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Abstract 

Dip coating is a key technique in thin film fabrication, widely applied in protective 

coatings, and material surface engineering. The coating quality depends strongly on 

the fluid dynamics near substrate edges, where viscoelastic effects and inertial forces 

can lead to stress concentration and flow instabilities. A viscoelastic fluid model is 

formulated based on conservation of mass and momentum, with nonlinear 

governing equations solved using the Langlois recursive approach and the inverse 

method. Analytical solutions of the stream function provide insight into velocity 

fields, pressure distribution, and stress behavior near the substrate surface. Results 

show that stresses and pressure diverge near sharp substrate corners, which can 

compromise coating durability. Variations in the interface angle significantly alter 

stress distributions on both the substrate and free surface. Furthermore, inertial 

forces amplify fluid velocities in the corner region, directly influencing film 

thickness uniformity and mechanical performance of coated layers. 
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1. Introduction 

Dip coating is a versatile and widely used technique for applying thin films or coatings 

to a substrate by immersing it into a liquid solution and then withdrawing it at a controlled 

speed. The process can be defined as depositing aqueous-based liquid-phase coating 

solutions onto the surface of a substrate. Generally, target materials are dissolved in 

solutions, which are directly coated on the surface of the substrate. The resulting wet 

coating is then evaporated to obtain a dry film [1, 2]. The film thickness typically follows 

the Landau-Levich-Derjaguin (LLD) model [3], which shows that the thickness of the 

dragged layer is a function of the withdrawal speed. The faster the withdrawal, the thicker 
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the coating. This process is widely applied in anti-reflective and protective coatings on 

lenses and mirrors, coating of semiconductors or insulating layers on devices, and 

application of sol-gel coatings for thermal or chemical resistance. It is a low-cost, waste-

free process that produces uniform coatings over large areas and can easily be scaled up 

for industrial production. 

In dip coating, corner flow occurs near sharp angles or intersections, such as plate-

substrate junctions or moving and fixed boundary interfaces. In these regions, 

geometrical singularities arise where stress or velocity gradients become large. Dip 

coating processes often involve non-Newtonian fluids that exhibit properties such as 

shear-thinning or thickening, memory effects, and viscoelasticity. This research focuses 

on viscoelastic fluids such as polymeric solutions [4] or gel-based fluids carrying drugs or 

functional particles (for biomedical coatings), conductive fillers (for printed electronics), 

and ultraviolet-curable or thermal-reactive resins (for protective coatings). The elastic 

component of viscoelastic fluids slows the thinning of the film during the drainage phase, 

especially at low withdrawal speeds. This results in thicker coatings than those predicted 

by Newtonian theory at equivalent speeds. 

Researchers have long been intrigued by the study of fluid flow near corners because 

of its theoretical complexity and practical importance. Goodier [5] was the first to describe 

the flow created by one of the corner’s walls moving steadily parallel to itself. These 

studies revealed that flow becomes complicated at certain critical corner angles. Moffatt 

[6] examined the Stokes flow between two crossing planes, rightly indicating that such 

configurations can generate an infinite series of eddies of decreasing magnitude. Later, 

Taneda [7] verified these theoretical predictions experimentally by demonstrating the 

existence of a sequence of diminishing eddies. 

In a dihedral corner, Moffatt et al. [8] examined Poiseuille flow. Later, Betelu et al. [9] 

incorporated additional boundary requirements and discussed viscous flow at a corner, 

although they ignored surface tension. Although viscous fluids have been studied 

extensively, the flow of Newtonian fluids over intersecting planes has also been 

generalized to numerous non-Newtonian fluid models because of their extensive 

engineering applications. For instance, such studies provide crucial information for the 

design of industrially significant extrusion dies. 

Non-inertial converging flow was explored by Han et al. [10], who considered a 

modified second-grade fluid model and assumed that each material function depends on 

the second invariant of the deformation rate. Renardy [11] studied the flow of an upper-

convected Maxwell fluid near a corner and concluded that the upstream corner stress is 

infinite along the entire wall. Siddiqui et al. [12] studied Sisko fluid flow near a corner 

using a model of Taylor’s scraping problem. Sprittles et al. [13] analyzed viscous flows in 

domains where the boundaries form two-dimensional corners. Chaffin et al. [14] examined 

Taylor’s paint scraping problem, investigating the dynamics of a Carreau fluid and 

analyzing the flow near and far from the corner. Mahmood [15] examined the effect of 

inertia on viscous fluid flow near a corner and also observed the effect of leakage at the 

apex. The interaction of fluid with sharp geometrical changes leads to unique flow 

structures, such as singularities and vortex formation, which make corner flow a rich area 
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of investigation in fluid mechanics. Because of its importance in both theoretical and 

applied contexts, corner flow has remained an active area of research. A few core studies 

on non-creeping, viscoelastic flow, coatings, thin films and most relavant analytical and 

numerical techniques can be found in [16-25], along with several significant investigations 

referenced therein. 

This study aims to investigate the non-creeping flow of a viscoelastic fluid near a 

corner using Taylor’s scraping problem. It contributes to a deeper understanding of 

viscoelastic fluid behavior in complex geometries. The laws of conservation of mass and 

momentum are used to model the problem, and the Langlois recursive technique with the 

inverse method is employed to solve the resulting nonlinear problem. Velocity and 

pressure distributions of the fluid are examined near a sharp edge by analyzing their 

mathematical expressions and graphical results. The normal and tangential stresses on the 

free surface and the plate are observed at the corner and at different interface angles. This 

research also provides a comparison between Stokes and inertial flow of viscoelastic fluid 

near a corner using graphical results. 

2. Formulation of the problem 

Consider a dip coating problem in which a plate is pulled out of a stationary liquid bath 

(i.e., a viscoelastic fluid) at a steady speed . The liquid wets the plate, and a 

corner flow is formed between the plate and the free surface interface (meniscus), making an 

angle   (i.e., the interface angle), as shown in Figure 1. For the mathematical analysis, 

a polar coordinate system  is adopted, with the origin placed at the point of 

intersection of the plate and the meniscus. 

         
(a)                                                                            (b) 

Figure 1: Geometry of the problem 

 

The following velocity field is assumed for dip coating: 
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The free surface and the moving plate which is immersed in fluid suggest the following 

boundary conditions: 

 

 
The viscoelastic flow properties through a corner can be studied by the following 

continuity and momentum equations:  

                  

 
where   stands for fluid density which is constant in the flow field,  is the dynamic 

pressure and  is extra stress tensor of viscoelastic fluid.  

After using Eq. (1) into Eqs. (4) and (5), one can get the following form: 

 
-component of momentum equation 

 
 

-component of momentum equation 

 
Where  and  are normal and tangential components of stress tensor. 

The extra stress tensor  of viscoelastic fluid satisfies the following relation: 

 
where  

 

 
In above expression  is the material derivative,  is the first Rivlin-Ericksen tensor,  

 and  represent the relaxation time and the dynamic viscosity respectively. 

 

3. Solution of the problem 

To solve the Eqs. (6)-(8) we will adopt the Langlois Recursive technique [26, 27] 

introduced by William E. Langlois, which manages nonlinearity of the system and 

provides a hierarchy of linear or simpler equations to solve recursively. In this technique 

the velocity profile, pressure and shear stress become linear with the help of a small 

dimensionless number  

It is assumed that series solution for velocity, shear stress and pressure is given in the 

following form:  
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The velocity and pressure considered for this problem is given in the following form: 

 

 
Associated boundary conditions are 

 

 

 
To get dimensionless form of Eqs. (6)-(11), following dimensionless quantities are 

considered: 

 

 
For analytical tractability, we limit our analysis up to third order in , neglecting all 

higher-order contributions due to the increasing complexity of the resulting equations.  

Using Eqs. (12)-(19) in Eqs. (6)-(11), and collecting the terms of  and  one can 

get the first, second and third-order systems and their solutions. 

 

3.1: First-order problem and its solution 

The dimensionless form of first order problem is represented as follows: 

 

 

 
where components of stress tensor in dimensionless form are mentioned as below: 

 
Using Eq. (24), the continuity and momentum equation of first order reduces into the 

following form 

 

 

 
where  
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The boundary conditions are mentioned as below: 

 

 
To reduce the number of unknown and equations we will introduce the following stream 

function : 

 
Cross-differentiating Eq. (26) and (27) eliminates pressure and then substituting Eq. (31) 

in the resulting equation one can get the following expressions: 

 
with the following boundary conditions 

 

 
 

Assuming the solution of first-order stream function [28] in the following form 

 
After using Eq. (35) in Eqs. (32)-(34) and then solving the resulting differential 

equation, the velocity components of first order  and  are expressed as  

 
For a pressure of first order, we use Eq. (36) in Eqs. (26) & (27) 

 

 
In which  . 

Integrating Eq. (37) with respect to  and then differentiating the resulting expression 

with respect to , after comparing the expression with Eq. (38), we get the pressure for 

first order: 

 
Where  is constant and it shows the singularity near .  

 

3.2: Second-order problem and its solution 

Dimensionless form of continuity and momentum equation for second order is given in 

the following form: 
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Where dimensionless stress tensor components of the second order are mentioned as 

follows: 

 

 
 

After using Eqs. (43) and (44) in Eqs. (41) and (42), the above momentum equation 

takes the following form: 

 

 
And boundary conditions are mentioned below: 

 

 
The following stream functions reduce the problem in simple and compact form: 

 
By using the same procedure as done in first order one can get the following form: 

 
The corresponding boundary conditions take the following form: 

 

 
Let 

 
be the assumed solution. After using the above assumption given in Eqs. (50)-(52), one 

can get the following expression: 

 

 
After comparison on both sides one can get the following systems of equations:  

 

 

 

 

 

 
The solution of above BVPs are calculated by software Mathematica 12.0. 
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After getting the solutions, one can find the explicit expression of stream function of 

second order that will help to find following second-order velocity components: 

 
After using  and  from Eq. (61) in Eqs. (45) and (46) and then integrating (45) 

with respect to  and then taking the partial derivative of the resulting expression with 

respect to  and then comparing with Eq. (46) one can get the following expression of 

second-order pressure: 

 
Where  is constant and it involves the singularity of second order. 

 

3.3: Third-order problem and its solution 

For the third-order problem the dimensionless form of continuity and momentum takes 

the following form 

 

 

 

 
 

Where third-order components of stress tensor are expressed as follows: 

 

 

 
Where  are defined in appendix. 

After using Eqs. (66)-(68) in Eqs. (64) and (65) the dimensionless form of the 

momentum equation takes the following form: 

 

 
Along with the following boundary conditions: 
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After introducing the following stream function above system of equations reduces into 

single partial differential equation in one variable: 

 

 
And boundary conditions take the following form: 

 

 
The following assumed solution will help to reduce the above problem into system of 

linear ODEs 

 
After using Eq. (77) in Eqs. (74)-(76), one can get the following form: 

 
After comparing like terms, one can get the following system of ordinary differential 

equations  

 

 

 

 

 

 

 

 

 
The solutions of Eqs. (79)-(87) are calculated by software Mathematica 12.0. 

After finding the above solutions, one can find the third-order stream function that will 

used to find the following velocity components: 

 

 
After using  and  from Eqs. (88) and (89) in Eqs. (69) and (70) and then 

integrating (69) with respect to  and then taking the partial derivative of the resulting 

expression with respect to  and comparing with Eq. (70) we get the expression of 

pressure: 
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Where  is constant and  are define in appendix. 

 

Note that in a first-order problem, the singularity occurs at a sharp bend (i.e., ) 

only in the pressure field but velocity is finite everywhere while the second-order and 

third-order problem solutions give singularity in both fields which conveys the complex 

flow at a corner. 

Summarizing results up to the third order: 

 

 

 

 

 

 
The tangential and normal stress is  

 
Using Eqs. (95) and (96) in Eq. (97) one can get the following expression of tangential 

and normal stress: 

 

 
It can be observed from Eqs. (98) and (99) that normal and tangential stresses to the free 

surface are infinite at . 

 

Taylor [29] said, “In any real situation continuous contact between the free surface and 

plate will not occur so that infinite stress at  will be relieved over a region 

comparable with the width of the gap.” 

Then the component  of the total stress perpendicular to the plate and the component  

parallel to the plate are defined as follows: 

 

 
 

4. Validation of results 

To check the validation of the results obtained from Recursive approach we will find the 

residues by substituting the solution given in equations (91)-(96) into Eqs. (7) and (8). 

The error  and are shown in Tables 1 and 2 which show that momentum 

equations having small error and demonstrate the accuracy and reliability of the results 

obtained in this study. 
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4.1. Special cases 

The following results can be deduced from this study 

• When  and  then the radial and azimuthal velocity of the second and 

third order become zero and the results are reduced for creeping flow of Newtonian fluid 

[31]. 

• When  and , then results for the creeping flow of Maxwell fluid can be 

obtained [33]. 

• And when  and , then results are reduced for the non-creeping flow of 

Newtonian fluid [33]. 

 

5. Results and discussion 

This section is organized into four subsections, each focusing on the impact of key 

physical parameters. 

 

5.1. Velocity field 

The results presented in Figures 2 and 3 describe how different parameters affect the 

velocity distribution of the fluid, particularly near the corner region where the plate 

emerges from the bath. Figures 2a and 3a show that the fluid velocity increases as the 

plate length  increases. This occurs because a longer moving plate remains in contact 

with the fluid over a greater distance, imparting more cumulative shear stress along its 

surface. The continuous pulling effect accelerates more fluid upward, and the influence is 

especially pronounced near the corner, where the fluid transitions from the bath to the 

free surface. Figures 2b and 3b illustrate the effect of plate speed on velocity. A higher 

plate speed transfers greater momentum to the fluid through enhanced shear stress at the 

interface. Near the corner, this shear becomes particularly intense due to flow redirection, 

resulting in a significant rise in fluid velocity. The influence of the Reynolds number, as 

shown in Figures 2c and 3c, indicates that higher  values correspond to stronger 

inertial effects compared to viscous resistance. This inertial dominance promotes greater 

fluid motion near the corner. Figure 2d examines the effect of the Weissenberg number 

on viscoelastic fluid velocity. When the Weissenberg number is less than unity, elastic 

effects are weak, and the fluid behaves more like a purely viscous fluid, especially near 

the corner region where deformation is highest. Finally, Figure 4 compares inertial and 

non-inertial cases, showing that velocity near the corner is higher in the presence of 

inertial forces, as inertia helps sustain motion beyond what viscous forces alone can 

generate. Overall, these observations demonstrate that geometric effects, plate motion, 
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fluid elasticity, and inertial forces act together to control velocity profiles in the corner 

region. 

    
                                     (a)                                                                   (b) 

    
                                        (c)                                                                  (d) 

               Figure 2: Variation in radial velocity   for   

 
 (a)                                                                             (b) 
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(c)                                                                               (d) 

 

Figure 3: Variation in azimuthal velocity  for  

 

 

 
   (a)                                                                            (b) 

Figure 4: Comparison between radial and azimuthal velocity for inertial and non-inertial flow. 

 

5.2. Normal and tangential stresses 

The graphical results presented in Figures 5 and 6 illustrate how normal and tangential 

stresses on the free surface vary under different physical parameters. Figures 5a and 6a show 

the influence of the Weissenberg number, which represents the ratio of elastic to viscous 

effects in a viscoelastic fluid. As the Weissenberg number increases, elastic forces become 

more dominant, especially near the corner region where the flow undergoes sharp deformation. 

In this zone, the fluid’s elastic property enables it to store more stress, and the concentrated 

deformation leads to an increase in both normal and tangential stresses. Figures 5b and 6b 

highlight the effect of plate speed on stress distribution. A higher plate velocity intensifies the 

velocity gradient in the fluid, which in turn amplifies the deformation rate. This increase in 

strain rate raises both normal and tangential stresses due to enhanced stretching and shearing of 

the fluid near the free surface. Figure 6c demonstrates the effect of the Reynolds number on 

tangential stress. As the Reynolds number increases, inertial forces begin to outweigh viscous 

forces. This dominance of inertia elevates the shear rate near the corner, resulting in a rise in 

tangential stress. However, the stress may act in the reverse direction due to flow reversal or 
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secondary flow structures that develop under strong inertial effects. Overall, these results 

indicate that geometric singularities such as corners magnify the influence of elasticity, 

velocity gradients, and inertia on surface stresses. Numerical values of the tangential and 

normal stresses acting on both the free surface and the plate are computed for various interface 

angles as shown in Table 3. 

 
                                                    (a)                                                                           (b) 

Figure 5: Variation in normal stress  for  

 

    
(a)                                                                           (b) 

 

   
               (c) 

Figure 6: Variation in tangential stress  for  
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5.3. Pressure distribution 

Corners in a fluid–structure system often act as transition zones where velocity gradients, 

stresses, and flow direction changes combine to produce noticeable pressure fluctuations. 

Parameters such as plate length, Weissenberg number, and plate speed directly influence these 

gradients and stresses, thereby altering the pressure pattern near the corner. Figure 7a shows that 

when plate length increases, the contact area between the plate and the fluid also increases. 

Because a larger surface area distributes the applied force over more fluid, the pressure (force 

per unit area) decreases for the same total applied force. Although corners experience high local 

stresses, if the overall average pressure is lower due to increased plate length, the corner 

pressure peak is reduced. Figure 7b illustrates that the Weissenberg number   measures the 

ratio of elastic to viscous effects in a viscoelastic fluid. A higher   indicates stronger elastic 

(memory) effects. When elastic effects dominate, fluid elements resist further compression. 

Near a corner, where flow direction changes sharply, the fluid is compressed more strongly, 

resulting in higher local pressure. Figure 7c demonstrates that higher plate speed increases 

pressure near the corner. This occurs because higher speed amplifies velocity gradients, leading 

to stronger viscous and elastic contributions. The elevated stress translates into higher pressure 

peaks, especially at corners where stress concentration is already high. 

      
                                               (a)                                                                              (b) 

 

      
               (c) 

Figure 7: Variation in pressure for  
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5.4. Stream lines 

Figure 9 shows how the geometry of the interface specifically the corner angle directly 

governs fluid motion in the region. When the interface angle is small, the corner acts like a 

narrow throat, restricting the path available for the fluid. This restriction forces streamlines 

to crowd together, creating strong velocity gradients, especially near the corner where the 

fluid is compelled to change direction sharply. As the corner angle increases, the available 

cross-section for flow becomes larger, reducing confinement. In this wider space, 

streamlines can spread out more evenly and avoid excessive crowding, which lowers local 

shear rates and pressure variations. The result is a smoother, more uniform distribution of 

streamlines because the fluid has more freedom to follow gentle curvatures instead of 

abrupt turns. In essence, a larger interface angle alleviates geometric constriction, allowing 

the flow to distribute more evenly and reducing localized disturbances that would 

otherwise arise from sharp corners. 

 
                                                                                

                         (a)                                                   (b)                                                   (c)  

Figure 8: Streamlines for different variations of  

 

Table 1: Error calculated from -component of momentum equation. 
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Table 2: Error calculated from -component of momentum equation. 

 

 
 

     

      

      

      

      

      

      

      

      

      

      

      

      

 
Table 3: The numerical values of normal and tangential stress on the free surface and plate at 

different angle . 
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6. Conclusion 

This study examines the influence of inertia on fluid flow when a plate is withdrawn 

from a liquid bath. A recursive method is employed to solve the resulting nonlinear 

governing equations, and the solutions are analyzed using both graphical and tabulated 

results. The analysis reveals the presence of a stress singularity at the corner formed by the 

plate and the free surface. The results show that both the tangential and normal stresses on 

the free surface and the plate diverge as the interface angle approaches certain critical 

values. In particular, the stress normal to the surface and plate, as well as the stress 

perpendicular to the free surface, becomes unbounded at the critical interface angle. 

Furthermore, in the case of non-creeping (inertial) flow near a corner, the fluid velocity is 

significantly higher than in the purely viscous (non-inertial) case. This increase arises from 

the contribution of inertia, which enhances momentum transport and results in greater fluid 

motion. In contrast, when inertia is neglected, the velocity field is weaker because these 

momentum-carrying effects are absent. 

Appendix 

 

 

 

Continuity equation  

 

-component of momentum equation 

 

 
-component of momentum equation 
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Boundary conditions 

 

 
First-order stress tensor form 
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