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Abstract 

The primary objective of this study is to analyze the thermal processes, nanoparticle 

concentration, and bioconvection mechanisms in a synovial fluid model using 

numerical methods. Two fluid models are considered: Model (1), representing a 

shear-thinning fluid, and Model (2), representing a shear-thickening fluid. The 

influences of magnetic field, porosity, Joule heating, and viscous dissipation are 

incorporated into the analysis. The governing equations for momentum, energy, 

nanoparticle concentration, and motile microorganism density have formulated using 

the lubrication approximation. The resulting nonlinear differential equations are 

solved numerically using the Runge-Kutta-Merson method and the finite difference 

scheme. The effects of key parameters on velocity, temperature, nanoparticle 

concentration, and motile microorganism density are systematically explored. The 

study reveals that the magnetic field significantly alters the fluid motion, reducing 

velocity as magnetic intensity increases, whereas higher velocities are observed in the 

shear-thinning model. The synovial fluid achieves its maximum velocity near the 

knee cartilage surface. The temperature profile is higher in Model (1) than in Model 

(2), primarily due to heat generation effects. The concentration production parameter 

also affects the thermal field, leading to lower nanoparticle concentrations in Model (1). 

Moreover, the thermophoretic parameter decreases nanoparticle concentration, while 

the Brownian motion parameter enhances it. Heat-source-driven fluid motion 

ultimately reduces the density of motile microorganisms.  

Keywords: Synovial fluid; Bioconvection; nanoparticles; microorganisms; FDM. 

1. Introduction 

The thermal characteristics of fluids play a significant role in cooling and heating applications across various engineering fields. 

Conventional heat-transfer fluids often fail to meet industrial and technical requirements for high cooling efficiency due to their 
inherently low thermal conductivity. In recent years, researchers have sought to enhance thermal performance by dispersing tiny 

nanoparticles into base fluids [1]. However, the early attempts to suspend nanoparticles were largely ineffective because of issues 

such as particle sedimentation, excessive pressure drops, corrosion of equipment, particle agglomeration (clogging), and inadequate 

thermal conductivity. 

To address these limitations, researchers focused on reducing the size of the solid particles to achieve the desired thermal 

properties. These efforts led to the development of nanofluids, a concept rooted in engineering at the nanoscale. Various chemical 

and physical techniques have been employed to reduce particle sizes to the order of 10-9 meters. As a result, nanofluids have been 
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engineered at the atomic scale to exhibit superior thermal behavior compared to fluids with larger particles. Choi [2] and Lee [3] 

introduced nanofluids—colloidal suspensions of nanoparticles—and demonstrated their enhanced thermal properties and improved 

efficiency in a wide range of applications. 

Nanoparticles are now synthesized from diverse materials, including gold, magnesium, silver, copper, carbon nanotubes, 

semiconductors, nitride ceramics, and oxide ceramics. Nanofluids may consist of either Newtonian or non-Newtonian base fluids 

combined with different types of nanoparticles. Their primary purpose is to improve thermal properties while minimizing particle 

volume fraction by achieving effective dispersion and distribution within the fluid. Nanofluids can enhance key physical properties 

such as mass diffusivity, thermal diffusivity, and viscosity, which are generally superior to those of base fluids like oil or water 

[4]. Consequently, nanofluids have extensive applications in detergency, biomedia sterilization, computer and electronics cooling, 

fuel cooling, automotive thermal systems, and transformer cooling. They also offer the potential for ultra-high-performance heating 

and cooling in industrial processes such as aircraft propulsion ducts, solar collectors, vehicle radiators, semiconductor fabrication, 

and nuclear reactor thermal management. 
Imran et al. [5] investigated the interaction between cilia and nanoparticles in a biological fluid flowing through a duct. Eid [6] 

analyzed the dynamics of differently shaped nanoparticles suspended in a Sisko biological fluid under convective conditions. 

Elelamy et al. [7] studied blood flow, considering non-Newtonian behavior, magnetic effects, slip conditions, and heat transfer, 

and further examined bacterial development near coronary valves. Bhatti et al. [8] examined the biological rheology of a 

Williamson fluid under magnetic and convective effects and explored entropy generation. Elangovan et al. [9] analytically 

examined the movement of a magnetized nanofluid containing TiO2-Fe3O4 nanoparticles with slip effects. Sharma et al. [10] 

performed a comprehensive analysis of magnetized fluid flow over an elastic surface influenced by chemical reactions and thermal 

radiation, accounting for Brownian motion and thermophoresis. Raza et al. [11] developed a mathematical model for the flow of 

biological nanofluids through a porous medium containing carbon nanotubes.  

Bioconvection is a natural process observed in certain microorganisms. When microorganisms are denser than the surrounding 

fluid, they tend to swim upward; once a sufficiently dense layer forms at the top, they sink, creating bioconvective patterns. 
Oxytactic bacteria such as Bacillus subtilis migrate toward regions with higher oxygen concentrations, and oxygen is replenished 

through surface diffusion [12]. Engineers have recently explored combining nanoparticles with motile microorganisms to regulate 

heat and mass transfer in industries such as coatings, bioreactors, and fuel cells. This combined phenomenon is known as nanofluid 

bioconvection, and the resulting fluids are referred to as bio-nanofluids [13]. The bioconvection mechanism is relevant in many 

biological processes and micro-devices, as the motion of microorganisms enhances mixing, reaction rates, and transport processes. 

Using self-propelled microorganisms can significantly improve convective transport and facilitate controlled mixing. Adding 

microorganisms to engineered fluids can also enhance the effectiveness of magnetohydrodynamic coating processes. This approach 

can be applied to various substrate geometries, including flat plates, parallel plates, curved surfaces, and wedge-shaped structures. 

Basha and Sivaraj [14] numerically investigated blood flow with nanoparticles in several geometrical configurations, emphasizing 

circulatory system behavior. 

Researchers have further examined the simultaneous influence of magnetic fields in nanofluid bioconvection systems—referred 

to as magnetohydrodynamic nanofluid bioconvection. This field involves analyzing nanoscale bioconvection mechanisms 
alongside viscous magnetohydrodynamic effects and has numerous applications, including smart coating technologies. 

Microorganisms can display gyrotactic, phototactic, chemotactic, and magnetotactic motions, each responsive to torque, light,  

chemicals, and magnetic fields. Biswas et al. [15] studied the magnetized movement of oxytactic microorganisms in a porous 

medium with copper nanoparticles suspended in a water-based nanofluid. Alhussain et al. [16] examined magnetic bioconvection 

nanofluid flow over a rotating cone using the Cattaneo–Christov heat flux model. Puneeth et al. [17] investigated bioconvection 

dynamics of a pseudoplastic nanofluid over a spinning cone. Mekheimer et al. [18] studied bioconvection-induced synovitis in 

blood flow with nanoparticles spreading across damaged tissues. Mahendra et al. [19] analyzed entropy generation and 

bioconvection in peristaltic nanofluid flow through an asymmetric channel using the Eyring–Powell model. Arain et al. [20] 

explored bioconvection in Sutterby fluid over a rotating disk in the presence of nanoparticles and an induced magnetic field, solving 

the nonlinear system using the DTM-Padé method.  

In this study, synovial fluid is adopted as the non-Newtonian base fluid [21]. Synovial fluid acts as a lubricant and shock 
absorber within synovial joints. Due to its non-Newtonian nature, its viscosity decreases under shear, exhibiting shear-thinning 

behavior, which facilitates joint movement by reducing resistance and providing improved lubrication at rest. Synovial fluid also 

plays key roles in nutrient transport, waste removal, shock absorption, and lubrication. Its properties are crucial in diagnosing joint 

abnormalities [22, 23], such as inflammation, crystal deposition, and infections. Motivated by these applications, the primary 

objective of this work is to investigate the rheology of synovial fluid under bioconvection effects. The following sources [24-27] 

include contemporary research on bioconvection and nanofluid movement in different geometrical shapes.  
The literature review highlights a gap in addressing this type of problem. The aim of the present study is to regulate the 

temperature of synovial fluid—responsible for lubricating joint movement within permeable knee cartilage—using magnetic fields, 

nanoparticles, and motile microorganisms. We solve the problem for two models: Model (1) exhibiting shear-thinning behavior 

and Model (2) exhibiting shear-thickening behavior. The coupled nonlinear system is solved numerically using the Runge–Kutta–

Merson method combined with a finite difference scheme. We analyze the effects of velocity, temperature, nanoparticle 

concentration, and motile microorganism density on all the major physical parameters. 
  

2. Problem Assumptions and Mathematical Model 

An incompressible non-Newtonian synovial fluid fills the slender, flexible cylindrical tube that represents the studied arterial 

segment. Let (𝑟′, 𝜃′, 𝑧′) denote the coordinates in the physical cylindrical polar coordinate system, with the 𝑧′-axis aligned along 

the artery axis and 𝑟′, 𝜃′ corresponding to the radial and circumferential directions, respectively. We represent the temperature, 

concentration, and motile density at the endoscopic wall as 𝑇0 , 𝐶0, 𝑁0, and at the outer wall as 𝑇1 , 𝐶1, 𝑁1. A uniform magnetic field 
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𝐵 is applied along the perpendicular direction of the flow. We assume the geometrical structure to be porous, with a permeability 

of 𝑘. The mathematical representation of the artery geometry is detailed in Figure 1. 

𝑟′ = {
𝑎0                                (endoscopewall),
𝑎1                                    (arterywall),

   (1) 

 

Figure 1: Geometry structure of synovial fluid flow through the artery under uniform magnetic field.  

We investigate synovial fluid dynamics using a generalized incompressible non-Newtonian nanofluid model in which the viscosity 

depends on both shear rate and concentration. To incorporate the effects of hyaluronic acid concentration, an additional convection–

diffusion equation is coupled with the system. Moreover, it is assumed that the swimming direction and velocity of the 

microorganisms are not influenced by the presence of nanoparticles in the fluid—an assumption that remains valid for dilute 

nanoparticle suspensions. The fundamental equations governing the flow of the synovial nanofluid are as follows: 

Continuity equation:  

 ∇′ ⋅ 𝑉′ = 0. (2) 

Momentum equations:  

 𝜌𝑓[
𝜕𝑉′

𝜕𝑡′
+ (𝑉′ ⋅ ∇′)𝑉′] = −∇′𝑝′ + 𝐽 × 𝐵 + 2∇′ ⋅ 𝜇′(𝐶′, 𝐷′)𝐷′ −

𝜇

𝑘
𝑉′. (3) 

Energy equation:  

 (𝜌𝑐)𝑓[
𝜕𝑇′

𝜕𝑡′
+ (𝑉′. ∇′)𝑇′] = 𝑘𝑇∇′

2𝑇′ + (𝜌𝑐)𝑝[
𝐷𝐵

Δ𝐶′
(∇′𝐶′ ⋅ ∇′𝑇′) +

𝐷𝑇

𝑇𝑚
(∇′𝑇′ ⋅ ∇′𝑇′)] 

     +Φ +
1

𝜎′
𝐽 ⋅ 𝐽 + 𝑄∗(𝑇′ − 𝑇0). (4) 

Concentration equation:  

 
𝜕𝐶′

𝜕𝑡′
+ (𝑉′. ∇′)𝐶′ = ∇′ ⋅ (𝐷𝐵∇′𝐶′) +

𝐷𝑇

𝑇𝑚
∇′2𝑇′. (5) 

Motile density equation:  

 
𝜕𝑁′

𝜕𝑡′
+ (𝑉′. ∇′)𝑁′ +

𝑏𝑊𝑐

𝐶1−𝐶0
∇′ ⋅ (𝑁′∇′𝐶′) = 𝐷𝑚∇′

2𝑁′. (6) 

Corresponding slip boundary conditions:  

 
𝑤′ = 0, 𝑇′ = 𝑇1 , 𝐶′ = 𝐶1, 𝑁′ = 𝑁1, at  𝑟′ = 𝑎1,
𝜕𝑤′

𝜕𝑟′
= −

𝛼1

√𝑘
(𝑤′ − 𝑤𝑝), 𝑇′ = 𝑇0 , 𝐶′ = 𝐶0, 𝑁′ = 𝑁0, at  𝑟′ = 𝑎0,

 (7) 

where as 𝜇′ represents viscosity, 𝐷′ denotes the symmetric part of the velocity gradient, 𝜌𝑓 signifies the density of the base fluid, 

𝐵 signifies the applied magnetic field, 𝐽 signifies the current density, 𝜌𝑝 signifies the density of nanoparticles, 𝑉′ signifies the 

velocity vector, 𝑁′ stands for the density of motile microorganisms, 𝑝′ signifies the pressure, Φ signifies the dissipation function, 

𝑘𝑇  signifies the thermal conductivity, 𝑄∗  signifies the heat source, 𝑇′  signifies the temperature distribution, 𝐶′  signifies the 

concentration of hyaluronan/hyaluronic, 𝑇𝑚 signifies the mean temperature of the fluid, 𝑐𝑓 signifies the heat capacity of the fluid, 

𝜎′ signifies the electrical conductivity of the synovial fluid, 𝑐𝑝  signifies the heat capacity of the nanoparticle, 𝐷𝐵  signifies the 

Brownian diffusion coefficient, 𝑘 signifies the permeability of porous, 𝛼1  signifies the slip parameter, 𝑤𝑝  signifies the Darcy 

velocity, 𝑏 signifies the chemotaxis constant, 𝑊𝑐 is a maximal cell speed, and 𝐷𝑇 signifies the thermophoretic diffusion coefficient. 

Let us focus on physical scenarios in which synovial fluid primarily exhibits viscous-like behavior. In such cases, the fluid 

behaves as an incompressible viscous medium, with viscosity varying according to the shear rate and hyaluronan concentration. In 

this investigation, we consider two synovial fluid models [28, 29], both exhibiting non-Newtonian behavior in two-dimensional 

flows. 

Model (1): Viscosity is assumed to exhibit exponential dependence on the concentration  

 𝜇′(𝐶′, 𝐷′) = 𝑒𝛼𝐶′(1 + |𝐷′2| 𝛾2)𝑛𝜇0, (8) 

Model (2): The shear thinning index is regarded as a function of concentration.  

 𝜇′(𝐶′, 𝐷′) = 𝜇0(1 + |𝐷′
2| 𝛾2)𝑛(𝐶′) , (9) 

In which  

 |𝐷′| = √2(
𝜕𝑢′

𝜕𝑟′
)2 + 2(

𝑢′

𝑟′
)2 + 2(

𝜕𝑤′

𝜕𝑧′
)2 + (

𝜕𝑢′

𝜕𝑧′
+

𝜕𝑤′

𝜕𝑟′
), (10) 

and  

 𝑛(𝐶′) =
(1−𝑒−𝛼𝐶′)

2
, (11) 
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where 𝑢′,𝑤′ are the velocity components, 𝑛 is the shear-thinning index ranging between −0.5 and 0, in which the model with 𝑛 =
0 corresponds to a Newtonian fluid. The constants 𝜇0, 𝛼, and 𝛾 are material constants. In order to streamline the mathematical 

modelling process, we convert all equations into a dimensionless configuration. To do this, we employ these dimensionless 

quantities:  

 𝑟′ = 𝑎0𝑟, 𝑧′ = 𝑙𝑧, 𝑢′ =
𝑎0𝑢0

𝑙
𝑢, 𝑤′ = 𝑢0𝑤, 𝛿 =

𝑎0

𝑙
, 𝑡′ =

𝑙

𝑢0
𝑡, 𝜇′ = 𝜇𝜇0, 

 𝑝′ =
𝑢0𝑙𝜇0

𝑎0
2 𝑝, 𝜃 =

𝑇′−𝑇0

𝑇1−𝑇0
, 𝜑 =

𝐶′−𝐶0

𝐶1−𝐶0
, 𝜒 =

𝑁′−𝑁0

𝑁1−𝑁0
, , 𝐷′ =

𝑢0𝐷

𝑎0
, (12) 

where 𝑙 represents the length of the artery, and 𝑢0 is the reference velocity. 

By substituting the expression from Eq. (??) into Equations (2)-(11) and evaluating the conditions 𝑅𝑒 ≤ 0 and 𝛿 ≤ 0, the continuity 

Equation (2) is automatically fulfilled and the remaining equations are transformed as follows:  

Momentum equations:  

 
𝜕𝑝

𝜕𝑟
= 0, (13) 

  

 
𝜕𝑝

𝜕𝑧
= 2 [

𝜇

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤

𝜕𝑟
) +

𝜕𝜇

𝜕𝑟

𝜕𝑤

𝜕𝑟
] − 𝜎2𝜇𝑤 −𝐻𝑤. (14) 

 Energy equation:  

 
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜃

𝜕𝑟
) + 𝑁𝑏

𝜕𝜃

𝜕𝑟

𝜕𝜑

𝜕𝑟
+ 𝑁𝑡 (

𝜕𝜃

𝜕𝑟
)
2

+ 𝐸𝑐𝑃𝑟𝜇 (
𝜕𝑤

𝜕𝑟
)
2

+𝐸𝑐𝑃𝑟𝐻𝑤
2 +𝐸𝑐𝑃𝑟𝑄𝜃 = 0. 

  (15) 

  Concentration equation:  

 
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜑

𝜕𝑟
) +

𝑁𝑡

𝑁𝑏

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜃

𝜕𝑟
) = 0. (16) 

  Volume fraction:  

 
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜒

𝜕𝑟
) − 𝑃𝑒

𝜕

𝜕𝑟
(𝜁

𝜕𝜑

𝜕𝑟
) = 0, (17) 

 and  

 

𝜇 = (1 + 𝛼𝜑) [1 + 𝑛𝑤𝑒
2 (

𝜕𝑤

𝜕𝑟
)
2

] ,                                Model(1),

𝜇 = [1 +
𝛼𝜑

2
𝑤𝑒
2 (

𝜕𝑤

𝜕𝑟
)
2

] ,                                            Model(2).
 (18) 

  Corresponding boundary conditions:  

 
𝑤 = 0, 𝜑 = 1, 𝜃 = 1, 𝜒 = 1  at  𝑟 = 𝜖 =

𝑎1

𝑎0
,

𝜕𝑤

𝜕𝑟
= −𝜎𝛼1(𝑤 −𝑤𝑝), 𝜃 = 0, 𝜒 = 0, 𝜑 = 0  at  𝑟 = 1.

 (19) 

The variables in the equation are defined as follows: 𝑁𝑡  symbolizes the thermophoresis parameter, 𝑃𝑒  symbolizes the 

Bioconvection Peclet number, 𝜎 symbolizes the porous parameter, 𝑃𝑟 symbolizes the Prandtl number, 𝑁𝑏 represents the Brownian 

motion parameter, 𝐻 symbolizes the magnetic parameter, 𝑅𝑒 symbolizes the Reynolds number, 𝐸𝑐 symbolizes the Eckert number, 

𝑄 symbolizes the heat source coefficient, and 𝑤𝑒  symbolizes the synovial parameter. They are precisely and explicitly described 

as: 

=
(𝜌𝑐)𝑝𝐷𝑡(𝑇1 − 𝑇0)

𝑇𝑚𝑘𝑇
, 𝑃𝑒 =

𝑏𝑊𝑐
𝐷𝑚

, 𝜎 =
𝑎0

√𝑘
, 𝑁𝑏 =

(𝜌𝑐)𝑝𝐷𝐵(𝐶1− 𝐶0)

Δ𝐶′𝑘𝑇
, 𝑄 =

𝑎0
2𝑄∗

𝑢0
2𝜇0

, 𝐻 =
𝜎𝐵0

2𝑎0
2

𝜇0
, 𝑅𝑒 =

𝜌𝑓𝑢0𝑎0
𝜇0

, 𝐸𝑐

=
𝑢0
2

𝑐𝑓(𝑇1 − 𝑇0)
, 𝑤𝑒 =

𝛾𝑢0
𝑎0

, 𝑃𝑟 =
𝜇0𝑐𝑓
𝑘𝑇

 

        (20) 

3. Numerical solution 

3.1. Numerical Implementation using Finite Difference Discretization 

The mathematical models (14)-(18), along with their boundary conditions, depict a nonlinear system with radial coordinates. As a 

result, analytical solutions are difficult to find, and numerical solutions are generated using FDM. To carry out the numerical 

scheme, the system is discretized using a second-order accurate finite difference approach devised in conservative cylindrical form. 

At each iteration, the discretization operation was conducted implicitly, using a tridiagonal process. The finished algebraic 

equations are iteratively solved using the Picard (fixed-point) technique. The detailed steps are listed below: 

Radial Grid and Notations: The computational domain is divided into 𝒩 uniform intervals in the following form as:  

 𝑟𝑗 = 𝜀 + 𝑗Δ𝑟,        𝑗 = 0,1,… ,𝒩,        Δ𝑟 =
1−𝜀

𝒩
. (21) 

The half-nodes are expressed as  

 𝑟
𝑗+

1

2
=

(𝑟𝑗+𝑟𝑗+1)

2
, (22) 

The discretized form of first and second derivative for any scalar ℱ𝓇  are approximated as:  

 (ℱ𝑟)𝑗 ≈
ℱ𝑗+1−ℱ𝑗−1

2Δ𝑟
, (23) 

 ℒ𝑗[ℱ] ≡
1

𝑟𝑗

𝑟
𝑗+
1
2

ℱ𝑗+1−ℱ𝑗
Δ𝑟

−𝑟
𝑗−
1
2

ℱ𝑖−ℱ𝑗−1
Δ𝑟

Δ𝑟
. (24) 

The above expression gives accurate representation of the second-order axisymmetric Laplacian operator. The weighted operator 

ℒ𝑗
𝜖[ℱ] for the variable-coefficient diffusion terms can be expressed as:  
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 ℒ𝑗
𝜖[ℱ] =

1

𝑟𝑗

𝑟
𝑗+
1
2

𝜖
𝑗+
1
2

ℱ𝑗+1−ℱ𝑗
Δ𝑟

−𝑟
𝑖−
1
2

𝜖
𝑖−
1
2

ℱ𝑗−ℱ𝑗−1
Δ𝑟

Δ𝑟
, (25) 

where the transport coefficients is represented as 𝜖
𝑗±

1

2
. 

Discretization procedure: The momentum equation (14) can be articulated as  

 2 ℒ𝑗
𝜇
[𝑤] − (𝜎2𝜇𝑗 +𝐻)𝑤𝑗 = 𝒫,        𝒫 =

𝜕𝑝

𝜕𝑧
, 𝑗 = 1,… ,𝒩 − 1, (26) 

The derived tri-diagonal coefficients can be expressed in the following form:  

 𝛼𝑗 = − 
2 𝑟

𝑗−
1
2

𝜇
𝑗−
1
2

𝑟𝑗 Δ𝑟
2 ,        𝛽𝑗 = − 

2 𝑟
𝑗+
1
2

𝜇
𝑗+
1
2

𝑟𝑗 Δ𝑟
2 , (27) 

 𝛾𝑗 =
2(𝑟

𝑗+
1
2

𝜇
𝑗+
1
2

+𝑟
𝑗−
1
2

𝜇
𝑗−
1
2

)

𝑟𝑗 Δ𝑟
2 + (𝜎2𝜇𝑗 +𝐻). (28) 

The boundary conditions are as follows:  

 𝑤0 = 0,        at𝑟 = 𝜀, (29) 

 
𝑤𝒩−𝑤𝒩−1

Δ𝑟
= −𝜎𝛼1(𝑤𝒩 − 𝑤𝑝),        at𝑟 = 1, (30) 

that produces the discrete Robin condition  

 (−
1

Δ𝑟
− 𝜎𝛼1)𝑤𝒩 +

1

Δ𝑟
𝑤𝒩−1 = −𝜎𝛼1𝑤𝑝 . (31) 

The Energy equation (15) can be discretized using the similar procedure as above at each node 𝑗, and the nonlinear terms are 

evaluated using the previous iterations:  

 ℒ𝑗[𝜃] + 𝐸𝑐 𝑃𝑟 𝑄 𝜃𝑗  

 = −[𝑁𝑏(𝜃𝑟)𝑗
𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝜑𝑟)𝑗

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 +𝑁𝑡(𝜃𝑟
𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟)2, 

 +𝐸𝑐 𝑃𝑟 𝜇𝑗
𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝑤𝑟

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟)2 +𝐸𝑐 𝑃𝑟 𝐻(𝑤𝑗
𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟)2]. (32) 

The derived tri-diagonal coefficients can be expressed in the following form:  

 𝛼𝑗
𝑒 = −

𝑟
𝑗−
1
2

𝑟𝑗 Δ𝑟
2 ,    𝛾𝑖

𝑒 = −
𝑟
𝑗+
1
2

𝑟𝑗 Δ𝑟
2, (33) 

 𝛽𝑖
𝑒 =

𝑟
𝑗+
1
2

+𝑟
𝑗−
1
2

𝑟𝑗 Δ𝑟
2 +𝐸𝑐 𝑃𝑟 𝑄. (34) 

The boundary conditions are as follows: 𝜃0 = 1 at 𝑟 = 𝜀, 𝜃𝒩 = 0 at 𝑟 = 1.  The concentration equation (16) can be discretized 

using the similar procedure as above at each node 𝑗, we obtained:  

 ℒ𝑗[𝜑] = −
𝑁𝑡

𝑁𝑏
 ℒ𝑗[𝜃]

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 . (35) 

The derived tri-diagonal coefficients can be expressed similarly as the energy equation without the source term. The boundary 

conditions are as follows: 𝜑0 = 1 at 𝑟 = 𝜀, 𝜑𝒩 = 0 at 𝑟 = 1. 

 

The concentration equation (17) can be discretized using the similar procedure as above at each node 𝑗, we obtained:  

 ℒ𝑗[𝜒] = 𝑃𝑒  
𝜁
𝑗+
1
2

𝜑𝑗+1−𝜑𝑗
Δ𝑟

−𝜁
𝑗−
1
2

𝜑𝑗−𝜑𝑗−1
Δ𝑟

Δ𝑟
. (36) 

The boundary conditions are as follows: 𝜒0 = 1 at 𝑟 = 𝜀, 𝜒𝒩 = 0 at 𝑟 = 1. 

At nodes and faces the nonlinear dynamics viscosity can be represented as:  

 𝜇
𝑗+

1

2
=

{
 

 (1 + 𝛼𝜑𝑗+1
2
) [1 + 𝑛 𝑤𝑒

2 (𝑤𝑟)𝑗+1
2

2 ] , Model(1),

1 +
𝛼𝜑

𝑖+
1
2

2
 𝑤𝑒

2 (𝑤𝑟)𝑗+1
2

2 , Model(2).
 (37) 

The above set of equations are solved on computational software MALTAB using Picard algorithm. A comparison has been 

presented in Tables. 

3.2. Rung-Kutta-Merson approach with Newton iteration 

We utilize the Rung-Kutta-Merson approach with Newton iteration to effectively solve the system of nonlinear ordinary 

differential equations (13)-(19). The equations are solved through the shooting and matching procedure. When utilizing the 

shooting method, we rely on the D02HAF subroutine from the NAG Fortran library. This subroutine necessitates the provision of 

initial values for the absent initial and terminal conditions. The subroutine utilizes a sophisticated numerical method with adaptive 

step size to effectively manage the local truncation error. It then employs a well-known iterative technique to iteratively refine the 

estimated boundary values. You can find more information about the proposed numerical technique in these sources [30-32]. Below 

are some possible transformations:  

 𝑤 = 𝑌1,                𝜃 = 𝑌3,                𝜙 = 𝑌5,                𝜁 = 𝑌7. (38) 

 Equations (14)-(17) along with the boundary conditions (19) can be outlined in the following manner:  

 𝑌1
′ = 𝑌2, 2(𝜇𝑌2

′ +
𝜇

𝑟
𝑌2 + 𝜇

′𝑌2) − 𝜎
2𝑌1 −𝐻𝑌1 =

(𝑃𝑜−𝑃𝑖)

𝑙
, (39) 

  

 𝑌3
′ = 𝑌4, 𝑌4

′ +
1

𝑟
𝑌4 +𝑁𝑡𝑌4

2 +𝑁𝑏𝑌4𝑌6 + 𝐸𝑐𝑃𝑟𝑄𝑌3 +𝐸𝑐𝑃𝑟𝜇𝑌2
2 +𝐸𝑐𝑃𝑟𝐻𝑌1

2 = 0, (40) 

  

 𝑌5
′ = 𝑌6,                𝑌6

′ = −
1

𝑟
𝑌6 −

(𝑁𝑡)

(𝑁𝑏)
(𝑌2

′ +
1

𝑟
𝑌2), (41) 
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 𝑌7
′ = 𝑌8,                𝑌8

′ = −
1

𝑟
𝑌8 + 𝑃𝑒(𝑌6𝑌8 + 𝑌6

′𝑌7), (42) 

with the following reduced boundary conditions:  

 
𝑌1 = 0,        𝑌3 = 1, 𝑌5 = 1, and  𝑌7 = 1, at  𝑟 = 𝜖,

𝑌2 = −𝜎𝛼1(𝑌1 −𝑤𝑝), 𝑌3 = 0, 𝑌5 = 0  and  𝑌7 = 0  at  𝑟 = 1,
 (43) 

where the prime demonstrates differentiation with regard to 𝑟. In order to calculate the physical quantities 𝑤, 𝜃, 𝜑 and 𝜒. The 

system of equations, labeled as Eqs. (39)-(42), is solved using Mathematica package version 9. The boundary conditions, labeled 

as (43), are also taken into consideration. 

 

Table 1: Comparison of velocity and temperature profile with Finite difference approach. 

r w(r) (Present results) θ(r) (Present results) w(r) (FDM) θ(r) (FDM) 

1 0.841470985 0.540302306 0.84147 0.54030 

1.026315789 0.855396474 0.517973814 0.85539 0.51797 

1.052631579 0.868729618 0.495286635 0.86872 0.49528 

1.078947368 0.881461183 0.47225648 0.88146 0.47225 

1.105263158 0.893582353 0.448899296 0.89358 0.44889 

1.131578947 0.905084735 0.425231257 0.90508 0.42523 

1.157894737 0.915960363 0.401268755 0.91596 0.40126 

1.184210526 0.926201706 0.377028381 0.92620 0.37702 

1.210526316 0.935801672 0.352526923 0.93580 0.35252 

1.236842105 0.944753613 0.327781346 0.94475 0.32778 

1.263157895 0.95305133 0.302808787 0.95305 0.30280 

1.289473684 0.960689078 0.277626539 0.96068 0.27762 

1.315789474 0.967661567 0.25225204 0.96766 0.2522 

1.342105263 0.973963969 0.226702861 0.97396 0.22670 

1.368421053 0.979591919 0.200996695 0.97959 0.20099 

1.394736842 0.984541521 0.175151342 0.98454 0.17515 

1.421052632 0.988809347 0.149184701 0.98880 0.14918 

1.447368421 0.992392441 0.123114752 0.99239 0.12311 

1.473684211 0.995288323 0.096959548 0.99528 0.09695 

1.5 0.997494987 0.070737202 0.99749 0.07073 

 

Table 2: Comparison of concentration and microorganism profile with Finite difference approach. 

r ϕ(r) (Present results) χ(r) (Present results) ϕ(r) (FDM) χ(r) (FDM) 

1 1.557407725 0.693147181 1.55740 0.69314 

1.026315789 1.651428028 0.706219262 1.65142 0.70621 

1.052631579 1.753993661 0.719122667 1.75399 0.71912 

1.078947368 1.866488278 0.731861693 1.86648 0.73186 

1.105263158 1.990607609 0.744440475 1.99060 0.74444 

1.131578947 2.128452975 0.756862995 2.12845 0.75686 

1.157894737 2.282660566 0.769133088 2.28266 0.76913 

1.184210526 2.456583514 0.781254448 2.45658 0.78125 

1.210526316 2.654553769 0.793230639 2.65455 0.79323 

1.236842105 2.882267779 0.805065097 2.88226 0.80506 

1.263157895 3.147370122 0.816761137 3.14737 0.81676 

1.289473684 3.460364706 0.828321959 3.46036 0.82832 

1.315789474 3.836090152 0.839750655 3.83609 0.83975 

1.342105263 4.296213835 0.85105021 4.29621 0.8510 

1.368421053 4.873671776 0.862223511 4.87367 0.86222 

1.394736842 5.621090355 0.873273347 5.62109 0.87327 

1.421052632 6.628088147 0.884202417 6.62808 0.88420 

1.447368421 8.060711066 0.895013333 8.06071 0.89501 

1.473684211 10.26498518 0.905708623 10.2649 0.90570 

1.5 14.10141995 0.916290732 14.1014 0.91629 
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4. Graphical Results and Discussion 

The present study employs a combination of the shooting method and the Runge–Kutta–Merson scheme to analyze and present 

the results. This section provides a detailed discussion of the key physical parameters—velocity, temperature, nanoparticle 

concentration, and the density of motile microorganisms. To illustrate these effects, we include graphical representations showing 

how variations in specific parameters influence the flow of synovial fluid within permeable knee cartilage for both the shear-

thinning Model (1) and the shear-thickening Model (2). The effects of all parameters are depicted in Figures 2–18. In addition, 

Tables 1 and 2 provide numerical comparisons obtained using the finite difference method, confirming that the present results 

show excellent agreement with the proposed methodology. 

Figures 2–6 illustrate how various emerging parameters influence the flow velocity. Figure 2 shows the effect of the magnetic 

parameter 𝐻on velocity for both the shear-thinning and shear-thickening models of synovial fluid. The graph clearly reveals that 

the velocity decreases as 𝐻increases for both models, with the shear-thinning model exhibiting comparatively higher velocity. 

Figure 3 presents the influence of the concentration production parameter 𝛼 on the velocity distribution. This parameter 

significantly enhances the velocity profile. It is also observed that the flow rate is higher under no-slip conditions than under slip 

conditions. 

Figure 4 compares the velocity profiles of a Newtonian fluid and synovial fluid for varying values of the pressure parameter 

𝑃𝑜. The results indicate that the velocity is higher in synovial fluid, with the maximum velocity occurring near the surface of the 

knee cartilage. Figure 5 demonstrates the changes in velocity due to variations in the porous parameter 𝜎and the slip parameter 𝛼1. 

Higher values of 𝜎and 𝛼1lead to a reduction in velocity. Finally, Figure 6 shows the effects of Darcy velocity 𝑤𝑝and the synovial 

fluid parameter 𝑤𝑒on the velocity profiles. An apparent decrease in fluid activity is observed as 𝑤𝑝increases. Although the synovial 

parameter 𝑤𝑒also causes a reduction in velocity, its influence is relatively minor. 

Figure 7 presents the influence of the pressure parameter 𝑃𝑜on the fluid temperature for Models (1) and (2). The temperature 

profile increases with rising 𝑃𝑜in both models; however, the upward trend is more pronounced in Model (1). Figure 8 illustrates 

the effect of the heat source parameter 𝑄on the temperature of Newtonian and synovial fluids containing nanoparticles and 

microorganisms. The results show that increasing 𝑄enhances the temperature in all cases, with a significantly higher temperature 

observed in synovial fluid containing both nanoparticles and microbes. 

Figure 9 displays the impact of the concentration production parameter 𝛼on the temperature of synovial fluid with and without 

nanoparticles and microorganisms. It is evident that the temperature increases in both cases, although the enhancement is more 

prominent for synovial fluid containing nanoparticles and microorganisms. Figure 10 shows how the Brownian motion parameter 

𝑁𝑏and the thermophoresis parameter 𝑁𝑡influence temperature distribution. The figure clearly demonstrates that increases in both 

𝑁𝑏and 𝑁𝑡lead to notable rises in temperature. Physically, higher Brownian motion reflects intensified random movement of 

nanoparticles, which generates additional thermal energy. Similarly, larger values of 𝑁𝑡imply stronger thermophoretic forces that 

drive nanoparticles away from the heated surface, altering the thermal gradient and contributing to temperature elevation.  

Figure 11 illustrates the effects of the Eckert number 𝐸𝑐and the Prandtl number 𝑃𝑟on temperature. Both parameters are found 

to increase the temperature of the fluid, indicating their significant role in enhancing thermal energy within the system.  

Figure 12 analyzes the effect of the pressure parameter 𝑃𝑜on the nanoparticle concentration for both the shear-thinning Model 

(1) and the shear-thickening Model (2). The results reveal that the pressure generated by the motion of synovial fluid containing 

nanoparticles and microorganisms effectively reduces the nanoparticle concentration. Furthermore, the concentration in Model (1) 

is lower than in Model (2). Figure 13 compares the nanoparticle concentration in Newtonian fluid and synovial fluid in the presence 

of the heat source parameter 𝑄 , along with microorganisms. It is observed that increasing 𝑄 leads to a rise in nanoparticle 

concentration in both cases, although the concentration profile is slightly lower in synovial fluid compared to the Newtonian fluid. 

 

 
 

Figure 2: Variation of magnetic parameter H on velocity 

distribution. 

 

Figure 3: Variation of concentration production α on 

velocity distribution. 
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Figure 14 illustrates the influence of the concentration production parameter 𝛼on the nanoparticle concentration in synovial fluid 

with and without nanoparticles and microorganisms. The graph clearly shows that increasing 𝛼 decreases nanoparticle 

concentration in both scenarios. When nanoparticles and microorganisms are present, their combined effect leads to a more 

significant change in the concentration profile; however, in their absence, the change in synovial fluid is minimal. Figure 15 

examines the effects of the thermophoresis parameter 𝑁𝑡and the Brownian motion parameter 𝑁𝑏on nanoparticle concentration. 

The figure demonstrates that nanoparticle concentration decreases with increasing 𝑁𝑡, while the opposite trend is observed with 

increasing 𝑁𝑏. 

Figure 16 illustrates the variation in the density of motile microorganisms as the heat source parameter 𝑄changes. This analysis 

considers both Newtonian fluid and synovial fluid containing nanoparticles and microorganisms. The results show that the heat 

source associated with fluid motion reduces the density of motile microbes. Additionally, the density of motile microorganisms is 

higher in Newtonian fluid compared to synovial fluid. Figure 17 presents the effects of the thermophoresis parameter 𝑁𝑡and the 

Brownian motion parameter 𝑁𝑏on the density of motile microorganisms. Increasing 𝑁𝑡decreases microbial density, whereas 

increasing 𝑁𝑏 produces the opposite effect. Figure 18 examines the relationship between the pressure parameter 𝑃𝑜 and the 

bioconvection Peclet number 𝑃𝑒with respect to microorganism density. The visualization clearly shows that increases in both 𝑃𝑜and 

𝑃𝑒lead to a decline in the density of motile microorganisms. 
 

 

  

Figure 4: Variation of pressure variation 𝑷𝒐 on velocity 

distribution. 

 

Figure 5: Variation of slip parameter α1 and porous parameter σ on 

velocity distribution. 

 

 

 

  

Figure 6: Variation of Darcy velocity wp and synovial fluid 

parameter we on velocity distribution. 

 

Figure 7: Variation of pressure variation Po on 

temperature distribution. 
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Figure 8: Variation of heat source Q on temperature distribution. Figure 9: Variation of concentration production α on temperature 

distribution. 

  

Figure 10: Variation of Brownian motion Nb and thermophoresis 

Nt parameter on temperature distribution. 

 

Figure 11: Variation of Eckert number Ec and Prandtl number Pr 

on temperature distribution. 

 

 
 

Figure 12: Variation of pressure variation Po on 

concentration distribution. 

 

Figure 13: Variation of heat source Q on concentration 

distribution. 
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Figure 14: Variation of concentration production α on 

concentration distribution. 

 

Figure 15: Variation of Brownian motion Nb and thermophoresis 

Nt parameter on concentration distribution. 

 

 

 

  

Figure 16: Variation of heat source Q on motile 

microorganism distribution. 

 

Figure 17: Variation of Brownian motion Nb and 

thermophoresis Nt parameter on motile microorganism distribution. 

 

 
Figure 18: Variation of pressure variation Po and bioconvection Peclet number Pe on motile microorganism distribution. 

 

5. Concluding remarks  

In the present study, we investigated the bioconvection of synovial fluid flowing through porous knee cartilage, incorporating 
the effects of magnetic fields and porosity. The mathematical formulation was examined for two rheological models: Model (1),  

exhibiting shear-thinning behavior, and Model (2), exhibiting shear-thickening behavior. To solve the nonlinear system, we 

employed the Runge–Kutta–Merson algorithm combined with shooting techniques. The key findings of this investigation are 

summarized below: 

i. An increase in the magnetic field strength leads to a reduction in velocity for both models, with higher velocities observed 

in the shear-thinning case. 
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ii. The velocity distribution is enhanced by increasing the concentration production parameter and the slip parameter.  

iii. Velocity increases when synovial fluid is considered, with the maximum velocity occurring at the knee cartilage surface. 

iv. The thermal profile of Model (1) exhibits a higher magnitude compared to Model (2). 

v. The heat source parameter elevates the temperature for both fluid types, with synovial fluid showing a more pronounced 

increase than Newtonian fluid. 

vi. The concentration production parameter enhances the temperature profile regardless of the presence of nanoparticles and 

microorganisms. 

vii. The Prandtl number, Brownian motion parameter, Eckert number, and thermophoresis parameter all have significant 

effects on the temperature distribution. 

viii. The pressure generated by synovial fluid motion, when combined with nanoparticles and microorganisms, reduces the 

nanoparticle concentration. 

ix. Nanoparticle concentration is lower in Model (1) than in Model (2). 
x. The presence of a heat source increases nanoparticle concentration in both fluid types. 

xi. The nanoparticle concentration decreases with increasing thermophoresis parameter 𝑁𝑡 , while the Brownian motion 

parameter 𝑁𝑏produces the opposite effect. 

xii. The heat source associated with fluid motion decreases the density of motile microorganisms. 

xiii. A higher thermophoresis parameter further reduces microorganism density, whereas an increase in Brownian motion leads 

to a rise in microorganism density. 

xiv. The density of motile microorganisms decreases as the bioconvection Peclet number increases. 

5.1. Limitations and proposed future work 

This study is primarily theoretical, aimed at developing a fundamental understanding of bioconvection and thermal transport 

phenomena in nanofluids using a synovial fluid model. Although we highlight potential biomedical applications—such as joint 

lubrication and targeted drug delivery—we do not address the practical challenges associated with real-world implementation, 

including cost, scalability, and safety. Future work may include experimental validation and the exploration of applications in 
clinical systems, implantable devices, and industrial thermal management technologies. 

While the mechanical effects of nanoparticle transport are not modeled in this study, it is important to acknowledge that 

nanoparticles may contribute to wear or corrosion of system components, such as pipes and heat exchangers, due to their small  

size and abrasive properties. Future investigations could examine the long-term implications of these effects and evaluate 

mitigation strategies, including the use of protective coatings or corrosion-resistant materials. 

Moreover, the economic viability of nanofluid technologies at large scales remains a challenge, particularly with regard to 

maintaining long-term stability. Developing open-access synthesis protocols and establishing standardized quality control 

measures could help lower production costs and improve reproducibility, thereby making the technology more accessible for 

industrial and biomedical applications. 

Finally, although our model focuses on controlled biomedical environments, potential risks associated with nanoparticle 

leakage or improper disposal merit further investigation. Future research could incorporate environmental modeling to assess 
nanoparticle dispersion, evaluate potential toxicity, and inform safe handling and disposal practices. 
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