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Abstract

Dip coating is a key technique in thin film fabrication, widely applied in protective
coatings, and material surface engineering. The coating quality depends strongly on
the fluid dynamics near substrate edges, where viscoelastic effects and inertial forces
can lead to stress concentration and flow instabilities. A viscoelastic fluid model is
formulated based on conservation of mass and momentum, with nonlinear
governing equations solved using the Langlois recursive approach and the inverse
method. Analytical solutions of the stream function provide insight into velocity
fields, pressure distribution, and stress behavior near the substrate surface. Results
show that stresses and pressure diverge near sharp substrate corners, which can
compromise coating durability. Variations in the interface angle significantly alter
stress distributions on both the substrate and free surface. Furthermore, inertial
forces amplify fluid velocities in the corner region, directly influencing film
thickness uniformity and mechanical performance of coated layers.
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1. Introduction

Dip coating is a versatile and widely used technique for applying thin films or coatings
to a substrate by immersing it into a liquid solution and then withdrawing it at a controlled
speed. The process can be defined as depositing aqueous-based liquid-phase coating
solutions onto the surface of a substrate. Generally, target materials are dissolved in
solutions, which are directly coated on the surface of the substrate. The resulting wet
coating is then evaporated to obtain a dry film [1, 2]. The film thickness typically follows
the Landau-Levich-Derjaguin (LLD) model [3], which shows that the thickness of the
dragged layer is a function of the withdrawal speed. The faster the withdrawal, the thicker
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the coating. This process is widely applied in anti-reflective and protective coatings on
lenses and mirrors, coating of semiconductors or insulating layers on devices, and
application of sol-gel coatings for thermal or chemical resistance. It is a low-cost, waste-
free process that produces uniform coatings over large areas and can easily be scaled up
for industrial production.

In dip coating, corner flow occurs near sharp angles or intersections, such as plate-
substrate junctions or moving and fixed boundary interfaces. In these regions,
geometrical singularities arise where stress or velocity gradients become large. Dip
coating processes often involve non-Newtonian fluids that exhibit properties such as
shear-thinning or thickening, memory effects, and viscoelasticity. This research focuses
on viscoelastic fluids such as polymeric solutions [4] or gel-based fluids carrying drugs or
functional particles (for biomedical coatings), conductive fillers (for printed electronics),
and ultraviolet-curable or thermal-reactive resins (for protective coatings). The elastic
component of viscoelastic fluids slows the thinning of the film during the drainage phase,
especially at low withdrawal speeds. This results in thicker coatings than those predicted
by Newtonian theory at equivalent speeds.

Researchers have long been intrigued by the study of fluid flow near corners because
of its theoretical complexity and practical importance. Goodier [5] was the first to describe
the flow created by one of the corner’s walls moving steadily parallel to itself. These
studies revealed that flow becomes complicated at certain critical corner angles. Moffatt
[6] examined the Stokes flow between two crossing planes, rightly indicating that such
configurations can generate an infinite series of eddies of decreasing magnitude. Later,
Taneda [7] verified these theoretical predictions experimentally by demonstrating the
existence of a sequence of diminishing eddies.

In a dihedral corner, Moffatt et al. [s] examined Poiseuille flow. Later, Betelu et al. [9]
incorporated additional boundary requirements and discussed viscous flow at a corner,
although they ignored surface tension. Although viscous fluids have been studied
extensively, the flow of Newtonian fluids over intersecting planes has also been
generalized to numerous non-Newtonian fluid models because of their extensive
engineering applications. For instance, such studies provide crucial information for the
design of industrially significant extrusion dies.

Non-inertial converging flow was explored by Han et al. [10], who considered a
modified second-grade fluid model and assumed that each material function depends on
the second invariant of the deformation rate. Renardy [11] studied the flow of an upper-
convected Maxwell fluid near a corner and concluded that the upstream corner stress is
infinite along the entire wall. Siddiqui et al. [12] studied Sisko fluid flow near a corner
using a model of Taylor’s scraping problem. Sprittles et al. [13] analyzed viscous flows in
domains where the boundaries form two-dimensional corners. Chaffin et al. [14] examined
Taylor’s paint scraping problem, investigating the dynamics of a Carreau fluid and
analyzing the flow near and far from the corner. Mahmood [i5] examined the effect of
inertia on viscous fluid flow near a corner and also observed the effect of leakage at the
apex. The interaction of fluid with sharp geometrical changes leads to unique flow
structures, such as singularities and vortex formation, which make corner flow a rich area
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of investigation in fluid mechanics. Because of its importance in both theoretical and
applied contexts, corner flow has remained an active area of research. A few core studies
on non-creeping, viscoelastic flow, coatings, thin films and most relavant analytical and
numerical techniques can be found in [16-25], along with several significant investigations
referenced therein.

This study aims to investigate the non-creeping flow of a viscoelastic fluid near a
corner using Taylor’s scraping problem. It contributes to a deeper understanding of
viscoelastic fluid behavior in complex geometries. The laws of conservation of mass and
momentum are used to model the problem, and the Langlois recursive technique with the
inverse method is employed to solve the resulting nonlinear problem. Velocity and
pressure distributions of the fluid are examined near a sharp edge by analyzing their
mathematical expressions and graphical results. The normal and tangential stresses on the
free surface and the plate are observed at the corner and at different interface angles. This
research also provides a comparison between Stokes and inertial flow of viscoelastic fluid
near a corner using graphical results.

2.  Formulation of the problem

Consider a dip coating problem in which a plate is pulled out of a stationary liquid bath
(i.e., a viscoelastic fluid) at a steady speed ¥ = (—=U,0). The liquid wets the plate, and a
corner flow is formed between the plate and the free surface interface (meniscus), making an
angle 8 = 8, (i.e., the interface angle), as shown in Figure 1. For the mathematical analysis,
a polar coordinate system (r,&) is adopted, with the origin placed at the point of
intersection of the plate and the meniscus.

U

Free
surface

(@) (b)

Figure 1: Geometry of the problem

The following velocity field is assumed for dip coating:
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V= (u(r,8),v(r8)), (1)
The free surface and the moving plate which is immersed in fluid suggest the following
boundary conditions:
u(r,8) = —eU, v(r,8)=0 at 68=0, (2)
u(r,8) =0, v(r,8) =0 at 8=46,. (3)
The viscoelastic flow properties through a corner can be studied by the following
continuity and momentum equations:

V.V =0, (4)
POV vt divs 5
pr | PT A (5)

where g stands for fluid density which is constant in the flow field, p is the dynamic
pressure and § is extra stress tensor of viscoelastic fluid.
After using Eq. (1) into Egs. (4) and (5), one can get the following form:

1d(ru) 1dv

_ —— =0, 6
r dr r dé (6)
r-component of momentum equation
du wvou v? dp 14 195, Sgg
—t-——=— =+ (5., )+ - -—, 7
p(uﬂr—i_raﬂ r) ar+rﬂr[r ”]+r 26 r (7)

f-component of momentum equation

(ﬁu+uﬂu+1w)_ lﬂp_l_lﬂ[rjs,,g)_'_lﬂsgg 5
P\"ar Trae "+ ) "rae i oar - a0’ (&)

Where 5,.., S5gg and 5,5 are normal and tangential components of stress tensor.
The extra stress tensor § of viscoelastic fluid satisfies the following relation:

(1 + AE)S =ud,, (9)
Dt
where
g = (V.V)5 — (VV)§ — 5(VW)7, (10)
A, =VV+ (V)T (11)

In above expression oo 18 the material derivative, 4, is the first Rivlin-Ericksen tensor,

A and p represent the relaxation time and the dynamic viscosity respectively.

3. Solution of the problem

To solve the Egs. (6)-(8) we will adopt the Langlois Recursive technique [26, 27]
introduced by William E. Langlois, which manages nonlinearity of the system and
provides a hierarchy of linear or simpler equations to solve recursively. In this technique
the velocity profile, pressure and shear stress become linear with the help of a small
dimensionless number &.

It is assumed that series solution for velocity, shear stress and pressure is given in the
following form:

V(r,6) = Z;lskvi"? (r,8), (12)
S(r,6) = Z ~ ks (r,8), (13)
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p(r,8) = constant +Z 5 p™) (r,8), (14)
k=1
The velocity and pressure considered for this problem is given in the following form:
yiE = (u':k:'[r,ﬁ'], u':k:'[r,ﬁ']}, (15)
P':k:' = P':k:' (r,6), (16)
Associated boundary conditions are
vt = (—eU,0), at 8=0, (17)
v =(0,0),k=>1 at 8 =0, (18)
v* =(0,0),k=1 at 8 =6, (19)
To get dimensionless form of Egs. (6)-(11), following dimensionless quantities are
considered:
() 3] 3] 3]
O L S L Ao L S S (S LN
U » U » U ] R.! HUD ¥
0 0 . 0 /}R
AU, §'¥ U,R
wi="2 s = ,Re =20 (20)
R HUI}}/ I
R

For analytical tractability, we limit our analysis up to third order in £, neglecting all
higher-order contributions due to the increasing complexity of the resultmg equatlons
Using Egs. (12)-(19) in Egs. (6)-(11), and collecting the terms of £, £~ and £* one can
get the first, second and third-order systems and their solutions.

3.1: First-order problem and its solution
The dimensionless form of first order problem is represented as follows:
au' . 1 gp 1 . ' o, .
dr r de ro (21)

(1)

(1) (1) !
op™ = Ei( '{%}) 135 _ g ’ (22)
ar rar\ T : r 5‘5‘ r
L] I\l |
1op™ 1 3(*"5,@ ) 185,
== +-—88 (23)

r 98  r? ar r 36‘
where components of stress tensor in dimensionless form are mentioned as below:

au't (1 _ g1 _ ﬂu"1}+15‘u'*13' v w_2 aul\l}—k (1) 24
(4 S8 = Ser = - T 28 u |, (24)

Using Eq. (24), the continuity and momentum equation of first order reduces into the
following form

au-ii} lauii} uEi}

Z =0, 25

) §3r * r df * r o (25)
ap't 29u'Y oMt

= vt + = —, 26

ﬁfr} we roar : e : (26)
ap't N 2 gut O

=yt 3 = -, 27

36 YT e (27)

where
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I & 1 9> 14

Vo= = P 28

ﬁr:-l_r:ﬁﬁ':-'_rﬁr (26)
The boundary conc}itions are mentioned as below:

u_l'\-l} = —,U, Ul‘i} = D_,. at E = ':._p [29]

u't = 0, pll) = 0, at 8 = 8,. (30)

To reduce the number of unknown and equations we will introduce the following stream
function ¥ (r,8):
) 19yt , gy
[ 1y _ _ . 31
T I ar (31)
Cross-differentiating Eq. (26) and (27) eliminates pressure and then substituting Eq. (31)
in the resulting equation one can get the following expressions:

viplt =g, (32)
with the following boundary conditions
azf_,r'l:' )
5~ ~ur, ¥W=0, atf=0, (33)
agf_,.r'xl.:' N
5 =0= w at =4, (34)

Assuming the solution of first-order stream function [28] in the following form

v = yrf(g). (35)
After using Eq. (35) in Egs. (32)-(34) and then solving the resulting differential
equation, the velocity components of first order u't and v are expressed as

ut =uf(e), v =-ufs). (36)
For a pressure of first order, we use Eq. (36) in Eqgs. (26) & (27)
apt U J
= 4'(6), 37
or ~ 79 (37)
ap't U

In which g(8) = f(8) + f"(8).

Integrating Eq. (37) with respect to r and then differentiating the resulting expression
with respect to 8, after comparing the expression with Eq. (38), we get the pressure for
first order:

i U r
p=——g'(6) + o, (39)

Where p, is constant and it shows the singularity near = = 0.

3.2: Second-order problem and its solution
Dimensionless form of continuity and momentum equation for second order is given in
the following form: f )
au'? N 1 gv'*2! . ut® . 20
ar r o8 ro (40)

(1) (1) 5,01 (1?2 (2 (2) i2)
Re (u':l:' du +1J du v ) dp 3'+ 14 ( ,:::,) 3:35?,5 _Sﬂ

(41)

or r a8  r " r df r’



332

Mehboob et al.

- - .. . ‘o 2020 9
z ﬂu'l:' N p' gy N TAELTICY _ 18p'? N 1 6(r S.a )-I- 1 65@3 4s
¢ ar | r a8 v ) r a8 ' or r a0 0 ()

Where dimensionless stress tensor components of the second order are mentioned as
follows:

(2) gu'? (2) (2) wiu? ,  ov 2 gt B2
Ser =257 Sie T8 T o) +——+-—5 —— (43)
(2 EWI'U:E,I': 2 (av'? (2)
Sap = 2 + ; Y. +u |, (44)

After using Egs. (43) and (44) in Egs. (41) and (42), the above momentum equation
takes the following form:

ap'? _U’Re __, wiu? 26%) + Vu® + 20u® 4@ 45
ar ) g ) w r dr re’ (45)
op'? B 4W1U‘ 4 pie@ 2 gu'? @ 16
ag  y2 99TV TiiTae T2 (46)
And boundary conditions are mentioned below:
u? =0,v% =0, at 6=0, (47)
u'? =00 =0, at 8 =6, (48)
The following stream functions reduce the problem in simple and compact form:
o _19¥Y o o¥? 49
YoYU T T e (49)
By using the same procedure as done in first order one can get the following form:
. "'| Uﬂ
vip® = " [(fo)" + 494'] (50)
The correspondmg boundary conditions take the following form:
agﬂﬂ—n w2 =0, at =0 51
ag — Vi =u, a - M ( ]
oy -
w:ﬂ:q‘r", at EZBD [52:]
Let f
w2 = wiu?f,(8) + ReUr*f,(6), (53)

be the assumed solution. After using the above assumption given in Egs. (50)-(52), one
can get the following expressmn

WilZ (o U"

(R 4 4R )+ T (B + ) = - " [(fo)" +494']
(54)

After comparison on both sides one can get the following systems of equations:
£ +4f] = —[(f9)" +499'], (55)
f(8)=0,f(8) =0 when8 =0, (56)
ff[E‘] =0,f,(f) = 0when 8 = 8,. (57)
£+ 41 = —((FF") +2f£), (58)
f£(8)=0,(8)=0 when8=0, (59)
f(8) = 0,f/(8) = 0when 8= 8, (60)

The solution of above BVPs are calculated by software Mathematica 12.0.
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After getting the solutions, one can find the explicit expression of stream function of
second order that will help to find following second-order velocity components:

u'? =y? (?ﬂ (6) + Re r‘f:f(gj)’ v'? = —2ReU?rf,(6). (61)

After using u"* and v** from Eq. (61) in Eqgs. (45) and (46) and then integrating (45)
with respect to r and then taking the partial derivative of the resulting expression with
respect to & and then comparing with Eq. (46) one can get the following expression of
second-order pressure:

(2) _ 2WiU*?
p® =

(fi +9°) +pa, (62)
Where p, is constant and it involves the singularity of second order.

3.3: Third-order problem and its solution
For the third-order problem the dimensionless form of continuity and momentum takes
the following form

gu'® 1803 B

Z =0, 63
o e r U (6
o )81.',' 2) - At 5,2 . o g, 9,0,
e T e T e T e 2
P 10 135 Sgp
= —— - 64
ar +r6 ( ) r ,65’ r o o (64)
) }au”:' } gr't W g, L@ g0 2 (2000
R L1 (2
© (u, ar Tu dr + r def N r df + r + r )
i s I:E} )
19p"® B 5(*"5,«; )+ 1855 -
r a8  r? or r 36‘ (65)
Where third-order components of stress tensor are expressed as follows:
503 _ zﬂu'j:' 2WiU? (Wi ) o6
e ar r r2 1 2 ’ ( j
§O _g® _ _2wiU® (wi ov'® N 19u®  p©@ -
rd T “8r T ) r 98 r ’ ( :]
,; 2WiU® (Wi 2 fav®
Séz} =— ( b.(8) + Reb (5’]) ( PY: + u"”), (68)
r

Where b;, i = 1,2, ...,6 are defined in appendix.
After using Egs. (66)-(68) in Egs. (64) and (65) the dimensionless form of the
momentum equation takes the following form:

ap® 20u® @ WiRed, (6 Wid, (6
P =74 '3:'+_ w _|_u._| -|-L|" LU-FR dn(ﬁj"‘l—(j ] (69)
dr r ar re rt
ap.:a) 2 g3 L3 WiRed. (8) Wi3d (8)
= y2p@ - U ———2 4 ReZrd.(8) + ————|, 70
a0 " T 2 TR, (8) + = (70)
Along with the following boundary conditions:
u® =003 =0, at =0, (71)

u'd = 0, pl3) = 0, at 8 = 6,. (72)
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After introducing the following stream function above system of equations reduces into
single partial differential equation in one variable:

g low® aw's
3 — — 3 — _ 73
YTy e T ar (73)
' WiRe e’ wi*
v“qﬂ?‘:m( [d +d; )+—[ d; +d4)——5(d3+3d6)), (74)
And boundary conditions take the following form:
op'® -
=0 w3 =0, at 6=10 75
ag ¥ y ¥ ( ]
az;_,r':ﬂ:' )
5= 0= wB at =4, (76)
The following assumed solution will help to reduce the above problem into system of
linear ODEs
wity?

w3 = ReWiU3rg,(6) + Re*U3r3g,(8) + g4(8), (77)
After using Eq. (77) in Egs. (74)-(76), one can get the followmg form:

R W IE;I_, i |EL
° I[ '+ 20) +0,) +Re*(0y" + 1007 + 9, )+—( ' +10g) +9g,)
ReWi . wi?
=T (di + dsj + RE'(_d; + d:}) Y (d:; + Sdsjr (78)
After comparing like terms, one can get the following system of ordinary differential
equations
9, + 20} + g, = ~(d +dy), (79)
g,(8)=10,9,(6) =0 when8 =0, (80)
g1(8)=0,9,(6) = 0when 8 = 8,. (81)
g + 109y +9g, = —d} +d,, (82)
g- [E] =0,g,(6) =0 whenf =0, (83)
g.(8) = 0,g:(f) =0 when 8 = 8,. (84)
g + 109y +9g, = —(d} + 3d,), (85)
Q’a (f) =0,g;(8) =0 when8 =0, (86)
g:(8) = 0,g;(f) =0 when 8 = 8,. (87)

The solutions of Eqgs. (79)-(87) are calculated by software Mathematica 12.0.
After finding the above solutions, one can find the third-order stream function that will
used to find the following velocity components:

u® = y3 (ReW:gl(E) + Re’r® gi(8) wi* [5']) (88)

y'3 =3 ( ReWig,(6) —3Re*r?g,(6) + W,I:_ga (9)) (89)

After using 1" and v*¥ from Egs. (88) and (89) in Egs. (69) and (70) and then
integrating (69) with respect to r and then taking the partial derivative of the resulting
expression with respect to & and comparing with Eq. (70) we get the expression of
pressure:
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-

) R W
p® = U3 |Re*r(—gl+d,) + —— (gl+d ]+ —(3g3 +d5) |+ 3, (90)

Where p5 is constant and d;, i = 1,2, ..,9 are deﬁne in appendix.

Note that in a first-order problem, the singularity occurs at a sharp bend (i.e., ¥ = 0)
only in the pressure field but velocity is finite everywhere while the second-order and
third-order problem solutions give singularity in both fields which conveys the complex
flow at a corner.

Summarizing results up to the third order:

u(r,8) =uV(r,6) + u'¥(,8) + u®¥(r8), (91)
v(r,8) = vV (r,8) + v'?(r86) + v¥(16), (92)
p(r,8) = p'(.6) +p @ (r.6) + p¥(r.6), (93)

5 _5 "1:'_|_5 "2]'_|_5 "3]" (94]

5:9— :a'l}"‘s 8 _}+5:E|3}r (95)

See = Sag' ) + Sag'? + 550" (96)

The tangential and normal stress is

T. = Srgle=g,. T = Seals=a, (97)

Using Egs. (95) and (96) in Eq. (97) one can get the following expression of tangential
and normal stress:
_ 32U°Wi(6,Cosf, — Sinfly)?

T = . 98

" ri(—1+ 265 + Cosf,)* (98)

r U?Csc*BySechy(r*Rela, + 4UWia, + 1288,ra, + 64ra,) 09
£ 128r%(—1 4 26; + Cos26,)*(6,Csch, — Sech,) (99)

It can be observed from Egs. (98) and (99) that normal and tangential stresses to the free
surface are infinite at v = 0.

Taylor [29] said, “In any real situation continuous contact between the free surface and
plate will not occur so that infinite stress at ¥ = 0 will be relieved over a region
comparable with the width of the gap.”
Then the component L of the total stress perpendicular to the plate and the component D
parallel to the plate are defined as follows:
L = T,cosfy + T.sinf,, (100)
D = T, sin8, — T.cos@,. (101)

4. Validation of results

To check the validation of the results obtained from Recursive approach we will find the
residues by substituting the solution given in equations (91)-(96) into Egs. (7) and (8).
The error E,(r, &) and E,(r, 8)are shown in Tables 1 and 2 which show that momentum
equations having small error and demonstrate the accuracy and reliability of the results
obtained in this study. .

ult gyl 07 u? ault Wyl 5,0

(1" g) = Ay

1) (2) - - -
ar a8 r+” ar Y o T e T e

_zu'il}v'::})JfS[P':lhrp'::“rp':a)) 10 —[r(sP+52+52)|

r dr r or
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o(s e s +s) (588453 +533)

, (102)
r r
,)au':ﬂ gl 0 ;)61.1':33' ,)avfl) p 1 5,20 02) 501
E, ’E = 1 R 1 12 N IR
2(r6) p(”’ or Ty o8 r Y T e T T e
e o N o . 2 (1) (2 i3
yDp@ @) 1a[p'~l3'+p'~-3'+p'~33') 1 a[r (5?,9 +5.5 TS5, )]
+ + + - -—=
r r r df re ar
W, @, @
15{599 +Sgg +599) (103)
r afg '
4.1. Special cases

The following results can be deduced from this study

* When Re — 0 and Wi = 0 then the radial and azimuthal velocity of the second and
third order become zero and the results are reduced for creeping flow of Newtonian fluid
[31].

* When Re — 0 and Wi # 0, then results for the creeping flow of Maxwell fluid can be
obtained [33].

* And when Re # 0 and Wi = 0, then results are reduced for the non-creeping flow of
Newtonian fluid [33].

5. Results and discussion
This section is organized into four subsections, each focusing on the impact of key
physical parameters.

5.1. Velocity field

The results presented in Figures 2 and 3 describe how different parameters affect the
velocity distribution of the fluid, particularly near the corner region where the plate
emerges from the bath. Figures 2a and 3a show that the fluid velocity increases as the
plate length r increases. This occurs because a longer moving plate remains in contact
with the fluid over a greater distance, imparting more cumulative shear stress along its
surface. The continuous pulling effect accelerates more fluid upward, and the influence is
especially pronounced near the corner, where the fluid transitions from the bath to the
free surface. Figures 2b and 3b illustrate the effect of plate speed on velocity. A higher
plate speed transfers greater momentum to the fluid through enhanced shear stress at the
interface. Near the corner, this shear becomes particularly intense due to flow redirection,
resulting in a significant rise in fluid velocity. The influence of the Reynolds number, as
shown in Figures 2c¢ and 3c, indicates that higher Re values correspond to stronger
inertial effects compared to viscous resistance. This inertial dominance promotes greater
fluid motion near the corner. Figure 2d examines the effect of the Weissenberg number
on viscoelastic fluid velocity. When the Weissenberg number is less than unity, elastic
effects are weak, and the fluid behaves more like a purely viscous fluid, especially near
the corner region where deformation is highest. Finally, Figure 4 compares inertial and
non-inertial cases, showing that velocity near the corner is higher in the presence of
inertial forces, as inertia helps sustain motion beyond what viscous forces alone can
generate. Overall, these observations demonstrate that geometric effects, plate motion,
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fluid elasticity, and inertial forces act together to control velocity profiles in the corner

region.

r=3.0,4.0,5.0

: - + -+ S+
0 prs 5 T 3
g
(a)

20F

10 U=2.03.04.0

~20k = * 5 %
12 g 4 3
g
(b)
o
20

Wi=0.3,0.6,0.9

10
u u 0
-10
-20
oot - : J 3L ; . . .
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0 B 3 7 3 0 2 s 0 5
& e
() (d)
Figure 2: Variation in radial velocity u(r,8) for r, U, Re and W1i.
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Figure 4: Comparison between radial and azimuthal velocity for inertial and non-inertial flow.

5.2. Normal and tangential stresses

The graphical results presented in Figures 5 and 6 illustrate how normal and tangential
stresses on the free surface vary under different physical parameters. Figures 5a and 6a show
the influence of the Weissenberg number, which represents the ratio of elastic to viscous
effects in a viscoelastic fluid. As the Weissenberg number increases, elastic forces become
more dominant, especially near the corner region where the flow undergoes sharp deformation.
In this zone, the fluid’s elastic property enables it to store more stress, and the concentrated
deformation leads to an increase in both normal and tangential stresses. Figures 5b and 6b
highlight the effect of plate speed on stress distribution. A higher plate velocity intensifies the
velocity gradient in the fluid, which in turn amplifies the deformation rate. This increase in
strain rate raises both normal and tangential stresses due to enhanced stretching and shearing of
the fluid near the free surface. Figure 6¢ demonstrates the effect of the Reynolds number on
tangential stress. As the Reynolds number increases, inertial forces begin to outweigh viscous
forces. This dominance of inertia elevates the shear rate near the corner, resulting in a rise in
tangential stress. However, the stress may act in the reverse direction due to flow reversal or
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secondary flow structures that develop under strong inertial effects. Overall, these results
indicate that geometric singularities such as corners magnify the influence of elasticity,
velocity gradients, and inertia on surface stresses. Numerical values of the tangential and

normal stresses acting on both the free surface and the plate are computed for various interface
angles as shown in Table 3.
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Figure 5: Variation in normal stress T, for Wi and U.
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Variation in tangential stress T, for Wi, Uand Re.
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5.3. Pressure distribution

Corners in a fluid—structure system often act as transition zones where velocity gradients,
stresses, and flow direction changes combine to produce noticeable pressure fluctuations.
Parameters such as plate length, Weissenberg number, and plate speed directly influence these
gradients and stresses, thereby altering the pressure pattern near the corner. Figure 7a shows that
when plate length increases, the contact area between the plate and the fluid also increases.
Because a larger surface area distributes the applied force over more fluid, the pressure (force
per unit area) decreases for the same total applied force. Although corners experience high local
stresses, if the overall average pressure is lower due to increased plate length, the corner
pressure peak is reduced. Figure 7b illustrates that the Weissenberg number Wi measures the
ratio of elastic to viscous effects in a viscoelastic fluid. A higher Wi indicates stronger elastic
(memory) effects. When elastic effects dominate, fluid elements resist further compression.
Near a corner, where flow direction changes sharply, the fluid is compressed more strongly,
resulting in higher local pressure. Figure 7c demonstrates that higher plate speed increases
pressure near the corner. This occurs because higher speed amplifies velocity gradients, leading
to stronger viscous and elastic contributions. The elevated stress translates into higher pressure
peaks, especially at corners where stress concentration is already high.

30
o0 100f .
r=3.0,4.0, 5.0 [, .
: . Wi=0.3,0.6,09
; .
” T ba o s 7 7 7 7
0 = 5 T 3 0 P 5 " 3
V. é
(a) (b)
40t~
30F U=2.0,3.0, 4.0

wlyf

Figure 7: Variation in pressure for 1", Wi and U.
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54. Stream lines

Figure 9 shows how the geometry of the interface specifically the corner angle directly
governs fluid motion in the region. When the interface angle is small, the corner acts like a
narrow throat, restricting the path available for the fluid. This restriction forces streamlines
to crowd together, creating strong velocity gradients, especially near the corner where the
fluid is compelled to change direction sharply. As the corner angle increases, the available
cross-section for flow becomes larger, reducing confinement. In this wider space,
streamlines can spread out more evenly and avoid excessive crowding, which lowers local
shear rates and pressure variations. The result is a smoother, more uniform distribution of
streamlines because the fluid has more freedom to follow gentle curvatures instead of
abrupt turns. In essence, a larger interface angle alleviates geometric constriction, allowing
the flow to distribute more evenly and reducing localized disturbances that would
otherwise arise from sharp corners.
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Figure 8: Streamlines for different variations of 5'[:. .
Table 1: Error calculated from T'-component of momentum equation.
Ey(r 8)
1.0 1.5 2.0 2.3 5.0

g

1] 6984 x10™% 6984 x107° 16984 x10™° 6984 x10™° 6984 x107°

15 8382 x 1077 +2.610 x10™% 2.908 x 107 2990 x10™® -3.019 x107°

30 —2.602 x10™° +2569 x107° {2563 x10™° 2562 x10™° 2561 x107°

15 —3.248 x10™° 6416 x1077 2,030 x10™7 8315x107® 4.010x 1078

60 1.612 x 1075  1.813 x10~5 1.846 x 107% 1.856 x 105 1.859 x 107°

el 3376 x 1075 [-3.376 x1075 3376 x107° 3376 x107° 3376 x 1075

105 12137 x 1075 [2.161 x 1075 2165 x107% 2166 x10™% 2.166 x 1075
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120 1531 x 1075 8631 x10°5 #648 x 1075  #.653 x 107  #.655 x 1073
135 2698 x10~° }2.775 x 105 +2.788 x 10™° (2791 x10™° {-2.792 x107%
150 297 x10~5 1.890 x10~5 [L.B22 x10™% [.BO3 x10™°  1.797 x 1073
165 1 8.381 x10-7 }2.610 x 10~ +2.908 x10™° 2990 x10™® {-3.019 x107®
180 -4370 x 10~° }4.600 x 10~5 +4.638 x 107° -4.649 x10™° {-4.653 x 107

Table 2: Error calculated from &-component of momentum equation.
E,(r,8)
1.0 1.5 2.0 D.5 5.0
8

D 7.708 x 107° [.907 x 107® B.147 x 1077 0.0 1.591 % 1077
15 1.525 x 107° [.525x 107° #4577 x 10™° £.103 x 10™®* B.051x 107°
B0 1.608 x 10™° 0.0 1.750 x 1075 0.0 ~1.150 x 1078
15 4924 % 107° 0.0 1.653 x 1075 0.0 —2.823 x 1078
50 1.760 X 107° B.051 x 10™° {-5.222x 10770.0 b.512 X 107°
b0 ~1.395 x 107°0.0 5.675 % 107° 0.0 1.131 x 107
105 D.0 p.0 0.0 ~1.220 x 10™* 0.0
120 7.290 x 107 D.0 1.090 x 107% +1.220x 10™* 1.012x 107*
135 1.243 x 107% R441x 107 P447 x 107* R441x10™* #062x107¢
150 1.220 x 107* R.441 x 107 %882 x 107° #.882x 107™* DR.441x107*
165 —1.220 X 107%-4.882 x 107*-2.441 x 107*-4.882 x 10™* +9.765 x 107*
180 5370 X 107° 0.0 1.155 x 107* 0.0 1.769 x 107*

different angle &;.

Table 3: The numerical values of normal and tangential stress on the free surface and plate at

8, T, = S?'E'E‘:E‘D T, = 599|9:9n L = T,cos8, + T.sind, D= T, Sin8, — T.Cost,
0 oo oo oo oo
15 —25.01 369.4 350.4 119.4
30 —51.09 092.84 54.86 90.66
45 —78.90 42.16 —25.98 85.60
60 —109.7 24.40 —82.82 75.99
90 oo 11.61 oo 11.61
105 —240.3 8.524 —2344 —53.41
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120 —312.2 6.920 —273.8 —150.1
135 —420.8 5.517 —301.4 —293.6
150 —621.8 4,394 —3153 —536.0
165 —1202 3.423 —316.9 —1160
1380 oo 2.533 oo oo

6. Conclusion

This study examines the influence of inertia on fluid flow when a plate is withdrawn
from a liquid bath. A recursive method is employed to solve the resulting nonlinear
governing equations, and the solutions are analyzed using both graphical and tabulated
results. The analysis reveals the presence of a stress singularity at the corner formed by the
plate and the free surface. The results show that both the tangential and normal stresses on
the free surface and the plate diverge as the interface angle approaches certain critical
values. In particular, the stress normal to the surface and plate, as well as the stress
perpendicular to the free surface, becomes unbounded at the critical interface angle.
Furthermore, in the case of non-creeping (inertial) flow near a corner, the fluid velocity is
significantly higher than in the purely viscous (non-inertial) case. This increase arises from
the contribution of inertia, which enhances momentum transport and results in greater fluid
motion. In contrast, when inertia is neglected, the velocity field is weaker because these
momentum-carrying effects are absent.
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Boundary conditions
[[Eu':l} + &2 u,':::'), (Evl:ﬂ + &2 u':::'),l]} = (—el],0,0), at =0,

[[Eu':l} + &2 u':::'], [Evm + &7 v':::'),l]) = (0,0,0),at 8= 8,.

First-order stress tensor form
D . .
(1 + AE).?” =pa, "W,
D_g':i]'

Dt
4,0 = (vww) 1wy,

x

g, sin® @ 8, —cos8,sind
.rﬂli=ﬂ,;ﬁlq=+ﬂ,.ﬁlﬂ =—ﬂ—u,.,f-14: g . 2 = 2
' sin“8, — 6, sin“ 8, — 6,"

Csc?8,
128k?(—1+ 6,Cot8,)
— 2(356, — 1366] +326; + 56 + 192656 — 326;6)Cos26,
— 4(—106, + 465 + 56 + 66,6)Cos48, + (—106, + 106)Cos66,
+ (—406, + 1667 + 8068 + 48676 + 166,6)Cos[48, — 26]
+ (108, — 2068 + 86,68°)Cos[66, — 26]
+ (608, — 15262 + 3265 Cos — 1208 + 96676 + 648,68 — 968,6°
—32626%)Cos[2(8, — 8)] + (—408, + 25667 + 806 — 336656 + 1126,6)Cos26
+ (108, — 12067 + 3265 — 208 + 192656 — 646,68 — 406,6°Cos[2(6, + 6)]
4+ 32656%)Cos[2(6, + 6)] + (25 + 246; + 1926, — 2406,6 — 16065 6)Sin286,
+ (—20— 1267 + 1206,6)Sin46, + 55iné8,
+ (25+ 126; — 406,80 — 32636 + 326° + 326;6°)Sin[46, — 26]
(=5 — zna 8 — 86°)Sin[66, — 26]
(—50— 3595 — 806, + 2406,6 + 486;6 — 4867)Sin[2(6, — 6)]
(—50— 3665 + 326, + 2806,6 — 160676 — 326* + 966;6%)Sin28
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— 5Sin[2(26, + 8)])

fi= (406, — 25667 + 206 + 4086768 — 646,06

_I_
+
_I_
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fi=- Csc”6y (—246, + 12863 — 126 — 168626 — 64636
® 512k*(-1+ 6,Cot,) 0 0 ° °

+ 2(216, — 5663 —326; + 36 + 64656 + 326,8)Cos286,
— 4(66, + 467 — 36 — 106;6)Cos48, + 6(6, — 6)Cos6d,
+8(36, + 263 — 66 — 10676 + 26,67)Cos[46, — 26]
+ 2(—36, + 66 + 46,6%)Cos[66, — 26]
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+ 8(36, — 1663 — 66 + 6656 + 146,6%)Cos26
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+ 3Sin[2(26, + 8)])

k = —1+ 265 + Cos26,

n, = —1566, — 2465 + 646; — 166,(—13 + §;)Cos26, + 4(—136, + 106;)Cos4b,
+ (154 15265 — 326;)Sin26, + 4(—3 — 196;)Sin48, + 3Sin64,

n, = —1326, + 8867 — 646; — 168,(—11 + 76;)Cos28, + 46,(—11 + 6)Cos48,
+ (25+ 4087 + 326;)Sin26, — 20(1 + 63)Sin48, + 5Sin68H,

n; = (—3Cos36, + 46;)Cos36, + Cos58, — 2(—1 + 26;)Cosb,

a, = 2(—5+ 565 + 26,)Sin6, + (5 — 56; + 46;)5in36, + (—1 + 6;)Sin56,

b, (8) = (2f/" + Ff"). b,(8) = (20f, — FF"),

b:(6) = (—2f"(fa) —2f "' — F(f9)" — FA" + afi)

b,(6) = (—29f; + 29'f, — ") bs(6) = (—2g(fg)' — 4g9f" —4f'(g° + ) —2f (299" + f;))
be(8) = (—4gf, + ) dy(8) = FI + fFA = by + b, dy(6) = —f'f + f5" + 2ff" + 4fF,.
d.(0) = 4b, — by + b, d,(6) = —ff; + 2f'f,. ds(6) = ff] — bl — by, d(6) = by — b,

1.(6) = f (d, —9g,)d6, dy(6) = f (ds + g,)d6, dy(8) = f (dg + 35)d6,
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