen [15], the stress field at a 

specific point x in an elastic continuum not 

only depends on the strain field at the same 

point but also on the strain at all other points of 

the body. 

The constitutive equation of the nonlocal 

elasticity becomes: 

  2 2
01  e a    (24)

 

where 
2  is the Laplacian operator,   and   

are nonlocal and local stress fields, 

respectively. The nonlocal constitutive 

Equation (24) has been widely used for the 

study of micro- and nanostructure elements. 

Therefore, non-zero nonlocal stresses for the 

nanotube structures are outlined as [1]: 
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 (25)
 

Using relations (25), nonlocal forms of 

Equations (21-23) are obtained as: 
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2 cos sin 4 4

cos 2




 

     
      

      

    
    

    

 


  

mf mf w p w p

v v mf x e f mf

e f mf e f mf

mf
x t

w w w w w w
c mf mf V mf V k w G k w G

x t t xx t x x

w w w w w
c c mf V AH A V

t t x x x

w w
A V A V

x t x



 

  

 

2

2
sin 0

 
  
  



 
(28) 

where in these equations: 

2 4 6 2 4 6

f 0 f1 f 2 f 4 f 6 f 0 1 2 4 6 t

1 1 2 2 1 4 4 4 1 6 2 2

(m ,m ,m ,m ,m ) (1,z,z ,z ,z )dA , (m ,m ,m ,m ,m ) (1,z,z ,z ,z )dA

ˆ ˆ ˆ ˆI I C J , J J C K , m m C m , m m C m , A A C I , A A C J

   

           

   (29) 

It should be noted that for the secondary 

nanotube, these equations are valid except that 

the indices of number “1” must be replaced 

with number “2” and vice versa. 

We can define the dimensionless 

parameters as follows: 

 
  0

2 20 0
*1 2

2 0
*1 1 1 4

,
, , , , , , , , ,

ˆ ˆ
, , , , , , , , , ,

ˆ ˆ ˆ ˆ

ˆ
, , , , ,

ˆ ˆ ˆ



       

         

    

i i ef f
i i i mf mf e i

i t if

pw sf f
w p

t t

n m t f

t

w u e a Ax L t E
w u en u V f

L r r L L E Ar E

Gk L K GA c J m IG AL
k G I G I m I

EA EA EA EI I I I

AC J C K C m A
I I I A A

A AI I I


   

 


   

 



2

2 2
* *1 1 1

, , ,

, , , , , ,

  

      

w P f
w P mf mf

m
mf e e Vx

e

t t

K L G
K G u V

GGA GA

V C LC J C K H C J
S j K MP C I

LG G IrLA rLAL E A E



  


 

 (30) 

According to the above relations, the dimensionless motion equations can be rewritten as: 
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       

     

1

2 2 4 2 4
2 21 1 1 1 1

1 1 12 2 2 2 3

232 3 2 2 3 2
2 2 21 1 1 1

3 2 2 2

2
2

2

:

1 1
1 1

1 1 1
2

1

      
      

        

        
                 





mf mf

mf mf mf

mf

u

u u u w w w w
f en f f u en fu

w w w w w w w
en fu en fu en fu

w
u f



   
          

  
           

 
     

     

 

334 2 3 2
2 2 22 2 2

4 2 3 2

223 5 3 5 3
2 2 2

2 4 3 5 3

2 3
2

1 1 1
3

1 1 1
3

1
6

        
               

         
                    

  
 

 

mf mf mf

mf

w w w w w w w
en fu en fu en fu

u u w w w w w
f en f f u en en

w
en

        

    
          

 
   

2 2 422 4 2 2 2
2 2

3 2 4 2 2 2

1
4

                                     

w w w w w w
en en

     

 

(31) 

 

1

2 2 2 2 23 3
m

2 2 3 2 2 2 2

2 2 4 403 3 52n m

2 2 2 2 2 2 2 2 3 2

:

w w w1 1 1I GI m I I

w w w1 1 1I 2 I en m I






                                            

                       
                 

4 44 5 5
n

2 2 2 2 3 2 2 2 3 2
w w w1 1I I 2 I



 
  

   

                  
                 

 
(32) 

     

1
3 3 52 4 2 4 42

2 3 4 2 2 2 2 2 2 3 2

45 6 2 3 3 2
1

mf3 2 4 2 3 2 2 3

w :

w w w w w1 1 1 1 1 1J K K A K J K en A J
G G G G G G

uw w w u w u1 1K K A u 3 3

      

  



                     
             

                           

2
2 2 2 4

2 4

3
2 2 5 52 3 2 6 4

2 3 2 3 2 3 2 4 2 2 2

4

mf 3

w u w u u13

u w w w w u w w1 1 K3 J K A

w 1A u 2

  



                           


                                                 



 
 

   

2
2 2 3 3 2 2 2 4 2 3

2 2 3 2 4 2 3

3
43 2 2 2

mf w3 2 2

w w w w w w w w w w w w w w5 4 4

w w w w w w12 u en 4k

                                              

                                    

 

2 4 2 4
1 1 2 2

p w p2 4 2 4

3
2 23 3 4 2 3 2 4 521 2

mf2 2 4 2 3 2 4 5

2 2

2

w w w w
4G k G

w w w w w w w w w1 1 1C A u 3 2 MP A A S
G

w12

 

    
    
    

                                                        

        

2 2
2 2 24 2 3 3 4 2 3

4 2 3 3 4 2 3

2
2 3 2

1 1
3 2

w w w w w w w w w w w1 1 12 2

w w1 15

                                                                                         

                   

4
4 5 2 22

1 1 1 1 1 1
e mf2 4 2

24 2 2 23 3
1 1 1 1 1 1

mf2 2 2 2 2 2

w w u w u ww 1 1 1A A u
G G

w w w w w wK 1 1J K A u A 2
G G

 

   

                                       

                                

 

w 1

2
22 2 3 2 3 22

1 2 1 2 1 1 1 1 1
p w 2 p mf e2 2 2 3 2 2 2

4k w

w w w w w w w w wC w 1 A4G k w G A u A S 2 MP A 0
G G

 

 
   

 
 

 
                                           

 

 

(33) 
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For the secondary nanotube, these equations 

are valid except that the indices of number “1” 

must be replaced with number “2” and vice 

versa. 

4. Solution Method 

In this investigation a numerical method, namely 

the DQ approach, is used to solve the higher-

order equations of motion. In this method, the 

partial derivative of a function with respect to the 

spatial variables at a given discrete point are 

approximated as a weighted linear combination 

of the function values at all the discrete points 

chosen in the solution domain. Accordingly, the 

nth partial derivative of the functions iu , iv  and 

iw  are approximated as [16]: 



( )

, ,

( , ), ( , ), ( , ) ,

1,2 , 1,2,...,








 

n

i i in
i

n
jm im im im

u v w

C u t v t w t

i m N

 

    
(34) 

where the summation convention is used for 

the dummy index m , N is the number of grid 

points along the nanotubes and )(n
jmC  represents 

the Lagrange interpolation polynomial and its 

kth derivative, which can be found in [17]. An 

assumption of the solution of Equations (26-

28) can be seen as [18]: 

( , ) ( )i iu x t u x e  (35a) 

( , ) ( )i ix t x e   (35b) 

( , ) ( )i iw x t w x e  (35c) 

where / fh E    is the dimensionless 

natural frequency,   is the (fundamental) 

natural frequency. The DQ form of the 

clamped boundary conditions at both ends of 

the nanotubes may be written in a 

dimensionless form as: 

(1)
i1 i1 i1 2m im

(1)
iN iN iN N 1m im

u v w 0 , C w 0 , at 0

u v w 0 , C w 0 , at 1

m 1,2,..., N


     

     



 (36) 

Applying the above boundary conditions to 

Equations (31-33) leads to the following matrix 

equation: 

      2 0
 

   
 

b

d

d
K C M

d
   (37) 

where the subscript b stands for the elements 

related to the boundary points whereas 

subscript d is associated with the remainder 

elements.  K ,  C  and  M are the stiffness, 

damping and mass matrices, respectively. To 

solve Equation (37) and reduce it to the 

standard form of the eigenvalue problem, it is 

convenient to rewrite it as the following first 

order variable as [16]: 

    Z A Z  (38) 

in which the state vector Z and the state space 

matrix  A are defined as: 

 
   

1 1

0
,

 

   
   

            

a

a

Id
Z A

M K M Cd
 (39) 

where  0  and  I  are the zero and unity 

matrices, respectively. However, the 

frequencies obtained from the solution of 

Equation (38) are complex due to damping. 

Hence, the results contain two real and 

imaginary parts. The real part corresponds to 

the system damping and the imaginary part 

represents the system’s natural frequencies. 

5. Numerical Results and Discussion 

In this paper, the instability and vibration of a 

coupled CNT system conveying a viscose fluid 

under a magnetic field and surrounded by a 

Visco-Pasternak foundation is investigated. In 

the following figures, the effect of different 

parameters such as small scale, elastic medium, 

Knudsen number and magnetic field on the 

dimensionless frequency and stability of the 

system is investigated. The mechanical and 

geometrical properties of CNT are considered 

as: 

t f3 3

1 2

Kg Kg
E 1TPa , 2300 , 1000

m m
r r 0.5nm , t 0.34nm , 0.2

    

    

 (40) 

To validate the results of this study, Figure 

2 is presented to compare with Reference [19] 

in which, a simplified case of this study is 

carried out by considering Timoshenko’s 

displacement field, and neglecting the 

magnetic field and the Knudsen number. This 

figure demonstrates that there is a good 

agreement between these two studies. 
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Fig. 2. A comparison between the results of this study 

and Ref. [19] 

 

Fig. 3a. Dimensionless imaginary part of the 

frequencies versus the dimensionless flow velocity 

 

Fig. 3b. Dimensionless real part of the frequencies 

versus the dimensionless flow velocity 

The dimensionless imaginary and real 

frequencies versus the dimensionless flow 

velocity for various modes of vibration are 

depicted in Figures 3a and 3b. It must be noted 

that Im()represents the resonance frequencies 

of the system, while )Re( denotes the 

damping ones. As shown in these figures, with 

increasing fluid velocity, the imaginary part of 

the frequency decreases while the real part 

remains at zero until )Im(  drops to zero, 

while )Re(  starts to ascend. This velocity of 

the fluid is called CFV. For the velocities less 

than CFV, the system remains stable and this 

range of fluid velocity is safe for design 

purposes. In the vicinity of CFV up to 0.092, 

)Im(  remains at zero and a coupled system 

becomes unstable. When the fluid velocity 

increases beyond 0.092, a flutter phenomenon 

occurs, whereby two vibration modes merge. 

Flutter conditions must be avoided because 

these are dangerous for the system. By 

increasing the flow velocity the sequence of 

divergence, flutter and stable behaviours 

occurs again. The same behaviour can also be 

observed for other vibration modes. 

The variations of dimensionless imaginary 

frequencies versus dimensionless fluid 

velocities for various values of the aspect ratio 

 L r  are shown in Figure 4. It is obvious that 

the imaginary part of the frequency decreases 

with an increase in the aspect ratio. Moreover, 

as L r decreases, the CFV increases. Therefore, 

the low aspect ratio should be taken into account 

for coupled CNTs system in an optimum design 

of nano/micro devices.  

 

Fig. 4. Dimensionless imaginary frequency against 

velocity for various values of aspect ratio 

Figure 5 shows the imaginary part of the 

dimensionless frequency versus the flow velocity 

for different values of small scale. It is obvious 

that the nonlocal parameter is a significant 

parameter in the vibration of the coupled system. 

As can be seen, increasing the nonlocal 
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parameter alleviates the frequency and CFV. It 

must be noted that the zero value for nonlocal 

parameters (i.e., 00 ae ) denotes the result 

obtained by the classical Reddy beam model 

which has the highest frequency and CFV.  

 

Fig. 5. Dimensionless natural frequency dimensionless 

flow velocity for different values of small scale 

parameters 

Fig 6. Effect of magnetic field intensity on the natural 

frequency of a coupled system 

 

Fig. 7. Effect of the Knudsen number on the 

dimensionless imaginary frequency 

The effect of the magnetic field on the 

dimensionless frequency of the coupled CNTs 

is shown in Figure 6. As already mentioned, 

applying a magnetic field in the axial direction 

generates a force in the radial direction that is 

called the Lorentz force. It is concluded that 

the frequency and CFV increase with an 

increase in the magnetic intensity. Regarding 

the Lorentz force effect, it is evident that the 

magnetic field is an effective factor in 

increasing resonance frequency, leading to the 

stability of the system. 

The variation of the natural frequency with 

respect to the fluid velocity for different values 

of the Knudsen number is illustrated in Figure 7. 

The Knudsen number is defined based on 

various flow regimes. Here, the slip flow regime 

is considered. As shown in these figures, the 

continuum fluid (Kn=0) predicts the highest 

frequency zone, considering a fluid with a 

higher Knudsen number results in shifting the 

curves to the lower frequency region. Therefore, 

the critical flow velocity of the coupled system 

decreases with increasing Kn.  

Figure 8 indicates that the existence of a 

spring foundation enlarges the stability region 

of the coupled system and increases the 

resonance frequency. Since the Winkler 

modulus is equal in the whole coupled system, 

the abovementioned figure shows the effect of 

this spring modulus which is located at parties 

and is between CNTs. The results illustrate that 

the )Im(  increases with the increasing Winkler 

module and decreases as Umf increases.  

 

 

Fig. 8. Effect of the modulus of the Winkler 

foundation on the dimensionless natural frequency 

versus the dimensionless flow velocity 
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Fig. 9. Dimensionless transverse displacement along 

nanotubes for three different values of the dimensionless 

fluid velocity for the in-phase mode 

 

Fig. 10. Dimensionless transverse displacement along 

nanotubes for three different values of dimensionless 

fluid velocity for the out-of-phase mode 

 

Fig. 11. Effect of the Knudsen number on transverse 

displacement along the nanotube 

Transverse displacements of a coupled 

system for an in-phase state are demonstrated 

in Figure 9. As can be predicted, the mode 

shape of both CNTs is of equal quantity and 

direction. Moreover, increasing the velocity of 

the fluid leads to increasing transverse 

displacements. In addition, the clamp-clamp 

boundary conditions are satisfied at both ends 

of the nanotubes where the deflection and slop 

are zero.  

Figure 10 illustrates the distribution of the 

out-of-phase transverse displacement along the 

nanotubes with varying fluid velocity. In the 

out-of-phase mode, the transverse displacement 

directions of each CNT are opposite. 

Furthermore, increasing flow velocity causes an 

increase in the magnitude of transverse 

displacements. Furthermore, similar to Figure 9, 

it is found that the transverse displacements are 

zero at both ends of the nanotubes due to the 

assumed boundary conditions.   

Figure 11 shows the transverse displacement 

for the in-phase state versus the dimensionless 

nanotube length with a varying Knudsen 

number. As can be seen in this figure, with an 

increasing Knudsen number the transverse 

displacement increases. 

5. Conclusion 

In this study, the nonlinear vibration and 

stability of double CNTs conveying viscose 

fluid in a Visco-Pasternak foundation were 

investigated. A uniform magnetic field is 

applied to the system. The nonlinear higher-

order equations of motion were obtained using 

Hamilton’s principle. The DQ method was 

utilized to solve these equations. Here are some 

of the conclusions that can be drawn from the 

results: 

1. Considering fluid flow, it can be 

concluded that fluid flow and velocity are 

effective parameters for decreasing natural 

frequency, resulting in the instability of the 

system. 

2. The stability of the system depends 

strongly on nanotube length so that increasing 

the length of the nanotube leads to a decreasing 

stability region. 

3. The magnetic field has the same effect as 

the length of the nanotube, whereby the 

magnetic field intensity increases as the 

stability region of the system decreases. 

4. As the surrounding medium is stiffer, the 

stability of the system increases. 

5. Increasing the small scale parameter 

decreases the system’s stability. 
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