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Abstract 

This article develops a fractional-order Lord-Shulman (LS) generalized 

thermoelastic model to analyze a rotating hollow cylinder under plane strain. 

The cylinder, with traction-free surfaces, is subjected to non-uniform ramp-

type heating on its outer boundary. Governing equations incorporating non-

Fourier heat conduction are solved using the Laplace transform technique 

with numerical inversion. Results for temperature, displacement, stress, and 

dilatation are computed and graphically presented. The analysis demonstrates 

that both the fractional-order and ramp-time parameters significantly 

influence the thermoelastic response. Comparisons with classical Fourier-

based theory highlight the model's accuracy in capturing wave propagation 

phenomena, providing critical insights for the design of structures 

experiencing sudden thermal loads. 
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1. Introduction 

A lot of referenced papers explore coupled thermoelasticity and generalized thermoelasticity in cylindrical 

systems, focusing on transient thermal stresses, dynamic responses, and nonlinear material behavior. Biot [1] 

introduced coupled thermoelasticity, resolving the classical paradox where mechanical deformation did not affect 

temperature. Yang and Chen [2] solved 1D axisymmetric transient thermoelastic problems with thermo-mechanical 

coupling in terms of temperature and displacement. Jane and Lee [3] analyzed multilayered cylinders under thermal 

loads using Laplace transforms and finite difference methods. Lee et al. [4] extended solutions to orthotropic 

multilayered cylinders under quasi-static thermoelastic conditions. Lee [5] developed methods for 3D axisymmetric 

problems in nonhomogeneous cylinders of varying lengths. Gaikwad et al. [6] studied temperature, displacement, and 

stress in cylinders with arbitrary surface heating. Zenkour et al. [7] compared thermoelastic plate theories (classical, 

Lord-Shulman, Green-Lindsay) for functionally graded plates under thermal loads. Hung et al. [8] analyzed initial 

interface pressure in heat-assembled cylinders, providing a computational method for quasi-static thermoelastic 

problems. Eskandari-Ghadi et al. [9] solved 2D dynamic thermoelasticity using potential functions to uncouple 

governing equations. Zenkour and Abbas [10] studied nonlinear transient stresses in temperature-dependent cylinders 

under time-decaying thermal fields. 
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One of the most significant generalized thermoelasticity models (hyperbolic heat conduction) is the Lord and 

Shulman (LS) one. They [11] introduced a finite thermal wave speed model, eliminating the paradox of infinite heat 

propagation. Dhaliwal and Sherief [12] extended LS model to anisotropic materials. Sherief and Anwar [13] and 

Youssef [14, 15] applied it to cylindrical cavities with ramp-type heat and temperature-dependent assets. Marchi and 

Zgrablich [16] developed a finite integral transform for radiation boundary conditions. Various methods (potential 

functions, computational schemes) addressed multiphysics coupling in thermoelastic systems. Sherief and Anwar [13] 

solved thermoelasticity problems for an infinitely long hollow cylinder with temperature-boundary conditions and 

traction-free surfaces using the LS theory (one relaxation time). Youssef [14] derived generalized thermoelasticity 

equations for temperature-dependent materials, incorporating variable mechanical/thermal properties under the LS 

model. Youssef [15] analyzed transient thermoelastic relations in an unbounded medium with a cylindrical cavity 

under mechanical loading and starting from rest. 

Several studies analyzed thermoelastic interactions in different cylindrical geometries (unbounded media with 

cavities, hollow cylinders, and annular cylinders) using generalized thermoelasticity theories (mainly the LS model). 

Youssef [17] presented thermoelastic disturbances in a half-space with a cylindrical cavity. Abo-Dahab and Abbas 

[18] presented magneto-thermoelastic transient effects with variable thermal conductivity. Elhagary [19] discussed 

thermoelastic diffusion (coupled heat and mass transfer) in a hollow cylinder. Zenkour and Abbas [20] presented 

temperature-dependent material assets in an annular cylinder under thermal stress. Abbas and Elmaboud [21]compared 

exact and approximate (homotopy analysis) solutions for hollow cylinders, showing good agreement. Zenkour [22] 

studied variable thermal conductivity in clamped hollow cylinders under thermal shock, highlighting its impact on 

stress distribution. Youssef and El-Bary [23] analyzed semiconducting viscothermoelastic cylinders with laser-

induced heating, coupling thermal, elastic, and charge carrier effects. Eker and Yarımpabuç [24] examined thick-

walled cylinders with transient heating, revealing stress waves due to LS theory. 

Recent research in generalized thermoelasticity has focused on Green and Lindsay (GL) and Green and Naghdi 

(GN) models to study thermal and mechanical wave propagation in hollow cylinders and axisymmetric structures. 

Green and Lindsay (GL) [25] incorporated two relaxation times to account for thermal and mechanical wave 

propagations. Green and Naghdi (GN) models [26-28] of type I (classical thermoelasticity with Fourier heat 

conduction), type II (thermoelasticity without energy dissipation, involving hyperbolic heat conduction), and type III 

(generalized model combining features of types I and II) are all included. Allam et al. [29] studied thermal stress in a 

homogeneous isotropic cylinder with a hole using GN theory. Zenkour and Abouelregal [30] examined orthotropic 

cylinders with cavities under GN theory. Zenkour and Kutbi [31] unified multiple-phase lags, GL, LS, and classical 

models in a generalized thermoelastic diffusion framework. Othman and Abbas [32] derived GN-based equations for 

hollow cylinders (Types II and III). Bezzina and Zenkour [33] modified the GN theory for thermoelastic diffusion in 

cylinders under thermal/chemical loads. Abbas and Othman [34] extended the GN II and III theories for rotating 

cylinders. Zenkour and Kutbi [35] applied GN theory without energy dissipation to a hollow cylinder under continuous 

heat sources. 

Several studies have investigated the time-fractional wave equation and generalized thermoelasticity in cylindrical 

geometries using Caputo fractional derivatives of order 0 < 𝛼 ≤ 2. Povstenko [36] solved fractional diffusion-wave 

problems in infinite cylinders using integral transforms under Dirichlet/Neumann boundary conditions. Youssef and 

Al-Lehaibi [37] improved a fractional thermoelastic model for materials with a cylindrical cavity. Abouelregal [38] 

studied an infinite solid cylinder using fractional heat conduction with one relaxation time. Khamis et al. [39] analyzed 

thermoelastic interactions in an infinite medium with a cavity using fractional strain theory. Said et al. [40] introduced 

a multi-phase-lag fractional model for a hollow cylinder, incorporating magnetic fields and rotation. Xie and He [41] 

examined a rotating hollow conductor under thermal shock using memory-dependent derivatives and variable material 

properties. Al-Lehaibi [42] introduced a hyperbolic two-temperature model for an annular cylinder, incorporating 

fractional-order strain theory and thermal shock conditions. Othman and Atef [43] derived fractional heat conduction 

equations using Riemann-Liouville and Caputo derivatives. Warbhe and Gujarkar [44] analyzed time-fractional heat 

transfer in a hollow cylinder using the Caputo derivative. Zhu et al. [45] studied a hollow cylinder with variable 

thermal properties under fractional thermoelastic diffusion. Adel et al. [46] examined the Moore-Gibson-Thompson 

(MGT) effect on moisture diffusion in semiconductors. Sherief and Hussein [47] developed a fractional 

thermoporoelasticity theory for geomechanical applications. Zakria and Abouelregal [48] modeled viscoelastic 

materials with linear and nonlinear constitutive laws. Wang and Ma [49] investigated thermal shock response in a 

hollow cylinder using fractional viscoelasticity. Khader [50] proposed a micropolar thermoelastic model for a solid 

cylinder using Caputo derivatives. 

In this work, a refined fractional-order thermoelastic model is developed based on the Lord-Shulman theory to 

analyze a rotating hollow cylinder under plane strain conditions. The cylinder, with traction-free boundaries, is 

subjected to ramp-type thermal heating. The governing equations incorporate non-Fourier heat conduction and are 
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solved using the Laplace transform technique. The results demonstrate that the distributions of temperature, 

displacement, and stress are highly sensitive to the fractional-order and heating-rate parameters. A comparison with 

classical thermoelastic theory confirms that the proposed model provides a more accurate representation of transient 

wave propagation. This work offers critical insights for the design of structures subjected to thermal shock. 

2. Modified fractional-order thermoelasticity theory 

In this section, a concise presentation of the constitutive and field equations for a homogeneous, isotropic elastic 

body under the fractional-order generalized thermoelasticity theory (based on LS theory with fractional derivatives): 

1. Equation of motion: 

𝜕𝜎𝑟

𝜕𝑟
+

𝜎𝑟−𝜎𝜃

𝑟
+ 𝜌𝜔2𝑟 = 0, (1) 

where 𝜌 is the material density of the rotating cylinder, 𝜎𝑟 and 𝜎𝜃 are the radial and circumferential (hoop) stresses, 

𝜔 is the angular frequency, and (𝑟, 𝜃, 𝑧) are the cylindrical coordinates system. 

2. Time-fractional heat conduction equation: 

The generalized heat conduction equation with fractional derivative heat transfer stretched by the refined form of 

Lord and Shulman  [11] (F-LS (r)) theory is 

𝜅∇2𝜙 = 𝒟 [𝜌𝑐𝜗
𝜕𝜙

𝜕𝑡
+ 𝛾𝑇0

𝜕𝜀

𝜕𝑡
− 𝑄], (2) 

where 𝜅 represents the thermal conductivity, 𝑐𝜗 is the specific heat at fixed strain, 𝑄(𝑟, 𝑡) is the heat source, and 𝜀 =
∇ ∙ 𝑢⃑  is dilatation with the displacement vector 𝑢⃑ ≡ (𝑢𝑟 , 0, 𝑢𝑧). Also, 𝜙 = 𝑇 − 𝑇0 represents the temperature increment 

wherein 𝑇0 is the reference temperature, and 𝑇(𝑟, 𝑡) is the absolute temperature. For the present plane strain problem, 

the coupling parameter 𝛾 is given by 

𝛾 =
𝛼𝐸

1−2𝜈
, (3) 

where 𝐸 denotes Young’s modulus, 𝜈 is Poisson’s ratio, and 𝛼 denotes the linear parameter of thermal expansion in 

Eq. (2), ∇2 represents the Laplacian in the cylindrical coordinates, and 𝒟 is a differential parameter. They are given 

by 

∇2=
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
,     𝒟 = 1 + ∑

𝜏𝑛+𝛽

(𝑛+𝛽)!

𝜕𝑛+𝛽

𝜕𝑡𝑛+𝛽
𝑁
𝑛=1 ,     𝑁 ≥ 1, (4) 

where 𝜏 is the first relaxation time and 𝛽 is the fractional order parameter (0 < 𝛽 ≤ 1). 

The simple heat conduction equation with fractional derivative (FD (s)) heat transfer in the context of Eq. (2) can 

be reduced to (neglecting the summation) 

𝜅∇2𝜙 = (1 +
𝜏𝛽

𝛼!

𝜕𝛽

𝜕𝑡𝛽
) [𝜌𝑐𝜗

𝜕𝜙

𝜕𝑡
+ 𝛾𝑇0

𝜕𝜀

𝜕𝑡
− 𝑄],   0 < 𝛽 ≤ 1. (5) 

It is clear that the case of 𝛽 = 1 in Eq. (4) represents the simple Lord and Shulman (LS (s)) theory 

𝜅∇2𝜙 = (1 + 𝜏
𝜕

𝜕𝑡
) [𝜌𝑐𝜗

𝜕𝜙

𝜕𝑡
+ 𝛾𝑇0

𝜕𝜀

𝜕𝑡
− 𝑄], (6) 

while the case of omitting 𝛽 represents the classical thermoelasticity (CTE) theory 

𝜅∇2𝜙 = 𝜌𝑐𝜗
𝜕𝜙

𝜕𝑡
+ 𝛾𝑇0

𝜕𝜀

𝜕𝑡
− 𝑄. (7) 

Also, in the case of 𝑁 = 1, one can get the generalized heat conduction equation with fractional derivative heat 

transfer in the simplest fractional-order form of Lord and Shulman (F-LS (s)) theory as 

𝜅∇2𝜙 = (1 +
𝜏1+𝛽

(1+𝛽)!

𝜕1+𝛽

𝜕𝑡1+𝛽
) (𝜌𝑐𝜗

𝜕𝜙

𝜕𝑡
+ 𝛾𝑇0

𝜕𝜀

𝜕𝑡
− 𝑄),   0 < 𝛽 < 1. (8) 

Setting 𝛽 → 0 in the above equation, one can return to the LS (s) theory as in Eq. (6). However, by setting 𝛽 → 0 in 

Eq. (2) with the aid of Eq. (4), one can obtain the refined Lord and Shulman (LS (r)) theory in the form 

𝜅∇2𝜙 = (1 + ∑
𝜏𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
𝑁
𝑛=1 ) (𝜌𝑐𝜗

𝜕𝜙

𝜕𝑡
+ 𝛾𝑇0

𝜕𝜀

𝜕𝑡
− 𝑄),   𝑁 ≥ 1. (9) 

3. Cauchy relations 
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The relationship between the radial displacement 𝑢𝑟 and the strains in a rotating cylinder under plane strain 

conditions are purely kinematic (derived from geometry) and do not depend on material properties like thickness or 

density. For a cylindrically symmetric system, the strains in polar coordinates (𝑟, 𝜃, 𝑧) are expressed in terms of 𝑢𝑟 as 

𝜀𝑟 =
𝜕𝑢𝑟

𝜕𝑟
,     𝜀𝜃 =

𝑢𝑟

𝑟
,     𝜀𝑧 =

𝜕𝑢𝑧

𝜕𝑧
= 0, (10) 

where 𝜀𝑟, 𝜀𝜃, 𝜀𝑧 are the radial, hoop, and axial strains, respectively, and dilatation 𝜀 is given by 

𝜀 = 𝜀𝑟 + 𝜀𝜃 =
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟). (11) 

This geometric condition ensures consistent deformation, leading to the following compatibility equation that must 

be satisfied: 

𝜕

𝜕𝑟
(𝑟𝜀𝜃) − 𝜀𝑟 = 0. (12) 

For the elastic deformation, the inverse Duhamel-Neumann relations for the cylinder can be described Hooke’s 

law, 

{

𝜀𝑟

𝜀𝜃

𝜀𝑧

} =
1

𝐸
[

1 −𝜈 −𝜈
−𝜈 1 −𝜈
−𝜈 −𝜈 1

] {

𝜎𝑟

𝜎𝜃

𝜎𝑧

} − 𝛼𝜙. (13) 

For plane-strain (𝜀𝑧 = 0), we have 

𝜎𝑧 = 𝜈(𝜎𝑟 + 𝜎𝜃) + 𝛼𝐸𝜙, (14) 

and hence, substituting it into Eq. (13) for 𝜀𝑟 and 𝜀𝜃, we have 

{
𝜀𝑟

𝜀𝜃
} =

1+𝜈

𝐸
[
1 − 𝜈 −𝜈
−𝜈 1 − 𝜈

] {
𝜎𝑟

𝜎𝜃
} − (1 + 𝜈)𝛼𝜙. (15) 

Substitution of the above expressions for 𝜀𝑟 and 𝜀𝜃 into the dilatation in Eq. (11) and into the compatibility equation 

in Eq. (12), respectively, one obtains 

𝜀 =
(1+𝜈)(1−2𝜈)

𝐸
(𝜎𝑟 + 𝜎𝜃) − 2(1 + 𝜈)𝛼𝜙, (16) 

𝜎𝑟−𝜎𝜃

𝑟
+ 𝜈

𝜕𝜎𝑟

𝜕𝑟
− (1 − 𝜈)

𝜕𝜎𝜃

𝜕𝑟
+ 𝛼𝐸

𝜕𝜙

𝜕𝑟
= 0. (17) 

Setting  

𝜎𝑟 =
𝑠(𝑟,𝑡)

𝑟
, (18) 

in Eq. (1) yields 

𝜎𝜃 =
𝜕𝑠

𝜕𝑟
+ 𝜌𝜔2𝑟2. (19) 

Substituting for 𝜀, 𝜎𝑟, and 𝜎𝜃 in Eqs. (17) and (2), to get the governing equations as 

𝜕2𝑠

𝜕𝑟2 +
1

𝑟

𝜕𝑠

𝜕𝑟
−

𝑠

𝑟2 −
𝛼𝐸

1−𝜈

𝜕𝜙

𝜕𝑟
+

(3−2𝜈)𝜌𝜔2𝑟

1−𝜈
= 0. (20) 

𝜕2𝜙

𝜕𝑟2 +
1

𝑟

𝜕𝜙

𝜕𝑟
= 𝒟𝑡 [

1

𝜅
(𝜌𝑐𝜗 −

2𝛼2𝐸(1+𝜈)

1−2𝜈
𝑇0)𝜙 +

(1+𝜈)𝛼𝑇0

𝜅
(

𝜕𝑠

𝜕𝑟
+

𝑠

𝑟
)],   𝒟𝑡 = 𝒟

𝜕

𝜕𝑡
. (21) 

Also, the dilatation in Eq. (16) becomes 

𝜀 =
(1+𝜈)(1−2𝜈)

𝐸
(

𝜕𝑠

𝜕𝑟
+

𝑠

𝑟
+ 𝜌𝜔2𝑟2) − 2(1 + 𝜈)𝛼𝜙. (22) 

3. Initial and boundary conditions 

Let us consider some relations to describe the imposed initial and boundary conditions of the cylinder shown in 

Figure 1. On both inner and outer surfaces, the rotating cylinder is traction-free. 
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Fig 1: Schematic and geometry of the hollow cylinder 

That is 

𝜎𝑟(𝑟, 𝑡)|𝑟=𝑎 = 𝜎𝑟(𝑟, 𝑡)|𝑟=𝑏 = 0. (23) 

Thermal loading is applied to the outer surface of the rotating cylinder, while its inner surface remains insulated. 

Hence, the thermal boundary conditions are stated as 

𝜙(𝑟, 𝑡)|𝑟=𝑎 = 0,     𝜙(𝑟, 𝑡)|𝑟=𝑏 = 𝑔(𝑡), (24) 

where 𝑔(𝑡) is the function of thermal loading useful to the outer surface 𝑟 = 𝑏 of the cylinder. The ramp-type heating 

is utilized as 

𝑔(𝑡) = 𝜙0 {

𝑡

𝑡0
, 0 < 𝑡 < 𝑡0

1,           𝑡 ≥ 𝑡0
, (25) 

where 𝑡0 > 0 is the parameter of ramp-type heating, and 𝜙0 > 0 is a constant that signifies the thermal loading. Also, 

the inner radius of the rotating cylinder is displacement variation-free, that is 

𝜕𝑢𝑟(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑎

= 0. (26) 

Concerning the initial conditions, one can assume the following equations that describe the initial conditions 

𝜙(𝑟, 0) =
𝜕𝑛

𝜕𝑡𝑛
𝜙(𝑟, 0) = 𝑠(𝑟, 0) =

𝜕𝑛

𝜕𝑡𝑛
𝑠(𝑟, 0) = 0,   𝑛 = 1, 2, 3, … . (27) 

4. Laplace transform 

Let us apply the well-known Laplace transform given by 

ℒ{𝑓(𝑟, 𝑡)} = 𝑓̅(𝑟, 𝑝) = ∫ 𝑓(𝑟, 𝑡) e−𝑝𝑡d𝑡
∞

0
. (28) 

Then the governing equations in the Laplace domain are given by 

𝒟0𝒟1(𝑠̅) = 𝑐1𝒟0(𝜙̅) − 𝑐2𝑟, (29) 

(𝒟1𝒟0 − 𝑐3)𝜙̅ = 𝑐4𝒟1(𝑠̅), (30) 

where 𝒟0 and 𝒟1 are the two differential parameters 

𝒟0 =
d

d𝑟
,   𝒟1 =

d

d𝑟
+

1

𝑟
, (31) 

and 

𝑐1 =
𝛼𝐸

1−𝜈
,   𝑐2 =

(3−2𝜈)𝜌𝜔2

1−𝜈
,   𝑐3 =

𝜓

𝜅
(𝜌𝑐𝜗 −

2𝛼2𝐸(1+𝜈)

1−2𝜈
𝑇0),   𝑐4 =

(1+𝜈)𝛼𝜓𝑇0

𝜅
. (32) 

The parameter 𝜓 will be given according to the theory used. That is 

i) The classical thermoelasticity (CTE) theory: 
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𝜓 = 𝑝. (33) 

ii) The simple Lord and Shulman thermoelasticity (LS (s)) theory: 

𝜓 = 𝑝(1 + 𝜏 𝑝). (34) 

iii) The refined Lord and Shulman thermoelasticity (LS (r)) theory: 

𝜓 = 𝑝 (1 + ∑
𝜏𝑛

𝑛!
𝑝𝑛𝑁

𝑛=1 ). (35) 

For the present fractional order theories, if 𝛽 > 0, 𝑚 = [𝛽] + 1, and if ℎ(𝑡), ℎ′(𝑡), ℎ′′(𝑡), …, ℎ(𝑚−1)(𝑡) are 

continuous on the interval [0,∞) and of exponential order, while 𝜕𝛽/𝜕𝑡𝛽[ℎ(𝑡)] if order 𝛼 is piecewise continuous on 

the interval [0,∞), then the Laplace transform of the Caputo fractional derivative of ℎ(𝑡) is expressed as 

ℒ {
𝜕𝛽

𝜕𝑡𝛽
ℎ(𝑡)} = 𝑝𝛽ℒ{ℎ(𝑡)} − ∑ 𝑝𝛽−𝑘−1𝑚−1

𝑘=0 ℎ(𝑘)(0). (36) 

Because of the above equation and the initial conditions appearing in Eqs. (27), we get the parameter 𝜓 according 

to the fraction theory used in the following form: 

iv) The simple fractional derivative thermoelasticity (FD (s)) theory: 

𝜓 = 𝑝 (1 +
𝜏𝛽

𝛽!
𝑝𝛽). (37) 

v) The simple fractional order of Lord and Shulman thermoelasticity (F-LS (s)) theory: 

𝜓 = 𝑝 (1 +
𝜏1+𝛽

(1+𝛽)!
𝑝1+𝛽). (38) 

vi) The refined fractional order of Lord and Shulman thermoelasticity (LS (r)) theory: 

𝜓 = 𝑝 (1 + ∑
𝜏𝑛+𝛽

(𝑛+𝛽)!
𝑝𝑛+𝛽𝑁

𝑛=1 ),   𝑁 > 1. (39) 

5. Solution of the problem and inverse Laplace transform 

The solution of the physical field can be put in the Laplace domain in the following form: 

𝜙̅(𝑟) =
𝜉

𝑐1
[𝐴1𝐽0(𝜉𝑟) + 𝐴2𝑌0(𝜉𝑟)] + 𝐴41 + 𝑐5𝑟

2 + 𝑐6, (40) 

𝑠̅(𝑟) = 𝐴1𝐽1(𝜉𝑟) + 𝐴2𝑌1(𝜉𝑟) +
𝐴3

𝑟
+ 𝐴42𝑟 + 𝑐7𝑟

3
, (41) 

where 𝐴𝑗 (𝑗 = 1,2,3,4) are the integration constants, 𝐽0(𝜉𝑟), 𝐽1(𝜉𝑟) are Bessel’s functions of the first kind of orders 0 

and 1; 𝑌0(𝜉𝑟), 𝑌1(𝜉𝑟) are Bessel’s functions of the second kind of orders 0 and 1, and  

𝜉2 = −(𝑐3 + 𝑐1𝑐4),     𝐴41 = −
𝑐4

𝜉2𝑐3
𝐴4,     𝐴42 =

1

2𝜉2 (𝐴4 −
2𝑐2𝑐3

𝜉2 ), 

𝑐5 = −
𝑐2𝑐4

2𝜉2 ,     𝑐6 =
2𝑐2𝑐4(𝑐3−𝜉2)

 𝜉4𝑐3
,     𝑐7 =

𝑐2𝑐3

8𝜉2 . 

(42) 

It is interesting to get the dilatation in Eq. (22) with the aid of the above solutions in the form 

𝜀(̅𝑟) = 𝑐8[𝐴1𝐽0(𝜉𝑟) + 𝐴2𝑌0(𝜉𝑟)] + 𝑐9𝐴4 + 𝑐10𝑟
2 + 𝑐11, (43) 

where 

𝑐8 =
(1+𝜈)𝜉[𝑐1(1−2𝜈)−2𝛼𝐸]

𝑐1𝐸
,     𝑐9 =

(1+𝜈)[𝑐3(1−2𝜈)+2𝛼𝑐4𝐸]

𝜉2𝑐3𝐸
, 

𝑐10 =
(1+𝜈)[(1−2𝜈)(4𝑐4+𝜌𝜔2)−2𝛼𝑐5𝐸]

𝐸
,     𝑐11 = −

2(1+𝜈)[(1−2𝜈)𝑐2𝑐3+𝛼𝜉4𝑐6𝐸]

𝜉4𝐸
. 

(44) 

The radial and hoop stresses may be obtained in the Laplace domain in the form 
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𝜎𝑟(𝑟) =
1

𝑟
[𝐴1𝐽1(𝜉𝑟) + 𝐴2𝑌1(𝜉𝑟)] +

𝐴3

𝑟2 +
𝐴4

2 𝜉2 
+ 𝑐7𝑟

2 + 𝑐13, (45) 

𝜎𝜃(𝑟) = [𝜉𝐽0(𝜉𝑟) −
1

𝑟
𝐽1(𝜉𝑟)] 𝐴1 + [𝜉𝑌0(𝜉𝑟) −

1

𝑟
𝑌1(𝜉𝑟)] 𝐴2 −

𝐴3

𝑟2 +
𝐴4

2𝜉2 
+ 𝑐12𝑟

2 + 𝑐13, (46) 

where 

𝑐12 = 3𝑐7 + 𝜌𝜔2,     𝑐13 = −
𝑐2𝑐3

𝜉4 . (47) 

In addition, the axial stress 𝜎𝑧 can be obtained by using Eq. (14) with the aid of the temperature and the above 

stresses in the form 

𝜎𝑧(𝑟) = 𝐴̌1𝐽0(𝜉𝑟) + 𝐴̌2𝑌0(𝜉𝑟) + 𝑐14𝐴4 + 𝑐15𝑟
2 + 𝑐16, (48) 

where 

{𝐴̌1, 𝐴̌2} = 𝜉 (
𝛼𝐸

𝑐1
+ 𝜈) {𝐴1, 𝐴2},     𝑐14 =

𝜈𝑐3−𝛼𝑐4𝐸 

𝜉2𝑐3
, 

𝑐15 = 𝛼𝑐5𝐸 + 𝜈(𝑐7 + 𝑐12),     𝑐16 = 𝛼𝐸𝑐6 + 2𝜈 𝑐13. 

(49) 

Once again, one can determine the radial displacement of the rotating cylinder in the Laplace domain by using 

dilatation in Eq. (43) in the form 

𝒟1(𝑢̅𝑟) = 𝑐8[𝐴1𝐽0(𝜉𝑟) + 𝐴2𝑌0(𝜉𝑟)] + 𝑐9𝐴4 + 𝑐10𝑟
2 + 𝑐11, (50) 

and its solution yields 

𝑢̅𝑟 =
𝑐5

𝜉
[𝐴1𝐽1(𝜉𝑟) + 𝐴2𝑌1(𝜉𝑟)] +

𝑟

2
(𝑐9𝐴4 + 𝑐11) +

1

4
𝑐10𝑟

3 +
𝐴5

𝑟
, (51) 

where 𝐴5 is an additional constant. 

6. Applications 

The boundary conditions (23), (24), and (26) in the Laplace transform domain can be obtained as 

𝜙̅(𝑎, 𝑝) = 0,     𝜙̅(𝑏, 𝑝) = 𝐺̅(𝑝) =
𝜙0(1−e−𝑡0𝑝)

𝑡0𝑝
2

, 

𝜎𝑟(𝑎, 𝑝) = 𝜎𝑟(𝑏, 𝑝) = 0,     
𝜕𝑢𝑟(𝑟,𝑝)

𝜕𝑟
|
𝑟=𝑎

= 0. 

(52) 

Using the above conditions, the parameters 𝐴𝑗, 𝑗 = 1,2, . . . , 5 will be obtained from the following simultaneous 

equations 

𝐴1𝐽0(𝜉𝑎) + 𝐴2𝑌0(𝜉𝑎) − 𝑐17𝐴4 = 𝑞1, (53) 

𝐴1𝐽0(𝜉𝑏) + 𝐴2𝑌0(𝜉𝑏) − 𝑐17𝐴4 = 𝑞2, (54) 

𝐴1𝐽1(𝜉𝑎) + 𝐴2𝑌1(𝜉𝑎) + 𝑝1𝐴3 + 𝑝2𝐴4 = 𝑞3, (55) 

𝐴1𝐽1(𝜉𝑏) + 𝐴2𝑌1(𝜉𝑏) + 𝑝3𝐴3 + 𝑝4𝐴4 = 𝑞4, (56) 

[𝜉𝑎𝐽0(𝜉𝑎) − 𝐽1(𝜉𝑎)]𝐴1 + [𝜉𝑎𝑌0(𝜉𝑎) − 𝑌1(𝜉𝑎)]𝐴2 + 𝑝5𝐴4 + 𝑝6𝐴5 = 𝑞5, (57) 

where the parameter 𝑞𝑗 and 𝑝𝑗 are expressed as 

{𝑞1, 𝑞2} =
𝑐1

𝜉
({0, 𝐺̅(𝑝)} − 𝑐5{𝑎

2, 𝑏2} − 𝑐6),     {𝑝1, 𝑝3} = {
1

𝑎
,
1

𝑏
}, 

{𝑞3, 𝑞4} = −{𝑎, 𝑏}({𝑎2, 𝑏2}𝑐7 + 𝑐13),     {𝑝2, 𝑝4} =
1

2𝜉2
{𝑎, 𝑏}, 

𝑞5 = −
𝜉𝑎(3𝑐10𝑎2+2𝑐11)

4𝑐5
,     𝑝5 =

𝜉𝑎𝑐9

2𝑐5
,     𝑝6 = −

𝜉

𝑎𝑐5
,     𝑐17 =

𝑐1𝑐4

𝜉3𝑐3
. 

(58) 
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Solving the above system of simultaneous equations provides the parameters 𝐴𝑗. With the aid of these parameters, 

one can determine all field quantities of the rotating cylinder in the Laplace domain. To obtain the solutions in the 

physical realm, we should view the function 𝑓(𝑟, 𝑡) as an inversion of the Laplace transform 𝑓(̅𝑟, 𝑠) by using the 

formula 

𝑓(𝑟, 𝑡) = ℒ−1{𝑓(𝑟, 𝑠)} =
e𝜐𝑡

𝑡
{
1

2
𝑓̅(𝑟, 𝜐) + Re [∑ (−1)𝑚𝑓̅ (𝑟, 𝜐 +

𝒾𝑚𝜋

𝑡
)𝑀

𝑚=1 ]}, (59) 

where 𝒾 = √−1 and Re is the real part. The physical quantities (temperature 𝜙, displacement 𝑢𝑟, stresses 𝜎𝑟, 𝜎𝜃, 

dilatation 𝜀) are decomposed using a series expansion with a large integer 𝑀 and an arbitrary constant 𝜐. The empirical 

relation 𝜐𝑡 ≈ 4.7 [51] is used to speed up computations. 

7. Numerical outcomes and discussions 

Laplace-domain solutions are inverted back to the time domain to obtain results according to all models. Copper is 

used as the material with the following given constants: 

𝜆 = 7.76 × 1010 (kg m−1 s−2),     𝜇 = 3.86 × 1010 (kg m−1 s−2), 

𝜌 = 8954 (kg m−3),     𝑐𝜗 = 383.1 (J kg−1 K−1),     𝛼 = 1.78 × 10−5 (K−1), 

𝜅 = 386 (W m−1 K−1),     𝑇0 = 293 K. 

(60) 

Young’s modulus 𝐸 and Poisson’s ratio 𝜈 will be given by using the well-known formulae between them and Lame’s 

constants  

𝐸 =
𝜇(3𝜆+2𝜇)

𝜆+𝜇
,     𝜈 =

𝜆

2(𝜆+𝜇)
. (61) 

Some key parameters like 𝜏 = 0.05, 𝜙0 = 108, and 𝜔 = 100 are used. Results are computed for both fractional 

and non-fractional thermoelasticity theories and illustrated in Figures 2–12. 

7.1 Comparison between various theories 

Figures 2-6 show the temperature 𝜙, the radial displacement 𝑢𝑟, the dilatation 𝜀, the radial stress 𝜎𝑟, and the hoop 

stress 𝜎𝜃 along the radial direction of the rotating cylinder employing the refined fractional order of Lord and Shulman 

thermoelasticity theory (LS (r)), the simple fractional order of Lord and Shulman thermoelasticity theory (F-LS (s)), 

the simple fractional derivative thermoelasticity theory (FD (s)), the refined Lord and Shulman thermoelasticity theory 

(LS (r)), the simple Lord and Shulman thermoelasticity theory (LS (s)), and the classical thermoelasticity theory 

(CTE). Such figures compare the field variables across the radius of a cylinder (from the center, 𝑟 = 1, to the outer 

surface, 𝑟 = 1) for different thermoelastic theories and under different fractional orders. 

 

      

Fig 2: The temperature 𝝓 of the cylinder with and without fraction parameter (a) 𝜷 = 𝟎. 𝟐𝟓 (b) 𝜷 = 𝟎 

As shown in Fig. 2, the temperature distribution 𝜙 exhibits a consistent behavioral trend along the radial direction 

of the rotating cylinder, both with and without the inclusion of the fractional parameter 𝛽. Figure 2(a), with 𝛽 = 0.25, 

demonstrates that the inclusion of the fractional parameter results in a significantly higher magnitude of temperature 

𝜙 across the entire radius compared to the theories without it, as in Fig. 2(b). Furthermore, the choice of thermoelastic 
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theory has a notable impact on the temperature profile. The refined fractional Lord-Shulman (F-LS (r)) and simple 

fractional Lord-Shulman (F-LS (s)) theories predict the highest temperatures, while the simple fractional derivative 

(FD (s)) theory predicts a lower magnitude. Figure 2(b), with 𝛽 = 0, shows that for the classical and non-fractional 

Lord-Shulman theories, the temperature 𝜙 increases monotonically with the radius 𝑟. The refined theory (LS (r)) 

predicts the highest temperature, followed by the simple theory (LS (s)), with the classical theory (CTE) predicting 

the lowest values. In 0.6 ≤ 𝑟 < 0.1, the temperature 𝜙 is no longer increasing. The maximum values are achieved at 

𝑟 = 0.93 for the refined theory, at 𝑟 = 0.94 for the simple theory, and at 𝑟 = 0.975 for the classical theory. 

 

      

Fig 3: The radial displacement 𝒖𝒓 of the cylinder with and without fraction parameter (a) 𝜷 = 𝟎. 𝟐𝟓 (b) 𝜷 = 𝟎 

Based on Fig. 3, the radial displacement 𝑢𝑟 is negative and its magnitude (absolute value) increases along the radial 

direction of the rotating cylinder, indicating an inward displacement towards the center. The displacement does not 

decrease linearly. The curves are concave, showing a non-linear increase in magnitude (becoming more negative) with 

radius 𝑟. The rate of change is higher in the inner region and moderates towards the outer boundary. Comparing Fig. 

3(a) (𝛽 = 0.25) to Fig. 3(b) (𝛽 = 0) shows that the inclusion of the fractional parameter 𝛽 results in significantly 

larger magnitude displacements (more negative values). The entire displacement field in Fig. 3(a) is shifted down 

compared to Fig. 3(b). The description of the location of maximum and minimum displacement is reversed. The 

maximum (least negative) displacement occurs at the inner surface 𝑟 = 0. The minimum (most negative) 

displacement, or largest magnitude inward motion, occurs on the outer surface 𝑟 = 1. The radial displacement is very 

sensitive to the change in the thermoelasticity theories. In both plots, the three theories yield distinct results. The 

refined theories (F-LS (r) and LS (r)) consistently predict the largest magnitude displacements (most negative values), 

while the classical theory (CTE) and simple fractional derivative theory (FD (s)) predict the smallest magnitudes. 

 

      

Fig 4: The dilatation 𝜺 of the cylinder with and without fraction parameter (a) 𝜷 = 𝟎. 𝟐𝟓 (b) 𝜷 = 𝟎 

Figure 4 shows that the dilatation 𝜀 is negative and its behavior is highly sensitive to both the inclusion of the 

fractional parameter 𝛽 and the choice of thermoelastic theory. The magnitude of the (negative) dilatation is 

significantly larger in the fractional case (Fig. 4a, 𝛽 = 0.25) than in the non-fractional case (Fig. 4b, 𝛽 = 0). The 

inclusion of 𝛽 increases the volumetric compression. The dilatation 𝜀 becomes more negative (increases in magnitude) 
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with increasing radius 𝑟, reaches a minimum (point of maximum compression), and then becomes less negative 

(decreases in magnitude) as it approaches the outer boundary. For 𝛽 = 0.25 (Fig. 4a), this minimum occurs at an 

interior point for all three theories. The simple refined theory (F-LS (s, r)) has its minimum around 𝑟 ≈ 0.93, while 

the simple fractional derivative theory (FD (s)) has its minimum closest to the outer edge. The same may occur in Fig. 

4b. The three lines for each value of 𝛽 are distinct and separate across the entire domain, including the interval from 

𝑟 = 0.2 to 𝑟 = 0.6. The theories are differentiable everywhere, though the difference between them may become more 

pronounced at larger radii. 

 

      

Fig 5: The radial stress 𝝈𝒓 in the cylinder with and without fraction parameter (a) 𝜷 = 𝟎. 𝟐𝟓 (b) 𝜷 = 𝟎 

Figure 5 shows the distribution of radial stress 𝜎𝑟, which is tensile and sensitive to both the fractional parameter 𝛽 

and the thermoelastic theory used. The stress is zero at the inner and outer surfaces, rising to a maximum at an interior 

point. The inclusion of the fractional parameter 𝛽 significantly increases the magnitude of the stress. The refined 

theories (F-LS (r) and LS (r)) predict the highest stress values, although the exact location of the peak stress varies 

with the theory and the value of 𝛽. Simple and classical theories predict lower stresses and a peak location closer to 

the outer boundary. Overall, the presence of 𝛽 leads to substantially higher radial stresses. 

 

      

Fig 6: The hoop stress 𝝈𝜽 in the cylinder with and without fraction parameter (a) 𝜷 = 𝟎.𝟐𝟓 (b) 𝜷 = 𝟎 

Based on Fig. 6, the hoop stress 𝜎𝜃 is tensile (positive) and its distribution is significantly influenced by both the 

fractional parameter 𝛽 and the choice of thermoelastic theory. The inclusion of the fraction parameter causes high 

hoop stresses. The magnitude of the hoop stress is dramatically higher in the fractional case (Fig. 6a, 𝛽 = 0.25) by an 

order of magnitude compared to the non-fractional case (Fig. 6b, 𝛽 = 0). For all cases, the hoop stress increases from 

the inner edge, reaches a maximum at an interior point, and then decreases. The simple and refined theory (F-LS (s, 

r)) peaks around 𝑟 ≈ 0.91, and the simple fractional derivative theory (FD (s)) has its maximum closest to the outer 

edge. The curves of 𝜎𝜃 for each value of 𝛽 are separate and distinct across the entire domain, including the interval 

from 𝑟 = 0.2 to 𝑟 = 0.6. The difference is more pronounced at larger radii, but the theories are differentiable 

everywhere. 
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7.2 Effect of fractional parameter 𝛽 

The graphs of temperature, displacement, dilatation, and stresses are contrived in Figures 7-11 along the radial 

direction of the rotating cylinder using the refined LS theory with 𝑁 > 1. Three values of the fractional parameter 

𝛽 = 0, 0.2, and 0.5. The refined fractional order of Lord and Shulman thermoelasticity theory (LS (r)) may tend to 

the refined Lord and Shulman thermoelasticity theory (LS (r)) by setting 𝛽 = 0. The temperature 𝜙 and stresses 𝜎𝑟 

and 𝜎𝜃 increase with the increase in the fractional parameter 𝛽 as shown in Figures 7, 10, and 11. However, the radial 

displacement and dilatation decrease with the increase in the fractional parameter 𝛽, as shown in Figures 8 and 9. 

 

 

Fig 7: Effect of fractional parameter 𝜷 on the temperature 𝝓 of the cylinder due to the refined F-LS (r) theory 

Based on Fig. 7, the temperature distribution 𝜙 within the cylinder is highly sensitive to the value of the fractional 

parameter 𝛽 when using the refined F-LS (r) theory. The graph demonstrates that increasing the fractional parameter 

𝛽 causes a significant increase in the magnitude of the temperature $\phi$ across the entire radial domain. The 

temperature profile for the largest parameter (𝛽 = 0.5) is markedly higher than for the intermediate value (𝛽 = 0.2), 

which in turn is higher than the profile for the classical case (𝛽 = 0). Furthermore, the shape of the temperature curve 

remains consistent for all values of 𝛽. It increases from the center, reaches a maximum value at an interior point (𝑟 ≈
0.91), and then decreases towards the outer boundary (𝑟 = 1). The value of 𝛽 does not appear to significantly alter 

the radial location of this maximum temperature. 

 

 

Fig 8: Effect of fractional parameter 𝜷 on the radial displacement 𝒖𝒓 of the cylinder due to the refined F-LS (r) theory 

Based on Fig. 8, the radial displacement 𝑢𝑟 within the cylinder is significantly influenced by the value of the 

fractional parameter 𝛽 according to the refined F-LS (r) theory. The graph shows that increasing the fractional 

parameter 𝛽 results in a less negative (smaller in magnitude) radial displacement 𝑢𝑟 across the entire radius. The 

displacement is negative, indicating an inward motion towards the center.  

The curve for the classical case (𝛽 = 0.0) is the closest to zero, followed by the intermediate value (𝛽 = 0.2), while 

the largest parameter (𝛽 = 0.5) exhibits the most negative displacement (largest magnitude inward). The overall shape 
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of the displacement profile remains consistent for all values of 𝛽, decreasing (becoming more negative) from the 

center until reaching a minimum at the outer boundary. 

 

 

Fig 9: Effect of fractional parameter 𝜷 on the dilatation 𝜺 of the cylinder due to the refined F-LS (r) theory 

Figure 9 shows that the dilatation 𝜀 (volumetric strain) within the cylinder is significantly affected by the value of 

the fractional parameter 𝛽 according to the refined F-LS (r) theory. The graph shows that increasing the fractional 

parameter 𝛽 results in a less negative (smaller in magnitude) dilatation 𝜀 across the entire radius. The dilatation is 

negative for all cases, indicating a volumetric compression. 

The curve for the classical case (𝛽 = 0) is the closest to zero, followed by the intermediate value (𝛽 = 0.2), while 

the largest parameter (𝛽 = 0.5) exhibits the most negative dilatation (largest magnitude of compression). The overall 

shape of the dilatation profile is consistent for all values of 𝛽, decreasing (becoming more negative) from the center 

until reaching a minimum around 𝑟 ≈ 0.93, before increasing slightly towards the outer boundary. 

 

 

Fig 10: Effect of fractional parameter 𝜷 on the radial stress 𝝈𝒓 in the cylinder due to the refined F-LS (r) theory 

Based on Fig. 10, the radial stress 𝜎𝑟 within the cylinder is significantly influenced by the value of the fractional 

parameter 𝛽 according to the refined F-LS (r) theory. The graph shows that increasing the fractional parameter 𝛽 

results in an increase in the magnitude of the radial stress 𝜎𝑟 across the entire radius. The radial stress is positive 

(tensile) for all cases. 

The curve for the classical case (𝛽 = 0) has the lowest magnitude, followed by the intermediate value (𝛽 = 0.2), 

while the largest parameter (𝛽 = 0.5) exhibits the highest tensile stress. The overall shape of the stress profile is 

consistent for all values of 𝛽, increasing from zero at the center (𝑟 = 0), reaching a maximum value at 𝑟 ≈ 0.9, and 

then decreasing back to zero at the free outer boundary (𝑟 = 1), as expected. The value of 𝛽 affects the peak stress 

level but not the fundamental shape of the distribution. 
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Fig 11: Effect of fractional parameter 𝜷 on the hoop stress 𝝈𝜽 in the cylinder due to the refined F-LS (r) theory 

Based on Fig. 11, the hoop stress 𝜎𝜃 within the cylinder is significantly influenced by the value of the fractional 

parameter 𝛽 according to the refined F-LS (r) theory. The graph shows that increasing the fractional parameter 𝛽 

results in a substantial increase in the magnitude of the hoop stress 𝜎𝜃 across the entire radius. The hoop stress is 

positive (tensile) for all cases. 

The curve for the classical case (𝛽 = 0) has the lowest magnitude, followed by the intermediate value (𝛽 = 0.2), 

while the largest parameter (𝛽 = 0.5) exhibits the highest tensile stress. The overall shape of the stress profile is 

consistent for all values of 𝛽, starting from a positive value at the center, increasing to a maximum, and then 

decreasing. The value of 𝛽 significantly affects the peak stress level but not the fundamental shape of the distribution. 

7.3 Effect of ramp-type heating parameter 𝑡0 

The effect of the ramp-type heating parameter 𝑡0 is studied in one example. Figure 12 shows the radial stress 𝜎𝑟 

along the radial direction of the rotating cylinder for distinct values of the dimensionless time 𝑡 utilizing the refined 

fractional order of Lord and Shulman thermoelasticity theory (LS (r)) and the refined Lord and Shulman 

thermoelasticity theory (LS (r)). 

The radial stresses are very sensitive to the variation of the ramp-type heating parameter 𝑡0. They increase as 𝑡0 

decreases. The inclusion of the fractional parameter 𝛽 causes high stresses. 

 

      

Fig 12: Effect of ramp-type heating parameter 𝒕𝟎 on the radial stress 𝝈𝒓 of the cylinder with and without fraction parameter 

(a) 𝜷 = 𝟎. 𝟐𝟓 (b) 𝜷 = 𝟎 

Based on Fig. 12, the radial stress 𝜎𝑟 is significantly influenced by the ramp-time heating parameter 𝑡0 in both 

fractional and non-fractional thermoelasticity theories. A key general conclusion is that the fractional parameter 𝛽 

dramatically amplifies the sensitivity of the stress response to changes in the thermal loading time 𝑡0.  

In Fig. 12(a), increasing the ramp-time parameter 𝑡0 (slower heating) causes a significant decrease in the magnitude 

of the radial stress 𝜎𝑟. The stresses are notably higher for faster heating (e.g., 𝑡0 = 0.1) and lower for slower heating 
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(e.g., 𝑡0 = 0.25). The shape of the stress distribution curve remains consistent, but is scaled down in magnitude as 𝑡0 

increases. 

In Fig. 12(b), increasing the ramp-time parameter 𝑡0 also causes a decrease in the radial stress 𝜎𝑟, but the effect is 

much less pronounced compared to the fractional case. The range of stress values for different 𝑡0 is much narrower. 

The curves for different 𝑡0 values are clustered closer together. Similar to Fig. 12(a), the fundamental shape of the 

stress curve is preserved, showing that the effect of 𝑡0 is primarily on the magnitude. 

The presence of the fractional parameter 𝛽 intensifies the system's dependence on the rate of thermal loading. The 

radial stress becomes far more sensitive to changes in the ramp-time heating parameter 𝑡0 when fractional calculus is 

incorporated (𝛽 > 0) into the refined Lord-Shulman theory. This demonstrates that fractional models capture a more 

complex and rate-dependent thermoelastic response, where the history of the thermal load has a greater impact on the 

resulting stress field. In contrast, the classical non-fractional theory (𝛽 = 0) predicts a stress field that is less sensitive 

to the speed of the applied heating. 

8. Conclusions 

The provided article discusses the results of a study analyzing the thermoelastic behavior of a rotating cylinder 

using the refined Lord-Shulman (LS) theory with a fractional order parameter 𝛽 and the ramp-time heating 𝑡0. The 

effects of fractional parameter 𝛽 and thermoelasticity theories (classical, simple, refined) on temperature, 

displacement, stresses, and dilatation in a rotating cylinder. The temperature 𝜙 increased with 𝛽 but followed the same 

radial trend and some peaks at different radial positions depending on the theory discussed. The radial displacement 

𝑢𝑟 decreased linearly from inner to outer surfaces. Smaller displacements occur when 𝛽 is included with highly 

sensitive to the choice of thermoelastic theory. The dilatation 𝜀 is lower with 𝛽 inclusion and reaches minimum values 

at different radial positions according to the used theory. The radial stress 𝜎𝑟 showed the highest values in refined 

theories and peaked around 𝑟 ≈ 0.92. This stress increases with 𝛽 inclusion and vanishes at cylinder boundaries. The 

hoop stress 𝜎𝜃 decreased with 𝛽 inclusion and peaked at similar positions as temperature. The temperature 𝜙, radial 

stress 𝜎𝑟, and hoop stress 𝜎𝜃 are increased as 𝛽 increases. This suggested that fractional order effects amplify thermal 

and mechanical stresses. The radial displacement and dilatation are decreased with increasing 𝛽. This indicates that 

fractional damping reduces deformation. For 𝛽 = 0 the refined fractional LS theory reduces to the classical refined 

LS theory. Finally, the radial stress 𝜎𝑟 increased when the ramp-time heating 𝑡0 decreases (faster heating) and the 

fractional parameter 𝛽 further increases the stress magnitudes. 

The implications of the present study can be summarized. The fractional parameter 𝛽 introduces memory-

dependent effects, influencing thermoelastic responses. Smaller 𝑡0 (rapid heating) leads to higher stresses, which is 

critical in applications like thermal shock analysis. The refined fractional LS model provides a more generalized 

framework compared to the classical LS theory (when 𝛽 = 0). Also, the potential applications of the present study 

may appear in high-speed rotating systems (e.g., turbine blades, flywheels). The thermal stress management in 

functionally graded materials. Design optimization under transient heating conditions. 
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