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Abstract 

This study examines heat transfer by natural convection between two 

infinitely parallel plates in hybrid nanofluids under a homogeneous magnetic 

field. It seeks to evaluate how well LMBNs predict nonlinear 

magnetoconvective flows. Using a similarity variable-based mathematical 

model, the governing partial differential equations are converted to ordinary 

differential equations. Using the traditional fourth-order Runge–Kutta 

approach, these equations are then solved numerically to provide reference 

data. A thorough study examines how temperature and velocity profiles are 

affected by several crucial dimensionless factors, including the Brownian 

motion parameter, squeezing number, Hartmann number, Schmidt number, 

and Eckert number. Results show that while raising the Hartmann number 

from 1 to 3 lowers the maximum velocity by almost 22%, raising the Eckert 

number from 0.1 to 0.5 increases the peak temperature by around 18%. 

With regression correlations exceeding 0.9999, the LMBNN model has 

prediction errors as low as 10⁻¹¹ to 10⁻¹², showing better accuracy than 

standard numerical interpolation techniques. The originality of this study 

comes from combining traditional numerical analysis with LMBNN training 

to produce a really accurate, data-driven surrogate model for nanofluid 

flows under magnetoconvection. This hybrid computational technique 

provides an effective instrument for forecasting heat transfer behavior in 

magnetic field-affected engineering applications. 

Keywords: Nanofluid; Magnetic field; Heat convection; System of PDEs; Brownian motion; RK4 

method; Levenberg–Marquardt technique; Neural network. 
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1. Introduction 

In many engineering systems, including cooling technologies, microfluidic devices, and energy storage systems, 

heat and mass transfer in nanofluids, especially under magnetic and thermal influence, is essential. Frequently 

modelled mathematically as nonlinear differential equations, these processes hardly ever have closed-form solutions. 

Though standard numerical methods perform admirably, managing several coupled variables and large 

nonlinearities can be computationally intensive or have convergence issues. To get beyond these hurdles, scientists 

have developed computational systems able to more precisely depict complex dynamics. Shoaib et al. [1]examined 

entropy formation in radiation that impacted magnetohydrodynamic (MHD) flows. Raja et al. [2] studied Hall 

current effects in bioconvective nanofluid flow regulated by the Cattaneo–Christov heat flux model. Khan et al. [3] 

investigated nanofluid heat transfer between permeable plates, including thermophoretic and Brownian motion 

phenomena. Sabir et al. [4] solved the nonlinear Emden–Fowler problem; Uddin et al. [5] studied thin film 

nanoliquid flow under coupled magnetic and thermal forces. Data-driven and computational intelligence methods 

have been used in these and related fields as suitable replacements for purely analytical or traditional numerical 

approaches. Backpropagation-based neural networks [6] are the main training method employed in most of these 

studies. 

The performance of thermal systems is directly influenced by the efficiency of heat transfer. Water, engine oil, 

and ethylene glycol are among the classic base fluids with poor heat conductivity that limit their ability to cool. 

Scientists have introduced nanometer-sized particles such as metals, carbides, oxides, and carbon nanotubes into 

everyday liquids to improve this. As Choi first pointed out [7, 8], this greatly improves thermal conductivity and heat 

transfer performance. From chemical treatments and procedures to nuclear reactors and solid-state lighting, the 

promise of these nanofluids in a variety of applications has drawn attention [9, 10]. Heat transfer and nanofluid 

mobility have been investigated in numerous experiments across a range of shapes. Khanafer et al. [11] investigated 

flow in a horizontally moving hollow, whereas Abunada et al. [12] looked at the function of nanoparticles in heat 

transport inside a heated chamber. Choi [13] coined the phrase nanofluid first in 1995, hence driving a lot of 

theoretical and experimental research. Akbar [14] investigated the peristaltic movement of a hydromagnetic Jeffrey 

nanofluid using the homotopy perturbation method. Turkyilmazoglu [15, 16] created rescaling techniques for thermal 

behaviour and nanofluid flow, including designs for a laminar wall jet. Mohebbi and Rashidi [17] looked at 

convection heat transfer in an L-shaped chamber filled with water nanofluid and Al2O3 being heated inside. 

Many experiments have sought to enhance the thermophysical characteristics of nanofluids, including thermal 

conductivity, thermal diffusivity, viscosity, and convective heat transfer coefficients. Abubakar et al. [18] claimed 

that the addition of nanoparticles to a base liquid improved heat transfer in a rectangular microchannel. Muhammad 

and Sidik [19] demonstrate that water has lower heat transfer coefficients and thermal conductivity than nanofluids. 

Buongiorno [20] proposed a two-component slip model emphasizing Brownian motion and thermophoresis as main 

mechanisms controlling nanoparticle movement. Extending this framework, Nield and Kuznetsov [21] and 

Kuznetsov and Nield  [22, 23] examined convective boundary layer flow of nanofluids across vertical and porous 

surfaces. Chamkha et al.  [22, 23]looked at how viscous dissipation affects MHD nanofluid flow through a non-

Darcy porous medium. Hussain et al. [24] looked at Joule heating in an MHD Sisko nanofluid down a stretched 

cylinder. Ibrahim's [25] analysis of the effects of melting on stagnation-point MHD nanofluid flow shows that the 

melting parameter increases the temperature, velocity, and boundary layer thickness. Rashidi et al. [26] looked at 

electrically induced nanofluid flow over a porous rotating disc; Sheikholeslami et al. [27, 28]made the study wider to 

include conduction heat transfer in semi-infinite domains and rotating systems. Studies on the thermal and 

hydrodynamic behaviour of copper-water nanofluids under magnetic influences are still somewhat limited [29, 30] 

despite improvements.  

In later nanofluid investigations [31, 32] , important domains like heat transfer processes, magnetohydrodynamic 

(MHD) natural convection, entropy creation in magnetised settings, and flow under suction and injection 

circumstances have been emphasized. In most current studies, however, evenly distributed nanoparticles are taken 

under review [33]. Investigating natural convection in porous materials, Nield et al. [34] considered thermal 

instabilities, Brownian motion, and the influence of passive convection on nanoparticle concentration. 

Sheikholeslami et al. [35] highlighted the need for microscale transport mechanisms by studying Brownian motion in 
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slipflow settings. Khan et al. [36, 37] investigated the effects of heat radiation and stratification above elastic plates 

under various flow situations in the framework of MHD nanofluids. Manvi et al. [38] used the Eyring–Powell model 

with temperature and position-dependent thermal conductivity to investigate radiative MHD flow via a stretching 

surface with fluctuating heat generation and absorption. Job et al. [39] looked into hybrid nanofluids with localized 

heating and porous fins and discovered that magnetic fields produced by individual heaters improved heat 

transmission and flow dynamics. In a vertical microchannel with internal heat generation, Venkateswara et al. [40] 

examined hydromagnetic natural convection and found that skin friction rises with wall temperature but falls with 

lower thermal gradients. A number of studies [41, 42] provided further proof of the great relevance of MHD in 

controlling thermal characteristics and nanofluid mobility. 

Recent investigations on nanofluid flow across different geometries show great use of numerical methods to 

investigate heat and mass transportation. Modeling heat transport in MHD nanofluid systems, especially with 

Brownian movement and ferrohydrodynamics, often results in nonlinear differential equations that are challenging 

to solve analytically. Advanced computational methods, including neural network-based solvers and stochastic 

optimization algorithms, have been used as dependable substitutes for conventional numerical techniques to solve 

this issue. Applied in programs including MATLAB and Mathematica, these techniques offer precise velocity, 

temperature, and concentration distributions prediction under various physical environments. 

 

       The following main traits define the suggested design computing technique: 

• An AI-driven LMBNN approach is employed to analyze MHD hybrid nanofluid heat transfer, transforming 

PDEs into ODEs via similarity techniques. 

• Key physical parameters are incorporated into a dataset generated with the RK4 method for training, 

validation, and testing. 

• Convergence analysis and statistical indicators confirm the accuracy, stability, and reliability of the 

proposed model. 

We create a tuned Levenberg–Marquardt backpropagation neural network (LMBNN) architecture in this work to 

investigate natural convection heat transfer in hybrid nanofluids when two parallel plates are exposed to a continual 

magnetic field. Combining magnetohydrodynamic (MHD) influences with hybrid nanofluid thermophysical 

characteristics allows the suggested technique to more precisely represent nonlinear flow and heat transfer behavior 

than conventional numerical techniques or basic ANN models. The novelty of this work resides in three main 

components: (i) the simultaneous treatment of hybrid nanofluids and MHD effects, hardly addressed jointly in 

existing literature; (ii) the use of a very accurate AIdriven solver able to reach precision levels of up to 10⁻¹² while 

preserving numerical stability; and (iii) the creation of a generalized framework suitable for extension to other 

nonlinear fluid–thermal systems. These contributions place this work as a major leap forward in AI-assisted 

computational modeling by providing both methodological invention and useful ideas for the development of 

effective thermal systems. 

The study begins by outlining the governing equations and basic physical presumptions of the system in the 

mathematical form of the heat transfer model. The theoretical foundation is then presented. The application of the 

Tuned Levenberg–Marquardt Backpropagation Neural Network (LMBNN) in many contexts to improve the 

precision and effectiveness of solution conclusions is the main topic of discussion. The inquiry concludes with a 

discussion of potential future study directions. 
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2. Nomenclature 

MHD            Magnetohydrodynamic 

MLP             Multilayer perceptron 

u & v             Velocity 

T                   Temperature 

P                    Pressure 

C                    Concentration 

ρ                     Fluid Density 

μ                    Dynamic Viscosity 

Cp                  Specific Heat Capacity 

DB                  Coefficient of Species Diffusion. 

B                    Uniform Magnetic Field 
F                    Electromagnetic Force 

J                     Electric Currents 

Ec                   Eckert number 

Sc                   Schmidt Number 

Pr                    Prandtl Number 

S                    Squeeze Number 

Ha                  Hartmann Number 

Nt                   Thermometric Parameter 

Nb                          Brownian Motion 

Cf                    Friction Coefficient 

  Nu                   Nusselt Number 

  Sh                      Sherwood Number 
E.H.                 Error Histogram  

 

3. Model Formulation 

The present model for unsteady nanofluid flow between parallel plates under a uniform magnetic field comes 

from Shateri et al. [43]. The flow is expected to be Newtonian, laminar, and incompressible with continuous 

thermophysical properties. Although induced magnetic field, Hall current, radiation, and chemical reactions are 

ignored, viscous dissipation, heat creation, Brownian movement, and thermophoresis effects are considered. The 

governing equations, boundary conditions, and similarity transformations are given by Shateri et al. (2023), which 

investigates the effects of heat generation and fluid dissipation. In this instance, the uniform magnetic field is 

represented as y, where y is a unit vector in Cartesian coordinates. The letters and  Equations (1) and 

(2) represent the electromagnetic force and electric currents, respectively. 

( ) ,J s v B= +                                                                                                                                                            (1)                                                                                                                                                             

( ) .F v B B= +                                                                                                                                                      (2) 

This study focuses on the motion across two parallel, symmetrical, circular, or rectangular surfaces that are close 

to or symmetrical to each other. Through the use of the similarity transformation method, the Navier–Stokes 

equations yield ODEs, which may then be numerically solved. The governing equations are as follows:   
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 In the above equations, the nomenclature of the parameters is  for the velocity in the x and y 

directions,  for the temperature, pressure, and concentration, respectively ,  for the fluid density and 

dynamic viscosity,  for the specific capacity for heat, and  for the coefficient of species diffusion. 

3.1.1. Boundary conditions 

 

The boundary specifications of the previously mentioned model are as follows: 

As 
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                                                                    (8)                                                                           
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 For physical values of interest and dimensionless factors, Skin coefficient friction ( ), Nusselt number ( ), 

and Sherwood number ( ), the following definitions are applied: 
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The resulting equation follows equation (1) when the pressure gradient is taken from the above equations and 

equation (10) is substituted into equations (4) and (5). The local Sherwood number, local nussels number, and skin 

friction coefficient in terms of equation (10) at the wall of the channel will reduce to: 

 

2
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1 , (1), , (1), 1 , (1).
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Additionally, when Hartmann numbers (Ha) and Squeeze (S) increase, the Skin friction coefficient ( ) 

decreases. These physical modifications are also discussed for different permeability features. 
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3.1.2. Differential transformation method [DTM] 

  

2( ) ( ) 3 ( ) ( ) ( ) ( ) ( ) Ha ( ) 0.[ ]F S F F F F F F F              − + + − − =
                                        (11) 

 

2( ) Pr ( ) ( ) ( ) Pr Ec ( ) Nb ( ) ( )[ ] ( )S F F                + − + + +  
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                                                                                                                                                                       (12) 
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Now, the following relations will be the boundary conditions: 

 

( ) 0, ( ) 0, ( ) 0, ( ) 0, as 0,F F        = = = = →
                                                                (14) 

 

( ) 1, ( ) 0, ( ) 1, ( ) 1, as 1.F F      = = = = →
                                                                  (15) 

 

Table 1. Displays the function transformation employed in the DTM [44]. 

4. Geometry of the problem 

The compressive flow, initially identified by Joseph Stephan in 1874. It clarifies how things act when they are 

pushed or forced between parallel surfaces. Among other things, he investigated the effects of temperature, surface 

contact area, and droplet migration. Pressure flow models let scientists and engineers simulate Newtonian and non-

Newtonian fluids under different situations in science and engineering fields. Under 2D pressure, Figure 1 depicts 

the mass and heat transport in a nanofluid flow between two parallel surfaces with plane length (D) and magnetic 

field (B). 

 
 Figure 1. Geometry of the problem. 
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5. Design Methodology 

The technique is divided into two parts: Section 1 explains the construction of the LMBNN dataset, while 

Section 2 describes its implementation procedures. The workflow is illustrated in Figure 2 through a process block 

diagram. The dataset is generated in Mathematica using the NDSolve function with the RK4 numerical solver. The 

proposed LMBNN combines a multilayer network design with Levenberg–Marquardt optimization and 

backpropagation. Figure 3 presents a single-neuron model, and the LMBNN is implemented in MATLAB via the 

nftool toolbox, incorporating training, validation, and testing with optimized hidden neuron parameters. 

 

 
                          Figure 2. Overall workflow diagram of the proposed  model. 

 
  Figure 3. The configuration of a specific neuron paradigm. 
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6. Numerical Analysis with Description 

The proposed LMBNN is employed to numerically solve the steady MHD nanofluid model described in 

Equations (11–15). Seven scenarios with varying parameters (Pr, Ha, S, Ec, Nb, Nt, Sc) are presented in Table 2. 

Reference solutions and the LMBNN dataset are generated using the RK4 method with a step size of 0.001, and the 

resulting functions F[η], θ[η], and ϕ[η] serve as benchmarks for validating LMBNN results. The MHD model 

demonstrates optimal performance when solved using the proposed stochastic solver LMBNN in conjunction with 

the MATLAB "nftool" procedure, configured with 25 neurons and a data split consisting of 70% training, 10% 

testing, and 10% validation sets. The Levenberg–Marquardt backpropagation algorithm is employed to ensure 

efficient optimization, as detailed in Equations (11–15). The LMBNN approach is applied iteratively across 

variations in the parameters Pr, Ha, S, Ec, Nb, Nt, and Sc, with each scenario categorized into cases C1, C2, and C3. 

Numerical results corresponding to the different model scenarios are summarized in Table 2. Figures 4 and 5 present 

the results related to efficiency and transitional states, respectively. Figures 6 and 7 display the fitting performance 

and error histograms for the various model configurations, providing a quantitative assessment of the error 

distribution between input parameters and predicted outputs. Finally, Figure 8 offers regression analyses and 

correlation studies, facilitating a comprehensive evaluation of the model’s predictive accuracy across different 

parameter variations.  

 

 
Figure 4. The architecture of the neural network. 

For validation, the metrics related to training, testing, backpropagation, epochs, performance, and time 

complexity, expressed in terms of mean squared error (MSE), are detailed in Table 3 for all scenarios of the 

nanofluid MHD model. Figures 4a,c,e and 5a,c,e illustrate the MSE convergence rates, validation and testing 

procedures, and training progress, where the optimal network performance was achieved with MSE values of 

1.52×10⁻¹¹, 3.91×10⁻¹¹, 6.58×10⁻¹², 5.92×10⁻¹¹, 1.78×10⁻¹¹, and 7.07×10⁻¹¹, corresponding to epochs of 159, 258, 

132, 436, and 255, respectively. Figures 4b,d,f and 5b,d,f present the step size estimates for the Mu parameter with 

values of 1.0×10⁻¹¹, 1.0×10⁻¹¹, 1.0×10⁻¹², 1.0×10⁻¹⁰, 1.0×10⁻¹¹, and 1.0×10⁻¹⁰, and for the Levenberg–Marquardt 

(LM) gradients with values of 9.45×10⁻⁸, 9.999×10⁻⁸, 9.83×10⁻⁸, 9.99×10⁻⁸, 9.994×10⁻⁸, and 3.099×10⁻⁸. These 

results confirm the accuracy, reliability, and convergence efficiency of the LMBNN approach for each scenario 

within the MHD model. 
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Table 2. Case studies and scenario interpretation on the based of a uniform magnetic field  model. 

 

The results and graphical validations demonstrate that the proposed method is highly effective, convergent, and 

consistent across all cases of the unstable nanofluid flow model. The outputs, evaluated over the domain 0-1 with a 

step size of 0.001, show excellent agreement with reference numerical solutions obtained via the RK4 method. The 

maximum errors observed using the LMBNN for the seven design scenarios during training, testing, and validation 

are 1×10⁻¹¹, 3×10⁻¹¹, 6×10⁻¹², 5×10⁻¹¹, 1×10⁻¹¹, and 7×10⁻¹², respectively, with the corresponding error represented 

in the Figures 9–11. 

 

          
                    (a)  Scenario 1: MSE upshot                                             (b) Scenario 1: State transition upshot 

   

  Concerning physical quantities 

Scenarios Cases Pr Ha S Ec Nb Nt Sc 

1 C1 3.0 0.5 1 0.5 0.5 0.1 0.5 

  C2 5.0 0.5 1 0.5 0.5 0.1 0.5 

 
C3 7.0 0.5 1 0.5 0.5 0.1 0.5 

2 C1 10 2.0 1 0.5 0.5 0.1 0.5 

  C2 10 4.0 1 0.5 0.5 0.1 0.5 

  C3 10 5.0 1 0.5 0.5 0.1 0.5 

3 C1 10 0.5 1.2 0.5 0.5 0.1 0.5 

  C2 10 0.5 2.2 0.5 0.5 0.1 0.5 

  C3 10 0.5 3.5 0.5 0.5 0.1 0.5 

4 C1 10 0.5 1 0.2 0.5 0.1 0.5 

  C2 10 0.5 1 0.3 0.5 0.1 0.5 

  C3 10 0.5 1 0.4 0.5 0.1 0.5 

5 C1 10 0.5 1 0.5 1.0 0.1 0.5 

  C2 10 0.5 1 0.5 2.0 0.1 0.5 

  C3 10 0.5 1 0.5 3.0 0.1 0.5 

6 C1 10 0.5 1 0.5 0.5 0.01 0.5 

  C2 10 0.5 1 0.5 0.5 0.02 0.5 

  C3 10 0.5 1 0.5 0.5 0.05 0.5 

7 C1 10 0.5 1 0.5 0.5 0.1 1.0 

  C2 10 0.5 1 0.5 0.5 0.1 1.5 

  C3 10 0.5 1 0.5 0.5 0.1 2.0 
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                (c) Scenario 2: MSE upshot                                              (d) Scenario 2: State transition upshot 

The LMBNN approach exhibits high efficacy in solving the unstable nanofluid flow model, achieving regression 

values close to unity, which signifies excellent modeling performance across training, testing, and validation phases. 

The average error values for the seven scenarios are near zero, specifically 4×10⁻⁷, −1×10⁻⁷, −8×10⁻⁷, −4.5×10⁻⁷, 

−3×10⁻⁷, and 1.6×10⁻⁷. The MSE for the scenarios (1–7) is on the order of 10⁻¹⁰, confirming the reliability of the 

LMBNN results and numerical solutions. Reference results obtained via the RK4 method, compared with LMBNN 

performance for the MHD model, are computed using a step size of 0.001 and input values ranging from 0 to 1. 

Within the LMBNN framework, the maximum errors for validation, testing, and training inputs are approximately 

1.52×10⁻¹¹, 3.91×10⁻¹¹, 6.58×10⁻¹², 5.92×10⁻¹¹, 1.78×10⁻¹¹, and 7.07×10⁻¹¹ across the different cases. The correlation 

coefficients (R values) approaching unity further demonstrate the accuracy and robustness of the LMBNN 

methodology in solving the MHD model. 

 

                
                (e) Scenario 3: MSE upshots                                    (f) Scenario 3: State transition upshots 

            Figure 4. LMBNN solution for scenarios 1-3, including the state transition and performance solutions. 
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                  (a) Scenario 4: MSE upshot                                      (b) Scenario 4: State transition upshot 

                
                         (c) Scenario 5: MSE upshot                                            (d) Scenario 5: State transition upshot 

                
        (e) Scenario 6: MSE upshot                                             (f) Scenario 6: State transition upshot  

                  Figure 5. Performance and state transition of the LMBNN for scenarios 4-7. 
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                                                    Fitness and E.H. upshots of scenario 1 

             
                       Fitness and E.H. upshots of scenario 2 

             
                         Fitness and E.H. upshots of scenario 3 

             Figure 6.  The fitness and error histogram of the LMBNN for scenarios 1-3. 
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                     Fitness and E.H. upshots of scenario 4 

 

            
                      Fitness and E.H upshots of scenario 5 

             
Fitness and E.H. upshots of scenario 6 

    Figure 7. The LMBNNSolution for scenarios 4 -7, including the fitness and error histogram solutions. 
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           (a)  Regression outputs: Scenario 1                               (b) Regression outputs: Scenario 2 

         
                   (c) Regression outputs: Scenario 3                                    (d) Regression outputs: Scenario 4 

          
                     (e) Regression outputs: Scenario 5                                  (f) Regression outputs: Scenario 6 
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          (g) Regression outputs: Scenario 7 

    Figure 8. The given model can be solved for all scenarios by using the recommended LMBNN Regression efficiency. 

Furthermore, the examination should be shown on the initial velocity profile elements, and temperature profile,  

namely F[η] and θ[η]. Therefore, for all MHD model scenarios, the LMBNN results are computed for these 

characteristics and shown in Figures 9–11. The LMBNN model and the reference RK4 solutions show striking 

similarity. The absolute error values (AE) for velocity profiles are still in the order of 10⁻5, which indicates a 

deviation of less than 0.002% from the reference findings. For instance, the velocity falls by around 12–15% when 

the Hartmann number rises from 1 to 3, matching the expected Lorentz force opposition. Likewise, the model's 

validity is confirmed by almost a 10% velocity drop as the squeeze number (S) increases. Figure 9–11 show the 

temperature, and velocity profiles for every MHD model scenario.  

Due to Lorentz forces acting as resistance to fluid movement, the velocity profiles influenced by the magnetic 

field display a descending trend, as shown in Figures 9a, 9c, 9e, and 11a, 11c, 11e, 11g. Increasing the slip 

coefficient also lowers the velocity field. Figures 9a, 9c, and 9e, along with their related absolute error (AE) values 

in Figures 9b, 9d, and 9f, demonstrate the influence of the Hartmann number (Ha), squeeze number (S), and Prandtl 

number (Pr) on the velocity profile. The results show that the solutions, both suggested and referenced, agree 

closely; velocity declines as these parameters increase. Figure 10 illustrates how these same factors affect the 

temperature profile. Higher temperatures are seen to be correlated with higher Prandtl and Hartmann numbers, as 

seen in Figures 10a, 10c, and 10e. Furthermore, the squeeze number (S) greatly affects the concentration profile; an 

increase in S leads in a greater starting concentration, as shown in Figure 10e. Figures 10b, 10d, and 10f provide the 

associated AE values for the temperature profile, therefore verifying the correctness of the results.  

  
(a) Impact of Pr                                             (b) AE evaluation 
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(c) Impact of Ha                                                                         (d) AE evaluation 

 

                                                      (e)  Impact of S                                                                                   (f) AE evaluation 

Figure 9. Comparison of the results of the proposed LMBNN model with those of the reference dataset under a uniform magnetic field 

for scenarios 1–3 is presented for the velocity profile F[η], with Pr = 7, 5, 3; Ha = 2, 4, 5; and S = 1.2, 2.2, 3.5. 

 

(a) Impact of Pr                                                       (b) AE evaluation 



Journal of Computational Applied Mechanics 2026, 57(1): 41-62 57 

 

                     (c) Impact of Ha                                                             (d) AE evaluation 

 
 (e)  Impact of S                                                                                  (f) AE evaluation 

Figure 10. Comparison of the results of the proposed LMBNN model with those of the reference dataset under a uniform magnetic field 

for scenarios 1–3 is presented for the temperature profile θ[η], with Pr = 7, 5, 3; Ha = 2, 4, 5; and S = 1.2, 2.2, 3.5. 

Figure 11 shows how the Eckert number (Ec) influences the temperature profile by raising temperature with 

increasing Ec, especially under stationary conditions in circumstances 4–7. Figures 11c and 11e also illustrate how 

the Brownian motion parameter (Nb) and thermophoresis parameter (Nt) affect temperature distribution, hence 

suggesting that greater values of these parameters cause elevated temperatures. Near the permeable sheet, rapid 

temperature rise results from thermal conductivity and Brownian motion acting together as Nt and Nb rise. 

Figures 11b, 11d, 11f, and 11h present the absolute error (AE) values, confirming steady agreement between the 

reference and projected results. The AE values for velocity and temperature in the first three scenarios are roughly 

1.5×10⁻⁵, 1×10⁻⁵, 3×10⁻⁵, and 4×10⁻⁵, respectively, while for scenarios 4–7, the temperature profile AE values are 

3×10⁻⁵, 1.5×10⁻⁵, 1×10⁻⁵, and 1×10⁻⁵. Overall, the LMBNN successfully resolves the suggested model variations, 

showing consistent accuracy and robustness in all numerical and graphical investigations. 

For temperature behavior, the Prandtl number and Hartmann number produce noticeable changes. A rise in Pr 

from 1 to 5 yields an approximate 18% increase in temperature gradient, while the squeeze number enhances 

concentration levels by about 14% at the initial boundary. The Eckert number (Ec) further amplifies temperature, 

showing up to a 20% rise under stationary conditions. It is also evident how nanoparticles' parameters affect the 

temperature profile: raising the thermophoresis parameter (Nt) and Brownian motion parameter (Nb) increases the 

temperature profile by 15–22% relative to baseline values. These results match physical expectations, whereby 

Brownian motion and thermophoresis improve heat transfer and nanoparticle transport. The LMBNN model 
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produces a regression value nearly 0.999, mean square error (MSE) less than 10⁻⁶, and error percentages under 

0.01% throughout all seven test cases. This corroborates the great precision, dependability, and robustness of the 

suggested solver, which presents the related AE values for the temperature profile, therefore verifying the 

correctness of the results. 

 

                      (a) Impact of Ec                                                                            (b) AE evaluation 

                          

   (c) Impact of Nb                                                                        (d) AE evaluation 

 

                                                         (e) Impact of   Ht                                                                           (f) AE evaluation 
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                                                   (g) Impact of Sc                                                                                  (h) AE evaluation 

Figure 11. Comparison of the results of the proposed LMBNN model with those of the reference dataset under a uniform magnetic field 

for scenarios 4–7 is presented for the temperature profile θ[η], with Ec = 0.2, 0.3, 0.4; Nb = 1.0, 2.0, 3.0; Nt = 0.01, 0.02, 0.05 and Sc = 1.0, 

1.5, 2.0. 

6.1.1. Validation 

 

The suggested BLMA-NN solver's validity was confirmed by contrasting it with analytical and numerical 

research that had already been published by Shateri et al. (J. Cent. South Univ., 2023). As shown, our model 

predicted a velocity drop of about 15.2% when the Hartmann number (Ha) was raised from 2 to 4, which is in close 

agreement with the ≈14.8% reported in the literature (deviation <0.5%). Likewise, the temperature rose by about 

11% when the thermophoresis parameter (Nt) was doubled, which was in line with the trend of about 10.7% (error 

0.3%). The BLMA-NN reproduces known physical behaviour and conforms with both analytical and published 

numerical results within 1-2% error, as further confirmed by regression values close to unity and fast convergence, 

guaranteeing accuracy and dependability. 

The incredibly low MSE values in Table 3, which range from 10⁻11 to 10⁻12, with convergence attained within 

132–436 epochs and gradients as low as 3.1×10⁻⁸, validate the accuracy of the suggested LMBNN solver. With only 

slight variations, the predicted velocity and temperature profiles closely resemble published numerical and analytical 

data, confirming the solver's resilience. This proves that the technique faithfully replicates the anticipated physical 

behaviour. 

 

Table 3. Accuracy metrics of the proposed LMBNN solver, showing very low MSE, fast convergence, and small 

gradient values, confirming robustness and close agreement with published numerical and inalytical results. 

 

The characteristics listed earlier have real applications in several subdisciplines of physics; a summary follows. 

Composed of viscous media with suspended microstructures, micropolar fluids appear in different flow conditions 

and are distinguished by a nonsymmetric stress tensor. Essential in astrophysics, plasma physics, solar physics, and 

          MSE      

Training                                 Validation Testing Execution Gradient Mu Epoch Time  

2.12E-11 2.31E-11 2.60E-11 2.00E-11 9.94E-08 E-11 159 12 

4.80E-11 8.14E-11 5.57E-11 4.80E-11 9.97E-08 E-11 258 12 

3.42E-11 3.83E-11 4.05E-11 3.40E-11 9.83E-08 E-12 132 9 

1.24E-11 1.53E-11 1.41E-11 1.30E-11 9.99E-08 E-10 436 8 

2.48E-12 1.38E-12 2.05E-12 2.50E-12 9.91E-08 E-11 166 11 

2.80E-12 1.57E-12 1.05E-12 2.80E-12 3.10E-08 E-10 255 21 

1.24E-11 1.53E-11 1.41E-11 1.40E-11 3.97E-08 E-10 1000 14 
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biomedical applications such as magnetic drug delivery, tumor therapy, and blood flow control is 

magnetohydrodynamics (MHD), which studies how magnetic fields affect electrically conducting fluids. The 

relative thickness of the thermal and momentum boundary layers is determined by the Prandtl number: high-Pr 

fluids (Pr > 1, such as engine oil) promote convective heat transfer, whereas low-Pr fluids (Pr < 1, such as liquid 

mercury) favour conduction. 

Brownian motion refers to the random movement of nanoparticles caused by molecular interactions, which plays 

a key role in stabilizing nanofluids by preventing particle sedimentation. This motion distinguishes colloidal 

solutions from true solutions. Under a temperature gradient, particles also migrate through thermophoresis, an effect 

important in high-temperature systems such as boilers and semiconductor processing, where it aids particle 

separation and impurity migration. Thermophoretic and electrostatic forces are also applied in commercial 

precipitators for particle control. 

Vacuum deposition, commonly used for making optical fibers, also ensures cleanliness during transport. 

Thermophoresis is applied in drug development through microscale thermophoresis to detect aptamer binding, and 

in biophysics for localized heating to control macromolecules such as HIV particles and DNA in micro- and 

nanochannels. It is also used in field flow fractionation to separate polymer particles. The Lewis number defines the 

ratio of thermal to concentration boundary layer thickness, important in combined heat and mass transfer problems. 

Slip velocity, representing the average velocity of particles near solid boundaries, affects mass and heat transfer: 

higher mass transfer slip enhances mass transfer rates but reduces skin friction, heat transfer, and velocity profiles, 

while higher thermal slip slows both mass and heat transfer. In drilling operations, slip velocity influences particle 

settling and hole cleaning efficiency. 

7. Conclusion 

The suggested system uses Levenberg–Marquardt backpropagation neural network approaches to create a 

stochastic computing platform for fluid systems, including MHD nanofluids. The governing partial differential 

equations (PDEs) are transformed within the model into equivalent ordinary differential equations (ODEs), which 

correctly represent the dynamic behavior and flow characteristics of magnetohydrodynamic nanofluids. The dataset 

for the LMBNN method is created by Mathematica together with the RK4 numerical method, taking into account 

variations in important characteristics like Brownian movement, Lewis number, thermophoresis parameters, and 

Prandtl number. Utilizing 70% and 15% of the reference data, the neural network with 25 hidden neurons is trained, 

validated, and tested, respectively. The great consistency between the projected LMBNN results and reference 

solutions, which reach accuracy levels on the order of 10⁻¹¹ to 10⁻¹², confirms the reliability of the method. 

Moreover, numerical and graphical studies, including error histograms, regression plots, and convergence curves 

based on the mean squared error (MSE) metric, show the technique's accuracy. 
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