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Abstract 

Blood flow through arteries is essential for maintaining metabolism of the body. 

Tissue injury and metabolic issues can develop from a deficiency of blood supply. A 

stenotic artery can be a major cause of this deficiency of blood supply. It is 

interesting to note that new studies have shown that magnetic fields can benefit 

different body parts, including the cardiovascular system. In this study, blood is 

considered Sutterby fluid with time fractional derivative, to examine effect of a 

magnetic field as well as fractional parameter on blood flow past a stenotic artery. 

In addition, the thermal behavior of the flow due to electromagnetic interactions 

and radiative heat flux is considered. We obtained numerical solutions of coupled 

nonlinear momentum and energy equations by using finite difference method. A 

thorough graphical analysis of how various parameters affect flow dynamics is 

provided.  Future research in this area and the choice of machine learning as an 

efficient technique to predict micropolar flow will be supported by the current 

study. 
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1. Introduction 

 

Experiments and theoretical studies of circulatory diseases are of interest to many researchers. 

It is evident today that smoking, severe hypercholesterolemia, modern lifestyle choices, and genetic 

disorders all contribute to artery blockage. A type of coronary artery disease called atherosclerosis arises 

due to the growth and collection of white blood cells in the arterial lumen. The accumulations cause the 

arterial wall to contract. This procedure also results in the formation of a plaque. Stenosis is the term 

used to describe the constriction of arteries caused through plaque  formation. Several theoretical 

investigations have been conducted to examine how stenosis affects blood flow. Experimental research 

has demonstrated that human blood shows a double rheology. At low shear rates or under disease 

 

*  



64 M. H. Shah et al. 

conditions, a non-Newtonian character predominates, however blood exhibits a Newtonian nature at 

high shear rates. Bhatti et al. [1] concentrated on how non-Newtonian blood moves in a tapered stenosed 

artery. Blood rheological behaviour is classified most effectively using the Carreau fluid model. Behir et 

al. [2] studied the behaviour of blood flow in constricted arteries, focusing on its pulsing characteristics 

and variations in haemoglobin levels in three different medical conditions: normal health, diabetes, and 

anaemia. Owasit and Sriyab [3] investigated the power-law fluid's two-dimensional steady flow via 

asymmetric and vertically symmetric stenoses. Additionally, a lot of research has been done on how 

blood flows through stenosed arteries [4-6].  

The extension of classical calculus, fractional calculus is used to handle non-integer order 

derivatives and integrals. It has found various significant applications in interesting fields such as heat 

transfer, fluid flow, and viscoelasticity theory [7]. Jamil et al. [8] examined blood flow via inclined, 

constricted artery under magnetic field effect. Time fractional derivative of Caputo-Fabrizio was used to 
formulate the governing equations. In a stenosed artery, Patel and Patel [9] considered fractional 

derivative model for blood dynamics. Precise description of the temperature fields, magnetic particle 

velocity, and blood velocity is obtained by expressing the governing set of equations in fractional time 

derivative form. Majeed et al. [10] observed the movement of blood through a cylindrical tube using 

fractional derivative. Moreover, Jamil et al. [11] studied non-Newtonian magnetic blood motion via 

inclined artery with thermal radiation using a fractional derivative model. Furthermore, by applying 

fractional derivatives, Tabi et al. [12] examined a mathematical representation of blood flow when 

magnetic particles are present. Additionally, Luqman et al. [13] evaluated OHAM's performance in 

analyzing the impact of thermal radiation and magnetic fields on blood flow in cylindrical arteries using 

fractional-order framework. Yakubu et al. [14] looked at how velocity of blood velocity as well as 

temperature distribution through circular cylindrical tube were affected by the Caputo time-fractional 
parameter. 

A generalized Newtonian fluid model, the Sutterby fluid accurately depicts flow behaviour 

throughout a broad range of shear rates, including the region of zero-shear viscosity. It is particularly 

suited for representing high-polymer aqueous solutions. By adjusting its parameters, the Sutterby fluid 

model can capture both Newtonian and non-Newtonian fluid behaviors of complex flow dynamics. Kot 

and Elmabound [15] investigated the unsteady flow of a hybrid nanofluid, which is used to simulate 

blood, via mildly constricted artery. Blood is taken as Sutterby fluid in order to capture the effects of 

gyrotactic microorganism migration in the bloodstream, providing a more accurate understanding of 

complicated biofluid behavior. Raju et al. [16] focused on examining blood motion in two different 

stenosis arteries. Few core studies on MHD [16-18], non-Newtonian [19-24], blood flow [25-27] and 

Caputo fractional derivative [28-31] are referend to readers for the best understanding of topic under 

investigation. 
Keeping above discussion in consideration, this research emphasizes Sutterby fluid passing 

through a narrowed vertical artery by considering magnetic field influences. Governing equations are 

derived in terms of cylindrical coordinates and solved numerically by using an explicit finite difference 

technique. A thorough analysis of significant physical parameters is pursued, and results are shown by 

graphical representations.  

 

2. Problem Formulation 

We considered the unsteady incompressible pulsatile blood motion in a vertically axisymmetric mild 

stenosed artery, Sutterby fluid is considered for analysis of blood flow through cylindrical coordinates 

, where  is radial,  is circumference, and  is flow direction. In axial direction, uniform 

external magnetic field is applied as shown in Figure 1. 
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Fig.1: Geometry of the problem 

 

 

 
Mathematically, the geometry of problem can be written as: 

 

 

. 

 

 (1) 

 

In Eq. (1),  is the artery radius,  is the axial coordinate, distance from origin is , height of stenosis 

is expressed by , whereas  denotes stenosis length. Due to axisymmetric flow, the circumferential 

direction is neglected.  

 

Let      be the velocity filed, in which  and  are radial and 

axial directions of velocity respectively. In view of Cauchy stress tensor [32], nondimensional variables 

[33] along with hypotheses  and , by neglecting the higher power terms (i.e., 

), the resulting equations along with the geometry of the problem in dimensionless 

form are: 

                                                     

 , 
(2) 

 , 
(3) 



66 M. H. Shah et al. 

, 

(4) 

, 

(5) 

 . 

(6) 

 

.  
 

(7) 

 

.  

(8) 

 

where steady state pressure gradient is , pressure oscillation that raises systolic and diastolic 

pressures is , and  represents pulse rate frequency.  

The shear thinning property  [34] is as follows: 

 

 . 

(9) 

 

In view of radial coordinate transformation , the resulting equations take the following 

forms: 

 

  (10) 

 . 

  (11) 

 

Here,  denote pressure, thermal conductivity, density, 

temperature, inclination angle, dynamic viscosity, gravitational force, time, magnetic field strength, 

specific heat at constant pressure, electrical conductivity, and thermal expansion coefficient, 

respectively. 

 

By applying Caputo time fractional derivative on momentum and energy equations,  
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(12) 

 . 

(13) 

 

 

Where  represent Caputo time-fractional derivative, addressed by Shah et al. [35]: 

.  

 

    (14) 

The associated boundary conditions are: 

     

,                                                       

(15) 

, 
(16) 

. 
(17) 

 

 

The wall shear stress, flow rate, and resistance to flow for Sutterby fluid model are: 

 

 . 

(18) 

 

 . 

 
(19) 

 

 . 

 

(20) 

 

The classical Sutterby fluid model can be recovered by taking   

3. Finite difference approximation 

Finding an analytical solution of these equations is difficult because of their high nonlinearity and 

complex boundary conditions. Hence, a numerical method [36] is used to solve this problem. Forward 

difference and central difference methods are utilized to approximate partial derivatives in time and 

space.  
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Where ,  

 

Now, put these values of the fractional derivative in the momentum and energy equations: 

 

 

 

(26) 

 

 

(27) 

With boundary conditions are: 

 when , 

(28) 

 when , 

(29) 

 when . 

(30) 

 

When choosing a step-size, stability of this scheme can be determined by following: 

 

(31) 

 

 
 

Stability of numerical method depends on chosen space and time steps. Criteria are satisfied at 

 and   
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4. Results and Discussion 

Graphs for velocity, wall shear stress, flow rate, and resistance to flow are generated using a MATLAB 

program. These plots help to explain the physical behavior of the system being studied. The following 

values are used to explore how different parameters affect blood dynamics. 

 

In Figs. (2) and (3), the behavior is governed by the fractional derivative, which captures the memory of 

the fluid. Simplistically, the fluid "remembers" its history of motion, and this influences its flow. It is 

observed that when the fractional parameter α  is larger, the fluid behaves more like a classical fluid 

with reduced memory, thus reacting to changes more quickly. Consequently, velocity and wall shear 

stress increase slightly. The increase and decrease in the graphs reflect fluid flow over time—first 
dropping, then rising, and eventually dropping again. This cycle occurs as a result of the balance 

between fluid inertia, viscous resistance, and the memory effect introduced by the fractional model. 

The temperature profile influenced by the fractional parameter is shown in Fig. (4). Initially, 

temperature decreases because fluid velocity is lower in the constricted region, which results in less 

friction and fewer collisions between fluid particles and with the artery wall. This reduces the heat 

generated in the blood. As time progresses and the blood overcomes the resistance from the stenosis, the 

flow becomes smoother with higher velocity. This enhances the rate of collisions between particles and 

with the artery wall, leading to increased heat due to friction, which raises the temperature, particularly 

near the arterial wall. 

 

Fig. (5) shows the dependence of blood velocity on the Grashof number   which represents the 

ratio of thermal buoyancy to viscous resistance. As  increases, thermal forces dominate and enhance 

momentum transfer, resulting in higher overall fluid velocity. This illustrates how stenosis in the artery 

wall affects arterial blood flow. With an increase in , thermal buoyancy raises the velocity near the 

arterial wall. As a result, both flow rate  and shear stress  increase, as illustrated in Figs. (6) and (7), 

respectively. The opposite behavior is observed in Fig. (8) for the case of flow resistance. As the 

Hartmann number Ma increases, indicating stronger magnetic field influence, the magnetic effect 

(known as the Lorentz force) acts like a drag on the flowing blood, slowing it down. Consequently, 

velocity, flow rate, shear stress, and resistance to flow decrease, as shown in Figs. (9)–(12). Overall,  

drops because circulation of blood is slowed by magnetic resistance. As a result,  increases, making it 

more difficult for blood to pass through the narrowed parts of the artery.  

Figs. (13) and (14) illustrate the effect of  and  on velocity along the arterial blood vessel and on 

flow rate. Increasing the value of  reduces blood axial velocity, whereas increasing  enhances the 

flow rate. The reduction in velocity with higher  demonstrates the viscoelastic behavior of blood. 

Figs. (15) and (16) show wall shear stress and resistance to flow against , while Figs. (17)–(20) 

illustrate how  affects velocity, shear stress, flow rate, and resistance to flow. It can be seen that  

increases with higher , but decreases with higher . Since  and  are inversely proportional, an 

increase in  reduces  and increases , while the opposite behavior is seen for .  

In Fig. (21), the influence of thermal radiation on temperature within a stenosed artery is displayed. It is 

noted that as  increases, temperature rises due to enhanced radiative heat transfer, which increases 

thermal diffusivity by contributing more thermal energy to the system. This rise in temperature can also 

indirectly increase momentum diffusivity by lowering fluid viscosity. 

The effect of the Eckert number  on temperature is shown in Fig. (22).  accounts for the 
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transformation of kinetic energy into internal energy due to viscous dissipation. When  increases, it 

indicates that blood velocity is high enough for frictional heating to become significant. As blood passes 

through the narrowed region of an artery, resistance and shear forces are elevated due to the reduced 

cross-sectional area. This intensifies viscous effects, especially for non-Newtonian fluids. The energy 

dissipated from internal friction is transformed into heat energy, causing the blood temperature to rise. 

 

5. Conclusion 

The present research provides a detailed investigation of blood motion through a constricted artery 

using a fractional derivative model, which incorporates the memory effect in blood dynamics. 

MATLAB-based simulations were employed to examine the key characteristics of the flow under 

the influence of significant physical parameters. The fractional model demonstrates how the memory 

of past motion strongly influences blood behavior, making the study more realistic than classical 

models. 

1. The variations in , velocity, and  with increasing fractional order α show a clear trend: they 

first decrease and then increase. This occurs due to the balance between fluid memory, inertia, 

and resistance in the narrowed artery. At lower , strong memory slows the flow, whereas higher 

 makes the fluid behave more like a Newtonian fluid, thereby improving flow. 

 

 
 

Fig.2: Velocity profile at t = 1.2 for . 
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Fig. 3: Wall shear stress for . 

 

 

Fig.4: Temperature profile at t = 1.2 for . 
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Fig.5: Velocity profile at t = 1.2 for . 

 
 

Fig.6: Flow rate for  
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Fig.7: Wall shear stress for  

 
 

Fig. 8: Resistance to flow for  
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Fig.9: Velocity profile at t = 1.2 for . 

 

 
 

Fig.10:  Flow rate for . 
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Fig.11: Wall shear stress for . 

 

 

 
 

Fig.12: Resistance to flow for . 
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Fig.13: Velocity profile at t = 1.2 for . 

 

   

Fig.14: Flow rate for . 
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Fig.15: Wall shear stress for . 

 

Fig.16: Resistance to flow for . 
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Fig.17: Velocity profile at t = 1.2 for . 

 

 
 

Fig.18: Wall shear stress for . 



Journal of Computational Applied Mechanics 2026, 57(1): 63-83 79 

 
 

Fig.19: Flow rate for . 

 
 

Fig.20: Resistance to flow for . 
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Fig.21: Temperature profile at t = 1.2 for  

 
 

Fig.22: Temperature profile at t = 1.2 for . 

 

 

1. An increase in the Grashof number  leads to higher velocity, , and , as greater thermal 

buoyancy enhances momentum transfer. 

2. A rise in the Hartmann number  introduces stronger magnetic resistance, which reduces both 

blood velocity and flow rate. 
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3. Increasing decreases velocity and flow rate while increasing wall shear stress and resistance, 

reflecting the viscoelastic behavior of blood. In contrast, increasing  enhances velocity and 

flow rate but reduces resistance and shear stress. 

4. Parameters such as the radiation parameter   and the Eckert number ( ) have a significant 

impact on the temperature profile. Larger values of  and  increase blood temperature due 

to radiative heat transfer and viscous dissipation, respectively. 

5. This research has important implications for medical professionals, especially regarding what 
determines blood flow in diseased arteries under different physiological conditions. It is able to 

predict complications in arterial stenosis patients and inform improved treatment strategies, such 

as thermal therapies or using magnetic field for treatments. For future development, the model 

can be further improved using machine learning methods to predict automatically flow patterns, 

identify abnormalities, and find optimal parameter values for various patient profiles. 

Furthermore, comparing this model to other fractional derivatives models can provide greater 

understanding of how various memory kernels affect flow behavior towards more precise and 

patient-specific models. 
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