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Abstract

The primary objective of this study is to analyze the thermal processes, nanoparticle
concentration, and bioconvection mechanisms in a synovial fluid model using
numerical methods. Two fluid models are considered: Model (1), representing a
shear-thinning fluid, and Model (2), representing a shear-thickening fluid. The
influences of magnetic field, porosity, Joule heating, and viscous dissipation are
incorporated into the analysis. The governing equations for momentum, energy,
nanoparticle concentration, and motile microorganism density have formulated using
the lubrication approximation. The resulting nonlinear differential equations are
solved numerically using the Runge-Kutta-Merson method and the finite difference
scheme. The effects of key parameters on velocity, temperature, nanoparticle
concentration, and motile microorganism density are systematically explored. The
study reveals that the magnetic field significantly alters the fluid motion, reducing
velocity as magnetic intensity increases, whereas higher velocities are observed in the
shear-thinning model. The synovial fluid achieves its maximum velocity near the
knee cartilage surface. The temperature profile is higher in Model (1) than in Model
(2), primarily due to heat generation effects. The concentration production parameter
also affects the thermal field, leading to lower nanoparticle concentrations in Model (1).
Moreover, the thermophoretic parameter decreases nanoparticle concentration, while
the Brownian motion parameter enhances it. Heat-source-driven fluid motion
ultimately reduces the density of motile microorganisms.
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1. Introduction

The thermal characteristics of fluids play a significantrole in cooling and heating applications across various engineering fields.
Conventional heat-transfer fluids often fail to meet industrial and technical requirements for high cooling efficiency due to their
inherently low thermal conductivity. In recent years, researchers have sought to enhance thermal performance by dispersing tiny
nanoparticles into base fluids [1]. However, the early attempts to suspend nanoparticles were largely ineffective because of issues
such as particle sedimentation, excessive pressure drops, corrosion of equipment, particle agglomeration (clogging), and inadequate
thermal conductivity.

To address these limitations, researchers focused on reducing the size of the solid particles to achieve the desired thermal
properties. These efforts led to the development of nanofluids, a concept rooted in engineering at the nanoscale. Various chemical
and physical techniques have been employed to reduce particle sizes to the order of 10 meters. As a result, nanofluids have been
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engineered at the atomic scale to exhibit superior thermal behavior compared to fluids with larger particles. Choi [2] and Lee [3]
introduced nanofluids—colloidal suspensions of nanoparticles—and demonstrated their enhanced thermal properties and improved
efficiency in a wide range of applications.

Nanoparticles are now synthesized from diverse materials, including gold, magnesium, silver, copper, carbon nanotubes,
semiconductors, nitride ceramics, and oxide ceramics. Nanofluids may consist of either Newtonian or non-Newtonian base fluids
combined with different types of nanoparticles. Their primary purpose is to improve thermal properties while minimizing particle
volume fraction by achieving effective dispersion and distribution within the fluid. Nanofluids can enhance key physical properties
such as mass diffusivity, thermal diffusivity, and viscosity, which are generally superior to those of base fluids like oil or water
[4]. Consequently, nanofluids have extensive applications in detergency, biomedia sterilization, computer and electronics cooling,
fuel cooling, automotive thermal systems, and transformer cooling. They also offer the potential for ultra-high-performance heating
and cooling in industrial processes such as aircraft propulsion ducts, solar collectors, vehicle radiators, semiconductor fabrication,
and nuclear reactor thermal management.

Imran et al. [5] investigated the interaction between cilia and nanoparticles in a biological fluid flowing through a duct. Eid [6]
analyzed the dynamics of differently shaped nanoparticles suspended in a Sisko biological fluid under convective conditions.
Elelamy et al. [7] studied blood flow, considering non-Newtonian behavior, magnetic effects, slip conditions, and heat transfer,
and further examined bacterial development near coronary valves. Bhatti et al. [8] examined the biological rheology of a
Williamson fluid under magnetic and convective effects and explored entropy generation. Elangovan et al. [9] analytically
examined the movement of a magnetized nanofluid containing TiO,-Fe3;O4 nanoparticles with slip effects. Sharma et al. [10]
performed a comprehensive analysis of magnetized fluid flow over an elastic surface influenced by chemical reactions and thermal
radiation, accounting for Brownian motion and thermophoresis. Raza et al. [11] developed a mathematical model for the flow of
biological nanofluids through a porous medium containing carbon nanotubes.

Bioconvection is a natural process observed in certain microorganisms. When microorganisms are denser than the surrounding
fluid, they tend to swim upward; once a sufficiently dense layer forms at the top, they sink, creating bioconvective patterns.
Oxytactic bacteria such as Bacillus subtilis migrate toward regions with higher oxygen concentrations, and oxygen is replenished
through surface diffusion [12]. Engineers have recently explored combining nanoparticles with motile microorganisms to regulate
heat and mass transfer in industries such as coatings, bioreactors, and fuel cells. This combined phenomenon is known as nano fluid
bioconvection, and the resulting fluids are referred to as bio-nanofluids [13]. The bioconvection mechanism is relevant in many
biological processes and micro-devices, as the motion of microorganisms enhances mixing, reaction rates, and transport processes.
Using self-propelled microorganisms can significantly improve convective transport and facilitate controlled mixing. Adding
microorganisms to engineered fluids can also enhance the effectiveness of magnetohydrodynamic coating processes. This approach
can be applied to various substrate geometries, including flat plates, parallel plates, curved surfaces, and wedge-shaped structures.
Basha and Sivaraj [14] numerically investigated blood flow with nanoparticles in several geometrical configurations, emphasizing
circulatory system behavior.

Researchers have further examined the simultaneous influence of magnetic fields in nanofluid bioconvection systems—referred
to as magnetohydrodynamic nanofluid bioconvection. This field involves analyzing nanoscale bioconvection mechanisms
alongside viscous magnetohydrodynamic effects and has numerous applications, including smart coating technologies.
Microorganisms can display gyrotactic, phototactic, chemotactic, and magnetotactic motions, each responsive to torque, light,
chemicals, and magnetic fields. Biswas et al. [15] studied the magnetized movement of oxytactic microorganisms in a porous
medium with copper nanoparticles suspended in a water-based nanofluid. Alhussain et al. [16] examined magnetic bioconvection
nanofluid flow over a rotating cone using the Cattaneo—Christov heat flux model. Puneeth et al. [17] investigated bioconvection
dynamics of a pseudoplastic nanofluid over a spinning cone. Mekheimer et al. [18] studied bioconvection-induced synovitis in
blood flow with nanoparticles spreading across damaged tissues. Mahendra et al. [19] analyzed entropy generation and
bioconvection in peristaltic nanofluid flow through an asymmetric channel using the Eyring—Powell model. Arain et al. [20]
explored bioconvectionin Sutterby fluid over a rotating disk in the presence of nanoparticles and an induced magnetic field, solving
the nonlinear system using the DTM-Padé method.

In this study, synovial fluid is adopted as the non-Newtonian base fluid [21]. Synovial fluid acts as a lubricant and shock
absorber within synovial joints. Due to its non-Newtonian nature, its viscosity decreases under shear, exhibiting shear-thinning
behavior, which facilitates joint movement by reducing resistance and providing improved lubrication at rest. Synovial fluid also
plays key roles in nutrient transport, waste removal, shock absorption, and lubrication. Its properties are crucial in diagnosing joint
abnormalities [22, 23], such as inflammation, crystal deposition, and infections. Motivated by these applications, the primary
objective of this work is to investigate the rheology of synovial fluid under bioconvection effects. The following sources [24-27]
include contemporary research on bioconvection and nanofluid movement in different geometrical shapes.

The literature review highlights a gap in addressing this type of problem. The aim of the present study is to regulate the
temperature of synovial fluid—responsible for lubricating joint movement within permeable knee cartilage—using magnetic fields,
nanoparticles, and motile microorganisms. We solve the problem for two models: Model (1) exhibiting shear-thinning behavior
and Model (2) exhibiting shear-thickening behavior. The coupled nonlinear system is solved numerically using the Runge—Kutta—
Merson method combined with a finite difference scheme. We analyze the effects of velocity, temperature, nanoparticle
concentration, and motile microorganism density on all the major physical parameters.

2. Problem Assumptions and Mathematical Model

An incompressible non-Newtonian synovial fluid fills the slender, flexible cylindrical tube that represents the studied arterial
segment. Let (1, 0',2") denote the coordinates in the physical cylindrical polar coordinate system, with the z'-axis aligned along
the artery axis and r', 8’ corresponding to the radial and circumferential directions, respectively. We represent the temperature,
concentration, and motile density at the endoscopic wall as T, Cy, Ny, and at the outer wall as Ty, C;, N;. A uniform magnetic field
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B is applied along the perpendicular direction of the flow. We assume the geometrical structure to be porous, with a permeability
of k. The mathematical representation of the artery geometry is detailed in Figure 1.
, {ao (endoscopewall),
r =
a, (arterywall),

(M

B

]_T =T7,C'=C; N'=N,
; Synovial Fluid

Figure 1: Geometry structure of synovial fluid flow through the artery under uniform magnetic field.
We investigate synovial fluid dynamics using a generalized incompressible non-Newtonian nanofluid model in which the viscosity
depends on both shear rate and concentration. To incorporate the effects of hyaluronic acid concentration, an additional convection—
diffusion equation is coupled with the system. Moreover, it is assumed that the swimming direction and velocity of the
microorganisms are not influenced by the presence of nanoparticles in the fluid—an assumption that remains valid for dilute
nanoparticle suspensions. The fundamental equations governing the flow of the synovial nanofluid are as follows:
Continuity equation:
V.V =0. (2
Momentum equations:
Pl + (V- VOV = =V'p' + ] x B+2V -/ (C, DD’ — £V, 3)
Energy equation:
(s[5 + (VTOT'] = kg V2T + (pO)y o2 (VC' - W'T") + 2 (VT - V'T")]
1 i
+<I>+;[-[+Q(T—T0). “
Concentration equation:

S (VLY)C =V (DVC) + 2LV2T, )
Motile density equation:
S DN+ 227 (N'VC) = D, TN ©
! 1=Co

Corresponding slip boundary conditions:
w=0T = T, c' = Ci, N’ =N,, at r' = a,,

%=—%(w’—wp), T'=T,, C'=C, N' =N,, at ' = a,, )

where as i’ represents viscosity, D’ denotes the symmetric part of the velocity gradient, py signifies the density of the base fluid,
B signifies the applied magnetic field, / signifies the current density, p,, signifies the density of nanoparticles, V' signifies the
velocity vector, N’ stands for the density of motile microorganisms, p’ signifies the pressure, ® signifies the dissipation function,
kr signifies the thermal conductivity, Q* signifies the heat source, T' signifies the temperature distribution, C' signifies the
concentration of hyaluronan/hyaluronic, T, signifies the mean temperature of the fluid, ¢, signifies the heat capacity of the fluid,
o' signifies the electrical conductivity of the synovial fluid, c, signifies the heat capacity of the nanoparticle, Dy signifies the
Brownian diffusion coefficient, k signifies the permeability of porous, a; signifies the slip parameter, w;, signifies the Darcy
velocity, b signifies the chemotaxis constant, W, is a maximal cell speed, and Dy signifies the thermophoretic diffusion coefficient.

Let us focus on physical scenarios in which synovial fluid primarily exhibits viscous-like behavior. In such cases, the fluid
behaves as an incompressible viscous medium, with viscosity varying according to the shear rate and hyaluronan concentration. In
this investigation, we consider two synovial fluid models [28, 29], both exhibiting non-Newtonian behavior in two-dimensional
flows.
Model (1): Viscosity is assumed to exhibit exponential dependence on the concentration

i (€D = e (1 + 2| y?) o, ®
Model (2): The shear thinning index is regarded as a function of concentration.
1 (€D = y(1+ D72 y2)e, ©
In which
' our r owr. our owr
|| = 2@y + 2ty + 22 + &+ 2, 10)
and
_e—aCl)

n(c) =22 (11)

2
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where u', w' are the velocity components, n is the shear-thinning index ranging between —0.5 and 0, in which the model with n =
0 corresponds to a Newtonian fluid. The constants y,, a, and y are material constants. In order to streamline the mathematical
modelling process, we convert all equations into a dimensionless configuration. To do this, we employ these dimensionless

quantities:
Qolo

a l
r'=ayr,z =lz,u' = u,w’=u0w,5=T°,t’=—t,u’=uu0,
Ug

; uglug TI-Ty Cr—Cy Nr—Ng , Ul
p = a2 p'g=T1—T0'('0=C1—CO'X=N1—N0"%=a_0' (12)
where [ represents the length of the artery, and u,, is the reference velocity.
By substituting the expression from Eq. (??) into Equations (2)-(11) and evaluating the conditions R, < 0 and § < 0, the continuity
Equation (2) is automatically fulfilled and the remaining equations are transformed as follows:
Momentum equations:

op _
2=y, (13)

ap ] a ow ou ow
5—2 6r(ra_r)+6_ra_r —g? uw — Hw. (14)

Energy equation:

19 ( ag) + Nba_ea—(p‘f' N, (69) +ERu (a_w)z +E.BHwW? + E.P.Q0 = 0.

ror or or or or
15)
Concentration equation:
10 ( dp\ , Ne13d [ 00\ _
T (15) + s (75 = (16)
Volume fraction:
10 ax a dp\ _
(e —Ra (63 =0 a7
and
2
w=(1+ap) [1 + nw? (Z—W) ] Model(1),
2 (18)
u= [1 +2wz (5) ] Model(2).
Corresponding boundary conditions:
w=0 ¢=160=1, y=1 atr—e—ao
19)
aa‘:=—aa1(w wy), 8=0, y=0, ¢ =0atr=1

The variables in the equation are defined as follows: N, symbolizes the thermophoresis parameter, P, symbolizes the
Bioconvection Peclet number, o symbolizes the porous parameter, P. symbolizes the Prandtl number, N, represents the Brownian
motion parameter, H symbolizes the magnetic parameter, R, symbolizes the Reynolds number, E, symbolizes the Eckert number,
Q symbolizes the heat source coefficient, and w, symbolizes the synovial parameter. They are precisely and explicitly described
as:

_ (PC)th(T1 —To) _ bW, o= 4o _ (PC)pDB (€1 —Cy) aoQ _ UBga% R = PrUpQo E
Tnkr ne Dy’ Vi’ b AC'kr ' uo.“o to ¢ to ¢
ug YUo . HoCr

=W, = —, =
Cf(T1 -T) ¢ QAo " kr
(20)
3. Numerical solution

3.1. Numerical Implementation using Finite Difference Discretization

The mathematical models (14)-(18), along with their boundary conditions, depict a nonlinear system with radial coordinates. As a
result, analytical solutions are difficult to find, and numerical solutions are generated using FDM. To carry out the numerical
scheme, the system is discretized using a second-order accurate finite difference approach devised in conservative cylindrical form.
At each iteration, the discretization operation was conducted implicitly, using a tridiagonal process. The finished algebraic
equations are iteratively solved using the Picard (fixed-point) technique. The detailed steps are listed below:

Radial Grid and Notations: The computational domain is divided into V' uniform intervals in the following form as:
1-¢

7 =&+ jAr, j=01,..,, ArzT. 21)

The half-nodes are expressed as
ALY

Tl =T (22)

The discretized form of first and second derivative for any scalar F 7~ are approximated as:
Fi+1—Fj-1
(F); ~ L= (23)
- 1?j+A1—Tj l?fi—AT}-_l
_ 1 j+y A j—3 AT
LIF) = - (24)

The above expression gives accurate representation of the second-order axisymmetric Laplacian operator. The weighted operator
LF[F] for the variable-coefficient diffusion terms can be expressed as:
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e 17’)-+1—7f]- Fi-F;
1 jtz j+3 AT i-> i-5 Ar

2 2 , (25)

LE[F] =

Ty Ar
where the transport coefficients is represented as € 1.
-2

Discretization procedure: The momentum equation (14) can be articulated as

2L0w] = (P + H)w; =P, P=2, j=1.,N-1 (26)
The derived tri-diagonal coefficients can be expressed in the following form:
er_l'“ o1 2rj+l‘uj+l
— 2 2 j— 2 2
G == K=o @7
2(r. ap, 147, 1p, 1)
jt3 3 =3 i3
Vs T (0%p; + H). (28)
The boundary conditions are as follows:
w, =0, atr = ¢, (29)
S = gy (W — W), atr =1, (30)
that produces the discrete Robin condition
1 1
(—;—031) Wy + =Wy = —0aWp. 3D

The Energy equation (15) can be discretized using the similar procedure as above at each node j, and the nonlinear terms are
evaluated using the previous iterations:
— _[Nb(gr)}wnlinear(gor)}wnlinear + Nt(eponlinear)z’

+Ec Pr H}wnlinear (W;wnlinear)z + Ec Pr H(W]nonlinear)z]_ (32)
The derived tri-diagonal coefficients can be expressed in the following form:
.1 T, 1
e __ __J73 e _ __J*3
aj = r; Ar2’ vi = r; Ar?’ (33)
rj+l+r]__l
e — 2 2
pi = —r]_ 2 + Ec Pr Q. (34)

The boundary conditions are as follows: 8, = 1 atr = &, 0, = 0 atr = 1. The concentration equation (16) can be discretized
using the similar procedure as above at each node j, we obtained:

Lj [(,0] — _[’:]’_; Lj [e]nonlinear' (35)

The derived tri-diagonal coefficients can be expressed similarly as the energy equation without the source term. The boundary
conditions are as follows: ¢, = latr = ¢, @) = 0atr = 1.

The concentration equation (17) can be discretized using the similar procedure as above at each node j, we obtained:
Piv1~Pj Pi=Pj-1
j+% . Ar . {j_% . Arj
Lxl =P — . (36)
The boundary conditions are as follows: y, = latr =€, y) = 0atr = 1.
At nodes and faces the nonlinear dynamics viscosity can be represented as:

(1+ap,)|l+n w? (Wr)j2+l], Model(1),
Wea=4  ap i (37)
J+3

1+—2w? W), Model(2).
2

The above set of equations are solved on computational software MALTAB using Picard algorithm. A comparison has been
presented in Tables.

3.2. Rung-Kutta-Merson approach with Newton iteration

We utilize the Rung-Kutta-Merson approach with Newton iteration to effectively solve the system of nonlinear ordinary
differential equations (13)-(19). The equations are solved through the shooting and matching procedure. When utilizing the
shooting method, we rely on the DO2HAF subroutine from the NAG Fortran library. This subroutine necessitates the provision of
initial values for the absent initial and terminal conditions. The subroutine utilizes a sophisticated numerical method with adaptive
step size to effectively manage the local truncation error. It then employs a well-known iterative technique to iteratively refine the
estimated boundary values. You can find more information about the proposed numerical technique in these sources [30-32]. Below
are some possible transformations:

w=Y, 0=Y;, ¢ =Y, (=Y, (38)
Equations (14)-(17) along with the boundary conditions (19) can be outlined in the following manner:
Y =Y, 20 +5Y, + 1Y) — 0%V, — Hy, = =0, (39)
I I 1
=Y, Yp+-Y, + N.YZ + N,Y,Y, + E.P.QY; + E.P.uY? + E.B.HY? = 0, (40)

! 14 1 (N) I 1
Y, =Y, Y, = —=Y, —@(Y2 +2%,), (41)
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Y; =Y, Vg = ==Yy + P (Ye¥y + YYy), (42)
with the following reduced boundary conditions:
Y, =0, ;=1 Y.,=1 and ¥V, =1, at r =,
Y,==0a;(Y; —wp), =0, Ys=0and ¥, =0 atr=1,
where the prime demonstrates differentiation with regard to r. In order to calculate the physical quantities w, 6, ¢ and y. The
system of equations, labeled as Egs. (39)-(42), is solved using Mathematica package version 9. The boundary conditions, labeled
as (43), are also taken into consideration.

(43)

Table 1: Comparison of velocity and temperature profile with Finite difference approach.

r w(r) (Present results) 6(r) (Present results) w(r) (FDM) 6(r) (FDM)

1 0.841470985 0.540302306 0.84147 0.54030
1.026315789 0.855396474 0.517973814 0.85539 0.51797
1.052631579 0.868729618 0.495286635 0.86872 049528
1.078947368 0.881461183 0.47225648 0.88146 047225
1.105263158 0.893582353 0.448899296 0.89358 0.44889
1.131578947 0.905084735 0.425231257 0.90508 042523
1.157894737 0.915960363 0.401268755 0.91596 040126
1.184210526 0.926201706 0.377028381 0.92620 0.37702
1210526316 0.935801672 0.352526923 0.93580 0.35252
1236842105 0.944753613 0.327781346 0.94475 0.32778
1263157895 095305133 0.302808787 0.95305 0.30280
1.289473684 0.960689078 0.277626539 0.96068 0.27762
1315789474 0.967661567 0.25225204 0.96766 0.2522
1342105263 0.973963969 0.226702861 0.97396 0.22670
1.368421053 0979591919 0.200996695 0.97959 0.20099
1.394736842 0.984541521 0.175151342 0.98454 0.17515
1421052632 0.988809347 0.149184701 0.98880 0.14918
1.447368421 0.992392441 0.123114752 0.99239 0.12311
1.473684211 0.995288323 0.096959548 0.99528 0.09695
1.5 0.997494987 0.070737202 0.99749 0.07073

Table 2: Comparison of concentration and microorganism profile with Finite difference approach.

r #(r) (Present results) y(r) (Present results) ¢(r) (FDM) x(r) (FDM)

1 1.557407725 0.693147181 1.55740 0.69314
1.026315789 1.651428028 0.706219262 1.65142 0.70621
1.052631579 1.753993661 0.719122667 1.75399 0.71912
1.078947368 1.866488278 0.731861693 1.86648 0.73186
1.105263158 1.990607609 0.744440475 1.99060 0.74444
1.131578947 2.128452975 0.756862995 2.12845 0.75686
1.157894737 2.282660566 0.769133088 228266 0.76913
1.184210526 2456583514 0.781254448 245658 0.78125
1.210526316 2.654553769 0.793230639 2.65455 0.79323
1.236842105 2.882267779 0.805065097 2.88226 0.80506
1.263157895 3.147370122 0.816761137 3.14737 0.81676
1.289473684 3.460364706 0.828321959 3.46036 0.82832
1.315789474 3.836090152 0.839750655 3.83609 0.83975
1.342105263 4296213835 0.85105021 429621 0.8510
1.368421053 4873671776 0.862223511 4.87367 0.86222
1.394736842 5.621090355 0.873273347 5.62109 0.87327
1421052632 6.628088147 0.884202417 6.62808 0.88420
1447368421 8.060711066 0.895013333 8.06071 0.89501
1473684211 10.26498518 0.905708623 10.2649 0.90570

1.5 14.10141995 0.916290732 14.1014 0.91629
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4. Graphical Results and Discussion

The present study employs a combination of the shooting method and the Runge—Kutta—Merson scheme to analyze and present
the results. This section provides a detailed discussion of the key physical parameters—velocity, temperature, nanoparticle
concentration, and the density of motile microorganisms. To illustrate these effects, we include graphical representations showing
how variations in specific parameters influence the flow of synovial fluid within permeable knee cartilage for both the shear-
thinning Model (1) and the shear-thickening Model (2). The effects of all parameters are depicted in Figures 2—18. In addition,
Tables 1 and 2 provide numerical comparisons obtained using the finite difference method, confirming that the present results
show excellent agreement with the proposed methodology.

Figures 2—6 illustrate how various emerging parameters influence the flow velocity. Figure 2 shows the effect of the magnetic
parameter Hon velocity for both the shear-thinning and shear-thickening models of synovial fluid. The graph clearly reveals that
the velocity decreases as Hincreases for both models, with the shear-thinning model exhibiting comparatively higher velocity.
Figure 3 presents the influence of the concentration production parameter a on the velocity distribution. This parameter
significantly enhances the velocity profile. It is also observed that the flow rate is higher under no-slip conditions than under slip
conditions.

Figure 4 compares the velocity profiles of a Newtonian fluid and synovial fluid for varying values of the pressure parameter
P,. The results indicate that the velocity is higher in synovial fluid, with the maximum velocity occurring near the surface of the
knee cartilage. Figure 5 demonstrates the changes in velocity due to variations in the porous parameter oand the slip parameter a; .
Higher values of gand a, lead to a reduction in velocity. Finally, Figure 6 shows the effects of Darcy velocity wj,and the synovial
fluid parameter w, on the velocity profiles. An apparent decrease in fluid activity is observed as wy increases. Although the synovial
parameter w,also causes a reduction in velocity, its influence is relatively minor.

Figure 7 presents the influence of the pressure parameter P,on the fluid temperature for Models (1) and (2). The temperature
profile increases with rising P,in both models; however, the upward trend is more pronounced in Model (1). Figure 8 illustrates
the effect of the heat source parameter Qon the temperature of Newtonian and synovial fluids containing nanoparticles and
microorganisms. The results show that increasing Qenhances the temperature in all cases, with a significantly higher temperature
observed in synovial fluid containing both nanoparticles and microbes.

Figure 9 displays the impact of the concentration production parameter aon the temperature of synovial fluid with and without
nanoparticles and microorganisms. It is evident that the temperature increases in both cases, although the enhancement is more
prominent for synovial fluid containing nanoparticles and microorganisms. Figure 10 shows how the Brownian motion parameter
Npand the thermophoresis parameter N;influence temperature distribution. The figure clearly demonstrates that increases in both
Npand N,lead to notable rises in temperature. Physically, higher Brownian motion reflects intensified random movement of
nanoparticles, which generates additional thermal energy. Similarly, larger values of N,imply stronger thermophoretic forces that
drive nanoparticles away from the heated surface, altering the thermal gradient and contributing to temperature elevation.

Figure 11 illustrates the effects of the Eckert number E and the Prandtl number P.on temperature. Both parameters are found
to increase the temperature of the fluid, indicating their significant role in enhancing thermal energy within the system.

Figure 12 analyzes the effect of the pressure parameter P,on the nanoparticle concentration for both the shear-thinning Model
(1) and the shear-thickening Model (2). The results reveal that the pressure generated by the motion of synovial fluid containing
nanoparticles and microorganisms effectively reduces the nanoparticle concentration. Furthermore, the concentration in Model (1)
is lower than in Model (2). Figure 13 compares the nanoparticle concentration in Newtonian fluid and synovial fluid in the presence
of the heat source parameter @, along with microorganisms. It is observed that increasing Qleads to a rise in nanoparticle
concentration in both cases, although the concentration profile is slightly lower in synovial fluid compared to the Newtonian fluid.

With Slip Boundary

0.05p= i

Model 1 ]

== === Model 2

0.04

______ No Slip Boundary 9

3 0.03F a=0.13,014,015, 016 1
2 0.02}-
0.02F
0.01 001k
0.00 0.00F, : . . , .
* ' ’ } * ; 1.0 1.1 1.2 1.3 1.4 1.5

1.0

Figure 2: Variation of magnetic parameter H on velocity

distribution.

Figure 3: Variation of concentration production « on
velocity distribution.



Journal of Computational Applied Mechanics 2026, 57(1): 122-133 129

Figure 14 illustrates the influence of the concentration production parameter aon the nanoparticle concentration in synovial fluid
with and without nanoparticles and microorganisms. The graph clearly shows that increasing « decreases nanoparticle
concentration in both scenarios. When nanoparticles and microorganisms are present, their combined effect leads to a more
significant change in the concentration profile; however, in their absence, the change in synovial fluid is minimal. Figure 15
examines the effects of the thermophoresis parameter N.and the Brownian motion parameter N,on nanoparticle concentration.
The figure demonstrates that nanoparticle concentration decreases with increasing N,, while the opposite trend is observed with
increasing N,,.

Figure 16 illustrates the variation in the density of motile microorganisms as the heat source parameter Qchanges. This analysis
considers both Newtonian fluid and synovial fluid containing nanoparticles and microorganisms. The results show that the heat
source associated with fluid motion reduces the density of motile microbes. Additionally, the density of motile microorganisms is
higher in Newtonian fluid compared to synovial fluid. Figure 17 presents the effects of the thermophoresis parameter N,and the
Brownian motion parameter N,on the density of motile microorganisms. Increasing N,decreases microbial density, whereas
increasing N, produces the opposite effect. Figure 18 examines the relationship between the pressure parameter P,and the
bioconvection Peclet number P, with respect to microorganism density. The visualization clearly shows that increases in both P and
P,lead to a decline in the density of motile microorganisms.
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5. Concluding remarks

In the present study, we investigated the bioconvection of synovial fluid flowing through porous knee cartilage, incorporating
the effects of magnetic fields and porosity. The mathematical formulation was examined for two rheological models: Model (1),
exhibiting shear-thinning behavior, and Model (2), exhibiting shear-thickening behavior. To solve the nonlinear system, we
employed the Runge—Kutta—Merson algorithm combined with shooting techniques. The key findings of this investigation are
summarized below:

i.  Anincrease in the magnetic field strength leads to a reduction in velocity for both models, with higher velocities observed

in the shear-thinning case.
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ii. The velocity distribution is enhanced by increasing the concentration production parameter and the slip parameter.
iii. Velocity increases when synovial fluid is considered, with the maximum velocity occurring at the knee cartilage surface.
iv.  The thermal profile of Model (1) exhibits a higher magnitude compared to Model (2).
v. The heat source parameter elevates the temperature for both fluid types, with synovial fluid showing a more pronounced
increase than Newtonian fluid.
Vi. The concentration production parameter enhances the temperature profile regardless of the presence of nanoparticles and
microorganismes.
Vii. The Prandtl number, Brownian motion parameter, Eckert number, and thermophoresis parameter all have significant
effects on the temperature distribution.
viii.  The pressure generated by synovial fluid motion, when combined with nanoparticles and microorganisms, reduces the
nanoparticle concentration.
iX. Nanoparticle concentration is lower in Model (1) than in Model (2).
X. The presence of a heat source increases nanoparticle concentration in both fluid types.
xi. The nanoparticle concentration decreases with increasing thermophoresis parameter N,, while the Brownian motion
parameter N,produces the opposite effect.
Xii. The heat source associated with fluid motion decreases the density of motile microorganisms.
xiii. A higher thermophoresis parameter further reduces microorganismdensity, whereas an increase in Brownian motion leads
to a rise in microorganism density.
xiv.  The density of motile microorganisms decreases as the bioconvection Peclet number increases.

5.1. Limitations and proposed future work

This study is primarily theoretical, aimed at developing a fundamental understanding of bioconvection and thermal transport
phenomena in nanofluids using a synovial fluid model. Although we highlight potential biomedical applications—such as joint
lubrication and targeted drug delivery—we do not address the practical challenges associated with real-world implementation,
including cost, scalability, and safety. Future work may include experimental validation and the exploration of applications in
clinical systems, implantable devices, and industrial thermal management technologies.

While the mechanical effects of nanoparticle transport are not modeled in this study, it is important to acknowledge that
nanoparticles may contribute to wear or corrosion of system components, such as pipes and heat exchangers, due to their small
size and abrasive properties. Future investigations could examine the long-term implications of these effects and evaluate
mitigation strategies, including the use of protective coatings or corrosion-resistant materials.

Moreover, the economic viability of nanofluid technologies at large scales remains a challenge, particularly with regard to
maintaining long-term stability. Developing open-access synthesis protocols and establishing standardized quality control
measures could help lower production costs and improve reproducibility, thereby making the technology more accessible for
industrial and biomedical applications.

Finally, although our model focuses on controlled biomedical environments, potential risks associated with nanoparticle
leakage or improper disposal merit further investigation. Future research could incorporate environmental modeling to assess
nanoparticle dispersion, evaluate potential toxicity, and inform safe handling and disposal practices.
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