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Abstract 

The present paper investigates the potential application of graphene sheets with attached nanoparticles 

as resonant sensors by introducing a nonlocal shear deformation plate model. To take into account an 

elastic connection between the nanoplate and the attached nanoparticle, the nanoparticle is considered 

as a mass-spring system. Then, a combination of pseudo-spectral and integral quadrature methods is 

implemented to numerically determine the frequency shift caused by the attached mass-spring system 

for both clamped and simply supported boundary conditions. The obtained results are in a good 

agreement with those available in the literature, which reveals that the proposed combined method 

provides accurate results for structural problems related to concentrated objects. The results show that 

for soft connections with small spring constant values, the predicted frequency shift is greater than for 

rigid connections. This means that considering a rigid connection instead of elastic one will 

underestimate the frequency shift of nano resonant sensors. Additionally, it is shown that neglecting 

nonlocal small scale parameter results in overestimating the frequency shift of nano resonant sensors. 

The presented results can be useful as a guideline for designing plane shape nano resonant sensors like 

graphene-based mass sensors. 
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1. Introduction

 

In recent years, nanotechnology has found a 

significant role in our life due to the wide scope 

of its potential application in medicine, food 

industries, environment and energy issues and 

manufacturing processes, among others [1, 2]. 
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To design future nanoscale devices, 

nanostructures as new members in structural 

mechanics have received notable attention and 

therefore, prediction of the response of these 

elements against various mechanical loading 

situations is important. To consider the 

structural discreteness of nanostructures, the 

nonlocal version of Eringen's continuum of 

elasticity [3] along with introducing small scale 

mailto:skjalali@ut.ac.ir


Jalali and Naei
 

 

62 
 

effects should be applied [4-7]. Reports reveal 

that the results obtained by nonlocal elasticity 

are in good agreement with those obtained by 

atomistic approaches.  

Sensing nanoscale objects is one of the 

most significant issues in nanotechnology. 

Among various available methods for sensing 

applications, gigahertz nano resonant sensors, 

which detect these objects using vibration 

characteristics, have been addressed by many 

researchers [8]. The detection criterion is 

established based on measuring the resonant 

frequency shift of the sensor caused by the 

attached object due to changes in the total mass 

of the system. The potential of graphene sheets 

as nano resonant sensors has been addressed by 

many researchers because of their proper size, 

large surface area and high bending flexibility. 

Due to its flat shape, graphene can easily be 

considered as a nanoplate and related 

continuum theories can be adapted to analyse 

its frequency response.  

Shen et al. [9] studied the potential of SLGSs 

as nano mass sensors by considering the 

graphene sheet as a rectangular nanoplate with 

concentrated attached masses based on nonlocal 

Kirchhoff plate theory and the Galerkin method. 

The effects of the mass value and position on the 

frequency shift were discussed. Additionally, 

using Kirchhoff nonlocal plate theory and the 

Galerkin method, Zhou et al. [10] analyzed a 

circular graphene sheet carrying a nanoparticle as 

a nano resonant mass sensor. Murmu and 

Adhikari [11] proposed a nonlocal mass sensor 

model based on vibrating monolayer cantilever 

graphene sheets. Closed-form equations were 

derived for the frequency shift due to the added 

mass. However, their work was limited to lined 

shape distribution of the masses and linear 

vibration analysis. Neglecting small scale effects, 

in a similar study, Adhikari and Chowdhury [12] 

investigated the possibility of implementing 

graphene sheets as nano resonant sensors. Lee et 

al. [13] mass detection using a graphene-based 

nano resonator in the framework of nonlocal 

elasticity. The graphene sheet was considered as 

a rectangular nanoplate with an attached mass 

and equations of motion were analytically solved 

for simply supported boundary conditions. 

Influence of the small scale effect and the size 

and aspect ratio of SLGS on the sensitivity of the 

sensor was discussed in detail. In order to 

investigate the possibility of double layered 

graphene sheets as resonant mass sensors, 

Natsoki et al. [14] studied the vibration of 

double-layered rectangular graphene sheet 

resonators as nanoplates using the local 

continuum elasticity theory. 

Reviewing the literature, it is observed that 

geometric nonlinearity has a significant role in 

the large amplitude vibration of graphene sheets 

and resonant frequency is related to vibration 

amplitude [15-20]. However, the simultaneous 

influence of geometric nonlinearity and 

nonlocality on the frequency shift and 

sensitivity of nano resonant sensors has not been 

reported. In this study, application of SLGSs as 

resonant sensors in the detection of 

nanoparticles is investigated. Furthermore, to 

take into consideration the effect of nonlinearity, 

nonlocality and atomic interactions between 

SLGSs and attached nanoparticles, a nonlinear 

nonlocal plate model with an attached mass-

spring system is introduced.  

2. Nonlocal shear deformation plate model 

A nonlocal continuum model for the nonlinear 

vibration of an SLGS with attached 

nanoparticles on its surface is proposed. 

According to its two dimensional geometry, a 

graphene sheet may be represented by an 

elastic nanoplate of length a, width b, the 

effective thickness h and mass density p. To 

take into account the contact interactions in 

nonlocal formulation, the attached nanoparticle 

is considered as a mass-spring system (M0, K0) 

mounted on an arbitrary position (x0,y0) of the 

plate. The coordinate system (x,y,z) is located 

at the corner of the plate, such that the plate 

mid-plane coincides with xy plane and the z- 

axis is normal to it, as illustrated in Figure 1. 

Invoking Von Kármán's large deflection 

assumption and the first-order shear 

deformation plate theory (FSDT), nonlinear 

strain-displacement relations can be described 

as [21]: 

   x x 0 xzk  (1a) 

   y y 0 yzk  (1b) 

   xy xy 0 xyzk  (1c) 

  xz xz 0  (1d) 

  zy zy 0  (1e) 
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Fig. 1. Schematic of the studied nanoplate with an 

attached mass-spring system 

The mid plane strains and curvatures are 

described by: 

2

0 0 0

1

2
    x ,x ,x x x ,xu (w ) , k  (2a) 

2

0 0 0

1

2
     y ,y ,y y y ,y(w ) , k  (2b) 

0 0 0 0 0      xy ,y ,x ,x ,y xy x ,y y ,xu v w w , k  (2c) 

0 0   xz x ,xw  (2d) 

0 0   zy y ,yw  (2e) 

where (),x and(),y  indicate the differentiation with 

respect to x and y, respectively. Additionally, u0, 

v0 and w0 are the mid-plane displacement 

components along the x, y and z directions, while 

x
 and y

 define rotation about the y and x axis, 

respectively. 

Nonlocal continuum elasticity assumptions 

appear in constitutive stress-strain relations. In 

conventional local elasticity, stress at a point 

depends only on the strain at that point. Then, 

the macroscopic local stress component tij at a 

point is related to the strain tensor component 

ɛmn at that point by generalized Hooke’s law as 

follows: 

 ij ijmn mnt C  (3) 

where Cijmn is the fourth-order elasticity tensor 

component [21]. On the other hand, based on 

nonlocal elasticity assumptions first proposed 

by Eringen [3], the stress at a point is related to 

the strain at every point of the elastic body 

through an integration on the whole elastic 

body domain. Eringen [22] explained that it is 

then possible to represent the integral 

constitutive relation in an equivalent and 

simpler differential form as follows: 

   
22

0 01      ij ij ijmn mnt C , e a  (4) 

in which 𝝁 is the nonlocal parameter 

presenting the small scale effects, e0 is a 

material constant, a0 is the internal 

characteristic length (e.g., distance between 

constitutive atoms, which is C-C bond length 

for graphene), 2  is the two-dimensional 

Laplace operator and ij  is the nonlocal stress 

component. Small scale parameter can be 

obtained by using atomic lattice dynamics or 

by comparing molecular dynamics (MD) 

results with nonlocal continuum models for 

calibrating a proper small scale parameter [7]. 

Setting the internal characteristic length equal 

to zero results in 𝜇 = 𝟎 reducing to the perfect 

continuous state of local elasticity. The 

nonlocal stress-strain relationship for the plane 

stress state of nanoplates can be written as: 

   

2

2

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2 1
1

        
                   

          
      

        
              

 
 

 

x x x

y y y

zy zy zy

xz xz xz

xy xy xy

Q vQ

vQ Q

G

G

G

E E
Q , G

 

(5) 

E, v and G are Young’s modulus, shear 

modulus and Poison’s ratio of the nanoplates, 

respectively. One can calculate the nonlocal 

force and moment resultants by integrating 

stress components across the plate thickness. 

2

2
         

h /

xx yy xy xx yy xy
h /

N ,N ,N , , dz  (6a) 

2

2
         

h /

xx yy xy xx yy xy
h /

M ,M ,M , , zdz  (6b) 

2

2
        

h /

x y s xz zy
h /

Q ,Q K , dz  (6c) 

Ks is the shear correction coefficient of 

FSDT, which is considered equal to 5/6 [23]. 

Combining Equation (5) and Equation (6), 

these force and moment resultants can be 
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expressed in terms of displacement 

components: 
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(7c) 

The six governing equations of motion for 

free vibration of a shear deformable plate 

carrying a mass-spring system can be obtained 

using the principle of minimum total potential 

energy [23] as follows: 

0 0 xx ,x xy ,yN N I u  (8a) 

0 0  yy ,y xy ,xN N I  (8b) 

 0 0 0 0 0 0

0 0 0 0

   

    

Q Q N ( w ) K z w ( x , y )x ,x y ,y

(x x ) ( y y ) I w
 (8c) 

2   xx ,x xy ,y x xM M Q I  (8d) 

2   yy ,y xy ,x y yM M Q I  (8e) 

0 0 0 0 0 00
   K w ( x , y ) z M z  

(8f) 

( ̇ ) operator denotes differentiation with 

respect to time, t and mass moments of inertia, 

𝐼0 and 𝐼2 are calculated by: 

 
2

2

0 2
2

1


 
h /

h /
I , I p ( , z ) dz  (8g) 

The nonlinear term 𝒩(𝑤0) in Equation 

(8c), can be written as follows [24]: 

0 0 0 02  xx ,xx xy ,xy yy ,yyN (w ) N w N w N w  (8h) 

Additionally, the Dirac Delta function, 

given in Equation (8c), is defined as: 

 0 00x x , x x     

(8i) 
 0 0x x , x x      

       
 

0 00 0

0 0

a
f x x x dx f x x x dx

f x , x a


    



   

Using Equation (7), one can rewrite 

Equation (8a-e) in terms of the displacement 

components. 
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   0 2

11
2 2y ,yy x ,xy y ,xx x ,xy s y ,y y y ,xx y ,yy

vvD v K A w I
             

  
 (9e) 

 0 0 0 0 0 0 0K w x , y z M z     (9f) 

Equation (9c) is singular at the point (x0, 

y0), where the mass-spring system is located. 

However, considering Equation (8i), one can 

integrate Equation (9c) on the plate domain as 

follows: 

 
     

       

   

2 2
0 0 0 0 0 0 0

0 0

2 2
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 1 1
2 2 2

1 1 1
2 2

a b

s ,xx ,yy x ,x y ,y ,xx ,x ,x ,y ,y
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v
A K w w w u w v v w
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I w w w dxdy K w x , y z

                

         
   

      

 

 
(9g) 

This integral form will be used in the 

following section for the solution procedure. 

Both clamped and simply supported boundary 

conditions can be considered in transverse 

direction, while in-plane boundary conditions 

are assumed to be fully immovable. 

Clamped(CCCC): 

0 0 00 0 0 0 0 0 0x yAt x ,aand y ,b : u , v , w , ,          (10a) 

SimplySupported (SSSS): 

0 0 00 0 0 0 0 0y x ,xAt x ,a: u , v , w , ,         

0 0 00 0 0 0 0 0x y ,yAt y ,b : u , v , w , ,         

(10b) 

This set of partial differential equations 

should be numerically solved as a nonlinear 

eigenvalue problem in order to determine the 

frequency response of SLGSs carrying 

nanoparticles. 

3. Numerical solution procedure 

3.1. Pseudo-spectral solution procedure 

Spectral methods are a class of numerical 

techniques in applied mathematics that have 

been widely applied to scientific problems 

[25]. The collocation version of the spectral 

method, called the pseudo-spectral (PS) 

method with the use of Chebyshev 

polynomials, can be profitable in the case of 

classical elasticity problems like beam, plates 

and shells analysis [26, 27]. The main idea in 

this method is to approximate the derivative of 

an unknown function, F, at a collocation point 

by an equivalent weighted linear sum of the 

function values at all collocation points. In 

one-dimensional domains, it is explained as 

follows: 
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where (N+1) is the number of collocation 

points,     
n

x iF x  indicates nth differentiation 

of function F in ith collocation point and [D
(n)

] 

is called the nth differentiation matrix, the 

components of which the first derivative, [D
(1)

] 

, based on Chebyshev basic functions, are [28]: 
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 (12d) 

The second differentiation matrix, [𝐷(2)], 

can be easily computed as the square of [𝐷(1)]. 
Reference [28] provides some explicit 

formulas for higher-order differentiation 

matrices. The method can be extended to two-

dimensional domains by explaining the nth 

partial derivative using Kronecker products as 

follows: 
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If A and B are two matrices of dimensions 

p×q and r×s, respectively, then the Kronecker 

product, A⊗B, is the matrix of dimension 

pr×qs with p×q block form, where the i,j block 

is aijB. Additionally, I denotes the 

   1 1N N   identity matrix [28]. 

Chebyshev polynomials are orthogonal in 

the range of [−1,1]. Therefore, the rectangular 

real domain of nanoplate needs to be mapped 

to a 2×2 square computational domain using 

the following transformations. 

 
22 1 1 1 1

yxx , y , x , y ,
a b

       
(14) 

The grid points in both �̅� and �̅� directions 

are selected based on the Gauss-Lobatto 

interpolation points as follows in order to 

optimize the distribution [25]: 

    0 1 2i i
i ix cos , y cos , i , j , , ,... ,N

N N
     (15) 

The following dimensionless parameters are 

introduced to render the problem 

dimensionless: 
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(16) 

where Ω and   are the factual and 

dimensionless natural frequencies of the 

system, respectively, and wmax is the maximum 

vibration amplitude. For the purpose of 

frequency analysis, the dimensionless 

displacement components are considered as: 
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(17) 

Substituting Equation (14), (16) and (17) 

into Equation (9-10), the dimensionless 

nonlinear eigenvalue problem can be rewritten 

as follows: 
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The dimensionless integral governing equation is described as:  
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The dimensionless boundary conditions are: 

Clamped (CCCC): 

1 1 1 1 0 0 0 0 0x yAt x , and y , : u , v , w , ,             
(19a) 

SimplySupported (SSSS): 

1 1 0 0 0 0 0y x ,xAt x , : u , v , w , ,           

1 1 0 0 0 0 0x y ,yAt y , : u , v , w , ,           

(19b) 
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One can obtain the discrete form of 

equations based on the pseudo-spectral method 

by applying Equation (13) to Equations (18a-f) 

and (19) 
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where{�̅�}, {�̅�}, {�̅�}, {�̅�𝑥} and {�̅�𝑦} are the 

vectors of dimension (𝑁 + 1)2 × 1, which 

indicate dimensionless displacement 

components in the grid points. The (∗) 

operator in nonlinear terms indicates 

component by component multiplying. In the 

case of simply supported boundary conditions, 

the spectral analogues of governing equations 

in the boundaries can be expressed as: 
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The standard matrix form of the eigenvalue 

problem of Equations (20) and (21) can be 

presented as follows: 
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It should be noted that Equation (20c) is 

valid in every grid point of the computational 

domain except the kth grid point, which is 

associated with the point (x0, y0) where the 

attached mass-spring system is located, due to 

the singularity of the lateral governing equation 

in this point. Therefore, the lateral governing 

equation needs to be replaced with the integral 

Equation (18g) in a way that will be explained 

in the following section. 

3.2. Integral quadrature procedure 

In the integral quadrature (IQ) method, the 

main idea is to evaluate the integration of an 

arbitrary function, H, on a domain by a 

weighted linear sum of the function values, 𝐻𝑖, 

at all grid points of the domain [29]. The IQ 

method for the present two-dimensional 

computational domain can be written as: 

 
 

 
 

 
 

2

22

1 1 1

11 1

1 11 1

N

i i

i

NN

H x , y dx dy L H

L H

  

 

  





 
 (23) 

For applying the method, it is necessary to 

determine the associated weighting 

coefficients, 𝑙𝑖. This can be simply performed 

by introducing a set of (𝑁 + 1)2 polynomial 

test functions as follows [29]: 

0m m

tH X Y , m ,n ,... ,N   (24) 

As the values of these polynomials are 

known in the grid points and the values of their 

integrals on the domain can be easily 

computed, the weighting coefficients matrix, 

[L], will be evaluated through an inverse 

problem. 

Here, the IQ method will be implemented to 

evaluate a discrete integral governing equation, 

Equation (18g), as follows: 
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Now, the singular lateral governing 

equation in kth grid point in Equation (22) is 

replaced with Equation (25) using the 

following matrix form: 
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where 

1

0

ij j

i j , i k

Î L i k

otherwise

  


 



 
(26b) 

Components of [�̂�] are equal to zero, 

except for the two components in kth row, 

which contains terms from the right hand of 

Equation (25). Due to the simple form of 

matrices [𝐼] and [�̂�], Equation (26a) can be 

rewritten in the following form: 
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where 
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(27b) 

To establish the standard eigenvalue form 

of the problem, the displacement vectors can 

be divided to the boundary and the domain 

parts as follows: 
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(28) 

where subscripts b and d indicate boundary and 

domain, respectively. Then, the resulting 

eigenvalue of equations can be written in the 

matrix form as: 

2
0 0

0
bb bd

db dddb dd

K K b

M MK K d

      
      

    

or  

(29a) 

      0bb bdK b K d   (29b) 

     

      2

db dd

db dd

K b K d

M b M d

 

 
 (29c) 

Eliminating the boundary displacement 

vector,{𝑏}, from Equation (29) one obtains, 

  2 0K M d       
 (30a) 

      
1

dd db bb bdK K K K K


      (30b) 

      
1

dd db bb bdM M M M M


      (30c) 
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where [�̅�] is the total mass matrix and [�̅�] is 

the total stiffness matrix, which contains the 

linear and nonlinear stiffness terms and 

therefore is a function of displacements.  

The nonlinear frequency response of SLGSs 

with an attached mass-spring system will be 

iteratively determined using the following 

stepwise algorithm: first, the nonlinear terms in 

stiffness matrix, [�̅�], are neglected and the 

linear eigenvalue problem is solved in order to 

obtain the linear frequencies and associated 

mode shapes. Then, the mode shapes are scaled 

up to a given vibration amplitude, �̅�𝑚𝑎𝑥 and 

are used to calculate nonlinear coefficients. 

Following on, the updated eigenvalue problem 

is solved to determine the nonlinear 

frequencies and mode shapes. The iteration 

continues until the nonlinear eigenvalues 

converges with a desired accuracy [30]. 

4. Results and discussion 

4.1. Validation study 

The validation study is conducted to ensure the 

reliability and accuracy of the mathematic 

model and the pseudo-spectral nonlinear 

iterative procedure. In Table 1, the nonlinear to 

linear frequency ratio, �̅�, is presented for the 

case of the local continuum by setting the 

nonlocal small scale parameter equal to zero. 

The results agree very well with those of [31]. 

The influence of the small scale parameter on 

the linear frequency responses of nanoplates is 

indicated in Table 2. Excellent agreement with 

the exact results of a nonlocal FSDT plate 

model reported in [32] is observed, confirming 

the efficiency of the present method. 

Table 1. Nonlinear frequency ratio, �̅�, of square SSSS 

plates. (𝝂 = 𝟎. 𝟑) 

𝛼 �̅�𝑚𝑎𝑥 Present (Ref. [31]) 

0.001 0.2 1.0260 1.0250 

 0.4 1.1011 1.1002 

 0.6 1.2127 1.2080 

 0.8 1.3567 1.3507 

 1.0 1.5257 1.5134 

0.1 0.2 1.0276 1.0266 

 0.4 1.1071 1.1019 

 0.6 1.2302 1.2194 

 0.8 1.3781 1.3704 

 1.0 1.5573 1.5413 

 

Table 2. Dimensionless fundamental frequency 

�̅�𝟏𝟏 = 𝜴𝒉√𝝆 𝑮⁄  of SSSS square plate. (𝒂 = 𝟏𝟎𝐦, 𝑬 =

𝟑𝟎 × 𝟏𝟎𝟔 𝐏𝐚, 𝝂 = 𝟎. 𝟑) 

𝛼 𝜇 [m2] Present Exact (Ref. [32]) 

0.05 0 0.0239 0.0239 

 1 0.0218 0.0218 

 2 0.0202 0.0202 

 3 0.0189 0.0189 

 4 0.0178 0.0178 

 5 0.0169 0.0169 

0.1 0 0.0930 0.0930 

 1 0.0850 0.0850 

 2 0.0788 0.0788 

 3 0.0737 0.0737 

 4 0.0695 0.0696 

 5 0.0660 0.0660 

4.2. Frequency shift and sensitivity of SLGS 

sensors 

The capability of an SLGS as a resonant sensor is 

related to its frequency shift, ∆𝑓, due to changes 

in the value of attached mass, 𝑀0. Frequency 

shift is defined as the difference between the 

fundamental frequency of an SLGS with attached 

nanoparticles, f, and the fundamental frequency 

of a bare SLGS, f0; relative dimensionless 

frequency shift is indicated as (∆𝑓 𝑓0)⁄ = 1 −
(𝑓 𝑓0)⁄ . The position of concentrated 

nanoparticles on the surface of SLGS is an 

important issue. Figure 2 gives the influence of 

the nanoparticle position on the linear 

dimensionless frequency shift of an SLGS, with 

�̅� = 0.01 carrying a nanoparticle of mass 

�̅� = 0.5. Although the absolute maximum 

frequency shift occurs when the nanoparticle is 

exactly located at the centre of SLGS, for a 

central area equal to 25% of the total sensing 

surface, the frequency shifts are at least 70% of 

the absolute maximum value. Frequency shifts 

decrease dramatically when approaching the 

boundaries of SLGS. From a practical point of 

view, it is difficult to place the nanoparticles 

exactly at the centre of SLGS. Nonetheless, the 

adsorbing mechanism should be optimized to 

locate nanoparticles as near as possible to the 

centre. The proposed combined numerical 

solution approaches has the ability to take into 

account the effect of position of attached 

nanoparticles on frequency shifts. All the results 

are nonetheless presented for nanoparticles 

located at the centre in order to show the 

maximum performance of the SLGS sensor.  
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Fig. 2. Influence of nanoparticle position on dimensionless frequency shifts. Results are plotted on the dimensionless 

computational domain: �̅�, �̅� ∈ [−1,1]. 

In order to investigate the influence of 

elastic connection between the SLGS and the 

attached mass, Figure 3 shows variation of 

linear 
0f f versus variation of dimensionless 

spring constant, 𝑘,̅ for different values of 

thickness to side ratio, 𝛼. An attached mass of 

0 5m .  at the center of a simply supported 

square nanoplate with 0 01.   is considered. 

It is shown that for soft connections with small 

values of spring constant, the frequency shift 

reaches its maximum value, while increasing 

the rigidity of connection decreases the 

frequency shift to an ultimate frequency shift 

of a fully rigid connection. This means that 

considering a rigid connection instead of an 

elastic one will underestimate the frequency 

shift of nano resonant sensors. It should be 

noted that for very small spring constants, the 

connection between the nanoplate and the 

attached mass is not strong enough for 

allowing them to vibrate together, as they have 

a mode shape that corresponds to the first 

mode shape of a bare plate, but with a smaller 

frequency. Hence, the minimum value of 

0 05k .  is considered in presented results. 

Increasing thickness to side ratio decreases the 

dimensionless frequency of the nanoplate due 

to shear deformation effects [23]; however 

Figure 3 shows that increasing thickness to 

side ratio increases dimensionless frequency 

shift, especially for soft connections. For a 

nanoplate with a specified thickness, e.g., 

graphene sheets with h=0.34 nm, this means 

smaller sheets present a higher value of ∆𝑓 𝑓0⁄  

for a certain spring constant. 

 

Fig. 3. Dimensionless linear frequency shift versus 

dimensionless spring constant for various values of 

thickness to side ratios 

 0 01 0 5 1 00 0. ,m . , , x y , B .C . : SSSS        

Figure 4 illustrates dimensionless frequency 

shift versus dimensionless mass, attached at the 

centre of SLGS, for various values of vibration 

amplitude and nonlocal parameter. Results 

reveal that increasing �̅�𝑚𝑎𝑥 and decreasing �̅� 

cause an increase in dimensionless frequency 

shift. To offer deeper insight into the 

relationship between these parameters, a 

general equation is proposed and is fitted to 

numerical results during a best fitting process 

as follows: 
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1 0 13 1

4 4
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Fig. 4. Influence of (a) nonlocality and (b) nonlinearity 

on dimensionless frequency shift 

The assumed general form of Equation (31) 

is taken from the equation presented in [11] for 

the linear dimensionless frequency shift of 

cantilever SLGS resonant sensors. 

Additionally, for adding nonlinear effects, an 

increasing factor is assumed, since the results 

show that nonlinearity increases dimensionless 

frequency shift proportional to the square of 

vibration amplitude, which shows the well-

known hardening behaviour. Figure 4a 

compares numerical results with plots of 

Equation (31) for different values of nonlocal 

parameters (nonlinear effects are neglected). 

Figure 4b also presents nonlinear effects. It is 

seen that the plots of Equation (38) fit well 

with the obtained results. 

Dimensionless sensitivity, S, is defined as 

the partial derivative of dimensionless 

frequency shift with respect to dimensionless 

mass, ∂(Δ𝑓/𝑓0)/ ∂(�̅�). In the other words, 

sensitivity is equal to the slope of (Δ𝑓 𝑓0)⁄ -�̅� 

curves and is therefore a function of 

dimensionless mass. It can be easily obtained 

from Equation (31) as: 

 
 

2 22
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 (32) 

Figure 5 demonstrates variations of 

dimensionless sensitivity versus dimensionless 

mass for various combinations of nonlinearity 

and nonlocality using Eqution (32). In general, 

sensitivity increases when the dimensionless 

mass decreases and the maximum sensitivity is 

achieved when the mass tends to zero; for 

values of dimensionless mass greater than one, 

�̅� > 1, sensitivity reduces dramatically and the 

effects of nonlinearity, nonlocality is almost 

ignored. This means SLGSs are not 

particularly sensitive to changes in the value of 

attached mass when they are detecting 

nanoparticles having the masses in the order of 

the mass of SLGS. One can observe that 

increasing the vibration amplitude and 

decreasing the nonlocal parameter increases 

the sensitivity of the SLGS resonant sensor.  

 

Fig. 5. Dimensionless sensitivity versus dimensionless 

mass with different combination of nonlinearity and 

nonlocality. 

Boundary conditions can significantly affect 

the frequency shift. As it is expected, clamped 

boundaries present higher dimensionless 

frequency shift than simply supported ones due 



Jalali and Naei
 

 

74 
 

to increasing total stiffness of the system. 

Table 3 lists the percent of enhancing of linear 

dimensionless frequency shift due to changing 

boundary conditions from simply supported to 

clamped boundaries. It is seen that when the 

dimensionless nonlocal parameter increases the 

enhancing effect of clamped boundaries 

increases. Also, SLGSs with clamped 

boundaries present greater enhancing effect 

when the dimensionless attached mass is 

smaller. 

Table 3. Enhancing (%) of linear dimensionless 

frequency shift (𝜟𝒇/𝒇𝟎) due to changing boundary 

conditions from SSSS to CCCC 

 0 03 1 00 0. , ,x y       

  �̅� 

�̅� �̅� 0.00 0.01 0.03  0.06 

0.3 0.05 28.97 29.49 30.08  30.34 

 0.25 23.98 24.14 24.27  24.39 

0.5 0.05 22.12 22.92 24.21  25.53 

 0.25 18.58 18.94 19.52  20.25 

1.0 0.05 14.71 15.41 16.69  18.35 

 0.25 12.60 12.97 13.64  14.55 

5. Conclusion 

In the present study, the potential application 

of single layered graphene sheets (SLGSs) as 

nano resonant mass sensors in detection of 

ultra-fine metallic nanoparticles is investigated 

based on nonlocal elasticity. A combination of 

pseudo-spectral and integral quadrature 

methods is implemented to numerically 

determine frequency shift and sensitivity of the 

sensor. The conclusions are listed as follows. 

 Increasing vibration amplitude 

significantly increases the predicted 

frequency shift of SLGS resonant sensors. 

 Increasing the small scale parameter 

causes a decrease in both frequency and 

frequency shift. This means that 

neglecting the nonlocal small scale 

parameter results in overestimating the 

frequency, frequency shift and sensitivity 

of the SLGS resonant sensor. 

 Nanoplates with clamped boundary 

conditions present greater dimensionless 

frequency shift in comparison to simply 

supported ones, especially when the 

dimensionless attached mass is smaller. 

 Decreasing the spring constant results in 

higher values of frequency shift. 

Therefore, it can be conclude that 

considering a rigid connection instead of 

elastic one will underestimate the 

frequency shift of nano resonant sensors. 
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