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Abstract 

This study investigates the combined effects of the Hall current and entropy 

generation, taking into account Joule heating and viscous dissipation, on the squeezing 

flow of a viscous fluid between two parallel plates in the presence of both 

homogeneous and heterogeneous chemical reactions. The primary objective is to 

enhance understanding of heat transfer rates relevant to applications such as fuel 

cells, engine cooling systems, pharmaceutical processes, and various engineering 

industries. In the problem under consideration, the upper plate is squeezing down to 

the bottom plate, whereas the lower plate exhibits the irreversibly analysis of flow 

with homogeneous and heterogeneous chemical reactions. When the problem is 

modeled, the coupled system of partial differential equations is obtained which is 

transformed into a system of ordinary differential equations by applying the similarity 

transformation. These resulting equations are solved using the Homotopy Analysis 

Method (HAM), with appropriate initial conditions and auxiliary parameters to 

ensure rapid and reliable convergence. The accuracy of the HAM solutions is 

validated by comparison with results obtained using the numerical solver BVP4c. The 

study further analyzes effects of the Hall term, entropy generation, variable viscosity, 

and thermal conductivity on the velocity and temperature distributions in the 

presence of chemical reactions. 

Keywords: Squeezing Flow; Entropy Generation; Homogeneous–Heterogeneous Reactions; Homotopy 

Analysis Method; Variable Viscosity and Thermal Conductivity; BVP4c Method, Hall Effects; viscous 

Fluid. 

1. Introduction 

One of the most significant types of flow is the flow of a viscous substance, which is squeezing among parallel 

plates. Squeezing flow is significant in a variety of sectors, including injection, liquid-metal molding, water heating, 
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cooling, squeezed films in power transmission, lubricated bearings, and compression. Nanoliquids are colloidal 

suspensions of solid particles in traditionally used working materials that range in size from 1 to 100 nm. The most 

often utilized forms of metals include metallic oxides (TiO2, Al2O3, CuO), carbon nanotubes, nitride (SiN, SiC, 

TiC), and nanoparticles (Cu, Ag, Au, Fe). Enclosing nanoparticles within traditionally used materials improves their 

ability to conduct heat. Nanoparticles find extensive use in computer processors, air conditioners, compressors, 

combustors, heat exchangers, and hybrid powered engines, among other devices. Because of its many practical 

applications for examining the heat transmission and velocity field between the squeezing plates, researchers are 

very interested in this area. [1] Carried out the preliminary work on the squeezing flow and conducted study on the 

lubricating system. The scientist’s area of study on squeezing flow was expanded by Stefan. In the recent years a 

number of scholars have been advanced to the investigation of the squeezing flow. Using the procedure of homotopy 

analysis method (HAM), Analytical results was obtained by [2] for the quasi steady axi-symmetric newtonian fluid, 

which is squeezing among two parallel plates. A turbulent, squeezing flow involving heat and mass transfer among 

squeezing plates was examined by [3], [4] used a neural network to study the nanofluid of a constricted conduit. 

He looked at the impact of the Reynolds number, power law index, growth ratio, and nanopartical absorption on 

this problem. [5] investigated how convective circumstances and chemical reactions affect squeezing flow, coverlet 

flow has received the majority of attention. [6] Has lately looked at the effects of solvent, heat, and velocity on the 

transportation characteristics of the squeezed fluid. When the Darcy parameter increases, the profile of fluid velocity 

close to both plate’s decreases and the flow encounters greater resistance. In a theoretical analysis, [7] shown how 

the gripping flow of water establish on carbon nano-tubes could be affected by thermal radiation on a Darcy Forch-

heimer permeable size of medium. [8] Has suggested in a different study to theoretically examine the interaction 

between the Sutter by fluid's fluency in the squeezed tube, also they effect thermal radiation and chemical reactions. 

Cortell conducted a study on it lately [9]. The main purpose for the reduction in thermal boundary sheet thickness is 

nonlinear thermal radiation, which also increases the Prandtl number Pr, and affects how heat is transmitted across 

an expanded sheet. [10] Has recently investigated Jeffrey nanofluid's nonlinear thermal effects on three-dimensional 

flow. The increment functions of temperature parametric radiation and absorption of nanoparticles were also 

attained. In his research [11] investigated the flow of a nano-fluid of a second-grade on a boundary sheet that was 

three-dimensional, as well as its transformation into a nanoparticle-operating fluid and the response of solar 

radiations to it.  

The effect of a uniform transverse magnetic field on the flow of an incompressible, viscous electrically 

conducting fluid between two infinitely parallel, motionless, and insulating plates was investigated by [12]. It was 

possible to expand the challenge in several ways. A variety of physical effects were used to derive closed-form 

solutions for the velocity fields [13, 14]. You may find numerical and precise solutions to the heat transport issue in 

references [15, 16]. Since the Hall term has little and moderate impact on tiny and moderate magnetic field values, it 

was disregarded while using Ohm's law in the aforementioned circumstances. But nowadays magneto 

hydrodynamics is used more and more in situations where a high magnetic field is present, where the effect of 

electromagnetic force is more apparent [17]. In these cases, the Hall current is crucial because it significantly affects 

the direction and amplitude of the current density, and hence the magnetic force. A steady-state flow of electrically 

conducting and viscous fluids via tubes was investigated by [18] in relation to the Hall effect. Hall currents were 

investigated by [19, 20] in relation to the steady-state MHD Couette flow including heat transfer. It was thought that 

the two plates' temperatures would either remain constant or change linearly with the flow direction. Hall currents 

were investigated by [21] in relation to a uniformly suctioned and injected constant Hartmann flow at the boundary 

plates. Expanding the problem to the unsteady state with heat transfer was done by [22]. 

Accordingly, this research aims to examine the consequences of homogeneous and heterogeneous chemical 

reactions on squeezing flows between parallel plates under the influence of Hall current and viscous dissipation. 

Using similarity transformations, the proposed model has been converted into a non-similar coupled partial 

differential equation. The governing equations have been solved numerically through the application of Homotopy 

analysis and BVP4C techniques. Finally, the results of this study have been graphically discussed for a variety of 

configurations of the parameters that are already known. 

 

2.  Mathematical Formulation of the Problem 

Here we take a laminar, axi-symmetric, incompressible, and viscous fluid flow in the middle of two parallel, 

horizontally squeezing plates considering with the Hall current in Fig 1. We separate the two plates from each other 

by a distance of ( ) 1h t t= −  Here, the length of separation is l, which shows the separation of plates at 

  0t = , as shown in figure (1). Squeezing both plates till   0  until they touch each other at   1/  t = , both 
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plates are separated for   0  . A uniform magnetic field, ( )
*

* 0  
1

B
B t

t
=

−
is also applied in the y - 

direction on the velocity profile. The constant temperatures of both upper and lower plates are assumed to be i and 

j  respectively. Heat transfer is studied in the context of thermal radiation. The model was analyzed by [23] for both 

homogeneous and heterogeneous chemical reactions. 

The homogeneous cubic autocatalysis reaction takes the following form: 

 

1 2 22 3 +                                                                                                                                                      (1) 

 

And the concentration rate is ( )
2

* *cK a b whereas heterogeneous reaction on the catalyst surface, is expressed 

by 

 

1 2  ,                                                                                                                                                          (2) 

                                                                                                                                                                                                                                                                                                               

*a  and *b , respectively, represent the concentration of the chemical species 1  and 2  while *ck  represents 

the rate constants. As seen by the following equations, the reaction rate in external flow disappears behind the 

boundary layer edge. 

 

                                     
                                                                          

                                                                  Fig 1:  Problem Geometry 

 

In the Cartesian coordinate system ( ),  ,x y  we derive the equations governing the conservation of mass, 

momentum, and thermal energy, as well as those pertaining to homogeneous and heterogeneous chemical processes 

[24-27]. 

Mass conservation equation is expressed as, 

 

    0,
x y

 
+ =

 
                                                                                                                                                 (3) 

 

Conservation equation of momentum is expressed as,  

    

 

22 2

0

2 2 2

1
( ),

1

Bp
m

t x y x x y m


 

 

        
+ + = − + + −  − 

      + 
                                              (4) 

 

 

22 2

0

2 2 2

1
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1

Bp
m

t x y y x y m

     
 

 

      
+ + = − + + −  + 

      + 
                                                  (5) 
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Energy equation for Joule heating and viscous dissipation is as follows: 

 

2 22* 2 2
2 2

2 2

2 2

0

2

2
( )

2
( ),

3 1

p pt x y C x y C x y x y

B

x y m

      
 

 



               
+ + = − + +  + + + + +      

                

  
− + −  

  + 

                                                                                                                                                                                                                            

                                                                                                                                                                                (6) 

Similarly equations for homogeneous and heterogeneous reactions are given by, 

 

 

* * * 2 *
* * * 2

2
( )c

a a a a
D K a b

t x y y
 

   
+ + = −

   
,                                                                                          (7) 

 

  

* * * 2 *
* * * 2

2
( )B c

b b b b
D K a b

t x y y


   
+ + = +

   
.                                                                                          (8) 

 

For following equations we used ,  which represents the recursive elements of the horizontal and vertical 

velocity, where p is the pressure of fluid and   is the temperature distribution, the homogeneous and heterogeneous 

response variables are *a  and *b . The fluid density is expressed in terms of  . The fluid heat capacity is pC , 

and its electrical conductivity is  . The chemical species associated with *B  and   diffusion coefficients are 

displayed by the variables D  and *BD ,respectively. Thermal conductivity is expressed by   and permeability 

by K*. Assuming that the Hall parameter, denoted by m,  is 0m B= . 

 

3. Similarity Transformation Approach For Boundary Conditions 

The following criteria were established for the problem's boundaries: 

 

          

* *
* * *

2 20, 0, , ,l B

a b
D a D a

y y
   

 
 = = = =  = −

 
,                          at   y=0.                                  (9) 

 

        
* * *

00, , , , 0.
2 1

D
a a b

t



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
 = = = = =

−
                                           at     y=h (t).                         (10)                                                              

 

By applying the following similarity transformations approach, an ordinary differential equation system was 

derived from a system of partial differential equations [28]. 

 

'( ) ( )
, , ( ) , .

2(1 ) 2 1 1
j

x l y

t t l t

 
   

  

  −  
 = = =   =

− − −
                                                                         (11)                                                                                                                                                                                     

And 

 
*

* * * * 0
0 0( ), ( ), ( ) , .

1

i

j i

B
a a b a B t

t

 


 

−
=   =  = =

−−
Ģ                                                                (12) 

 

The form of the homogeneous, heterogeneous, momentum, and energy equations as follows, where the continuity 

equation (3) is identically satisfied. 
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( ) * 2

2 2

1
'''' '' ' 2 '' ''' ''' ( ) '' ' 0.

1 1
r e

m
S a L R

m m


 
 −   +  − +  −  +  = 

+ + 
                              (13)                                          

 

2 2 2 2

2 1 1 22
'' ' ' 2 ' '' ( ' ) 0.

1
r r

M
P S NE N E G G

m
   

 
−  − −  −  −  +  = 

+ 
                                       (14) 

 

( )* 2

1'' 2 ' ' 0.r cS S   −  − +  =Ģ                                                                                                             (15) 

 

( )* 2

1'' ' ' 0r cS S −  − − =Ģ Ģ Ģ Ģ .                                                                                                         (16) 

 

On the same way, the transformation of the boundary conditions change to 

 

2 2(0) 0, '(0) 0, (0) 1, '(0) (0), '(0) (0)     =  = = =  = −Ģ ,                                                        (17) 

 

(1) 0.5, '(1) 0, (1) 0, (1) 1, (1) 0.  =  = = = =Ģ                                                                                       (18) 

 

In this problem, the squeezed Reynolds number is 
2 / 2rS l = ,  0*    a lB





= , is the Hartman 

number, /r pP C = ,is the Prandtl parameter, 
*  /cS v D=  is the  Schmidt parameter, the homogeneous 

reaction strength is ( )
2

1 0 (2 * 1( )) /cГ K a t = − , and the heterogeneous reaction strength is 
2 /cГ K D= , 

Reynolds number is 
1(1 )1

e

t
R

x

 



−
= , the Grashof number is 

2

1
1 22 (1 )l

x
G

b t



  
=

−
,whereas 

1
2

2 (1 )l

G
t



 
=

−
the Brinkman number, 

1l

b





= , is the couple stress parameter. The effects of couple-

stress are significant for large values of 
l

b
 = , where 

1l



= , is the material constant. 

0(1 ) /  L t B = −  is 

the convection or buoyancy parameter, 

2 2

1 2(1 )l

x
E

t



 
=

−
is the local Eckret number, 

2

2  
(1 )l

E
t



 
=

−
  is the 

Eckert number, ( )
2

0M B=  is the magnetic parameter, / pN C =  is a porosity number, 
21/ l =  is a 

small parameter,  / *BD D = is represent the diffusion coefficient ratio. Here, we assume that Ω and B* is the 

coefficients of diffusion for chemical species of identical sizes. The alternative theory states that DΩ and DB*are 

comparable, hence   𝛽 = DΩ /DB*=1, also .( ) ( ) 1 +  =Ģ [29] 

 

 

3.1 Important Constants 

 

In engineering, the Sherwood number ( .rS h ), the coefficient of skin friction ( C ), and the local Nusselt parameter 

( N ) are a few of the coefficients of importance. Which are define as below, 

( ) ( ) ( ) ( ) ( )*  / '' 0 ' 0 ,  ' 0 ' ., 0r rC S h N S h   = =  − = − = − =Ģ  
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4. Analysis of control convergence parameters 

It is significant to notice that the non-zero auxiliary parameters ,  , ,  ,  and Ģ  in the series solutions, 

where the homotopy series solutions converge and how quickly they do it. The "Method of average residual error" 

present by [19]was applied to determine the ideal values for ,  , ,  ,  and Ģ . 
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0 0 0
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( ), ( )

1 j i i
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 

 
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  Ø Ø Ø ,                                                                                    (19) 
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= = = =

  
 =  

+    
  Ø Ø Ø ,                                                                           (20) 

 

2
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1
( ), ( ), ( )

1
u

j i i i n j D n

N d
  



  
= = = = =

  
 =  

+    
   Ø Ø Ø ØĢ ,                                                              (21)       

2

0 0 0 0

1
( ), ( ), ( )

1
u

j i i i n j D n

N d
  

 
= = = = =

  
 =  

+    
   Ø Ø Ø ØĢ Ģ Ģ ,                                                              (22) 

 

In light of [30] 

 
t  

        = + + + Ģ
                                                                                                                          (23) 

 
t

  is the representation of the entire squared residual error in this case. The overall method of average 

residual error is decreased using the Mathematica software ({BVPh 2.0}, 2014). 
 

5. Discussion on Error Analysis 

To make sure the analysis is reliable for lowest residual errors, an error analysis is performed. (HAM) and 

(BVP4C), respectively provide analytical and numerical solutions for the problem. 40 th order of approximation is 

used for analysis. Additionally, utilizing the Mathematica package BVPh 2.0 for minimum residual error up to 10 -40, 

this study is assumed to be advance the dependability of (HAM) approaches. 

Matlab is used to match the outcomes with the numerical solutions of (BVP4C), in order to verify the authenticity 

and accuracy of the HAM solution. The accuracy of both approaches for the many physical characteristics involved 

was examined using the error analysis, displayed in Figures (2) and Tables (1–17). The residual error for 

),( ) ( ( ),      and  (  )Ģ  is shown at different approximation orders in Figure 2. Continuous reduction of 

the error is observed up to the 20th order of approximation, as the sub-figures make evident, for each of the 

following specified values;  G1=0.1, G2=0.1, Re=0.2, m=0.1, L=0.2, δ=0.1, β=0.5, S*c=0.1, Г1=0.1, Pr=0.3, Sr=0.1, 

Г2=0.2, N=0.3, E1=0.1, E2=0.2, M=0.1 and φ a*=0.3. Cumulative residual error for each approximation order has 

been shown in Table 1 for specified values. Table 2 displays distinct average squared residual errors at 

different approximation orders for ( ) ( ) ( ) ( )'' ,  ' ,  ' ,   'and   −  −  Ģ , with fixed values of 

1 2 1 20.1,  0.1,  0.2,  0.1,  0.2, 0.1, 0.5,  * 0.5, 0.1,  0.5,  0.3, 0.5 e c r rG G R m L S Г P S Г = = = = = = = = = = = =  

and 
1 20.3,  0.1,  0.2,  0.3, * 0.2. N E E M a= = = = = The numerical and analytical values produced by 

HAM and BVP4c for a variety of ϒ values are constructed with fixed values of other parameters in Table 3, 
such as  G1=0.1, G2=0.1, Re =0.2, m=0.1, L=0.2, δ=0.1, β=0.5, S*c=0.5, Г1=0.1, Pr=0.5, Sr=0.3, Г2=0.5 and N=0.3, 

E1=0.1, E2=0.2, M=0.3, φ a*=0.2. It demonstrates how well they great agreement with one another. 
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Figure 2: Individual error profiles of ),( ) ( ( ),      and  (  )Ģ by keeping fixed values of G1=0.1, G2=0.1, 

Re=0.2, m=0.1, L=0.2, δ=0.1, β=0.5, S*c=0.1, Г1=0.1, Pr=0.3, Sr=0.1, Г2=0.2 and N=0.3, E1=0.1, E2=0.2, M=0.1, 

φa*=0.3 

 

Table 1: Total residual error of ),( ) ( ( ),      and  (  )Ģ by keeping fixed values of G1=0.1, G2=0.1, 
Re=0.2, m=0.1, L=0.2, δ=0.1, β=0.5, S*c=0.1, Г1=0.1, Pr=0.3, Sr=0.1, Г2=0.2, N=0.3, E1=0.1, E2=0.2, M=0.1, φ 
a*=0.3. 

m                       


 


                     


  
Ģ

 

1 0000023728 2.34335*10 -9 3.38481*10 -8 1.97637*10 -9 

5 3.94767*10 -25 7.31509*10 -29 7.00841*10 -24 4.07878*10 -25 

10 

15 

20 

25 

30 

1.45357*10 -32 

1.55225*10 -32 

1.50295*10 -32 

1.50295*10 -32 

1.50295*10 -32 

2.32842*10 -35 

2.518*10 -35 

2.36453*10 -35 

2.36453*10 -35 

2.36453*10 -35 

2.18924*10 -35 

1.92443*10 -35 

1.92443*10 -35 

1.92443*10 -35 

1.92443*10 -35 

2.5116*10 -37 

2.5116*10 -37 

2.5116*10 -37 

2.5116*10 -37 

2.5116*10 -37 
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35 

40 

1.50295*10 -32 

1.50295*10 -32 

2.36453*10 -35 

2.36453*10 -35 

1.92443*10 -35 

1.92443*10 -35 

2.5116*10 -37 

2.5116*10 -37 

Table 2: The Homotopy approach of convergence for various computational orders for 

( ) ( ) ( ) ( )'' ,  ' ,  ' ,   'and   −  −  Ģ , where keeping other parameters constant i.e. G1=0.1, G2=0.1, 

Re=0.2, m=0.1, L=0.2, δ=0.1, β=0.5, S*c=0.5, Г1=0.1, Pr=0.5, Sr=0.3, Г2=0.5, N=0.5, E1=0.1, E2=0.2, M=0.3, φ 

a*=0.2. 
 HAM 

results 
   Numerical        

results 

                                      

ϒ                       Φ''(0) -𝜗'(0)                    -φ'(0), -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0), -
Ģ '(0) 

0  
0.1001 

3.0048 

2.3862  

1.0198   

1.0203   

-0.1839 

-0.1880 

1.8394  

1.8457 

3.0048 

2.3862 

1.0198 

1.0203     

-0.1839  

-0.1880 

1.8394  

1.8457 

0.2002 

0.3003 

1.7822   

1.1889 

1.0197  

1.0177  

-0.1921  

-0.1960   

1.8557 

1.8683 

1.7822  

1.1889                         

1.0197   

1.0177 

-0.1921   

-0.1960    

1.8557 

1.8683 

0.4004 

0.5005 

0.6006 

0.7007 

0.8008 

0.9009 

1 

0.6016 

0.0153 

-0.5753 

-1.1757 

-1.7910 

-2.4263 

-3.0796 

1.0136 

1.0073 

0.9988 

0.9886 

0.9774 

0.9666 

0.9583 

-0.1998 

-0.2032 

-0.2063 

-0.2092 

-0.2118 

-0.2145 

-0.2175 

1.8825 

1.8980 

1.9146 

1.9325 

1.9523 

1.9750 

2.0019 

0.6016 

0.0153 

-0.5753 

-1.1757 

-1.7910 

-2.4263 

-3.0796 

1.0136 

1.0073 

0.9988 

0.9886 

0.9774 

0.9666 

0.9583 

-0.1998 

-0.2032 

-0.2063 

-0.2092 

-0.2118 

-0.2145 

-0.2175 

1.8825 

1.8980 

1.9146 

1.9325 

1.9523 

1.9750 

2.0019 

 

Table 3: Computations for ),( ) ( ( ),      and  (  )Ģ when G1=0.1, G2=0.1, Re=0.2, m=0.1, L=0.2, δ=0.1, 

β=0.5, S*c=0.5, Г1=0.1, Pr=0.5, Sr=0.5, Г2=0.5, N=0.5, E1=0.1, E2=0.2, M=0.3, φ a*=0.2. and different values of ϒ. 
 HAM 

results 
   Numerical        

results 

                                      

ϒ                       Φ(ϒ) 𝜗(ϒ)                    φ(ϒ) Ģ  (ϒ) Φ(ϒ) 𝜗(ϒ)                    φ(ϒ) Ģ  (ϒ) 

0  
0.1001 

0 

0.0140  

1.000   

0.8979 

0.3679 

0.4066 

1.9042 

1.7198 

0 

0.0140  

1.000   

0.8979 

0.3679 

0.4066 

1.9042 

1.7198 

0.2002 

0.3003 

0.0520 

0.1078 

0.7958 

0.6938 

0.4494 

0.4967 

1.5346 

1.3482 

0.0520 

0.1078 

0.7958 

0.6938 

0.4494 

0.4967 

1.5346 

1.3482 

0.4004 

0.5005 

0.6006 

0.7007 

0.8008 

0.9009 

1 

0.1755 

0.2492 

0.3231 

0.3913 

0.4476 

0.4860 

05000 

0.5921 

0.4909 

0.3905 

0.2910 

0.1926 

0.0954 

0 

0.5490 

0.6068 

0.6707 

0.7413 

0.8194 

0.9057 

1.000 

1.1605 

0.9713 

0.7805 

0.5880 

0.3935 

0.1970 

0 

0.1755 

0.2492 

0.3231 

0.3913 

0.4476 

0.4860 

05000 

0.5921 

0.4909 

0.3905 

0.2910 

0.1926 

0.0954 

0 

0.5490 

0.6068 

0.6707 

0.7413 

0.8194 

0.9057 

1.000 

1.1605 

0.9713 

0.7805 

0.5880 

0.3935 

0.1970 

0 

 

6. Study of Results and Discussions on Graphs 

We find and tabulate numerical solutions for the current flow problem over several fields with various 
dimensional parameters. The following section discusses observations made using plotted graphs of these 
data. The squeeze Reynolds number Sr, is the relationship among normal velocity of the upper plate and the 
kinematic viscosity of the fluid. It is essential to remember that large or small values of Sr, means that the 
slow or quick vertical velocity of an upper plate towards the lower plate. Positive values of Sr also indicates 
that the upper plate is moving towards the lower plate or a decrease in the distance among plates, whereas 
negative values of Sr indicates that the upper plate is moving away from the lower plate or a decreases in the 
distance among plates. The Figure 3 show the variation of Sr for velocity, which shows that by increasing 
squeezing number also cause of increasing  of velocity profile. The squeezing velocity distribution Φ(ϒ) is 



810 Naseer Khan et al. 

observed for all potentially possible values of the Hartman number φa* in Figure 3. The resistive force acting 
between the particles is caused to act by the magnetic field, which outcomes in the reduced velocity. Including  
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                                               Figure 3:  Variation of various parameters on velocity profile. 
the Hall parameter results in a reduction in the amount of resistive force that is imposed by the magnetic field.  due 
to its effect in reducing the effective conductivity. Hence, the velocity profile increases as the Hall parameter 
increases can be seen in figure 3. Increases in φa* therefore decrease velocity. The Reynolds number and 
Buoyancy number in figures 3 shows the same behavior for velocity profile like Hartman number. By 
increasing Re and L causing of decreasing velocity profile.  It is clear from fig. 4 that the squeezing of plates 
produced fluid friction, which causes of heat and this heat increases the temperature of fluid. Thus by 
increasing the squeezing parameter the temperature also increases. In the same way, Figures 4 show how the 
Prandtl number Pr affects temperature distribution profiles. Temperature profile is rises with increasing Pr as 
can be seen in Figure 4. Furthermore, it should be observed that decreasing values of Pr are linked to liquid 
materials that have small viscosity and high thermal conductivity, whereas increasing values of Pr are related 
with materials that have high viscosity, such as oils, and so on. Nevertheless, the flow region's dissipation 
effects are mostly to blame for the temperature profile increase. Moreover, heat dispersion occurs as a result 
of increased thermophoresis forces and as a conclusion, they cause of temperature rises. Additionally, the 
thickness of the thermal boundary layer decreases with the magnification values of Pr . Since by increases of 
prandtl number values causes of reduce the thickness of thermal boundary layer. Here by increases of 
porosity parameter the yield strength and compressive strength of the material will be increases.  
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                                   Figure 4: Variation of various parameters on Temperature distribution. 
Figure 4 shows that the porosity parameter increasing with the increasing of the temperature distribution. As 
Eckret number shows the relationship of flow between kinetic energy and the boundary layer enthalpy 
difference and is expand to express heat dissipation. Figures 4 shows Eckret numbers E1 and E2 affect 
temperature profiles in the flow zone. Figures 4 illustrate that when E1 and E2 are magnified, the 
concentration profile falls and the thermal profile rises. Frictional and viscous dissipation effects are the 
cause of this. Figure 4 shows the effect of the temperature profile, with the increase of small parameter δ 
increase with the temperature profile. The impact of the magnetic field parameter M on the temperature 
distribution profile inside the boundary layer is described in Figure 4. It is noticed that raising the magnetic 
field parameter M reduces velocity and raises temperature. In general, introducing a transverse magnetic 
field normal to the flow direction produces a flow-resistive force in the x direction. The fluid's upward travel 
along the plate is slowed down by this force in general. As a conclusion raises the temperature in the 
boundary layer. Consequently, the existence of a magnetic parameter produces a decrease in the rate of heat 
transmission at the surface. conversely, rising Grashof number  G1 and Brainkman number G2 are affects 
temperature distribution shown in figures 4. The temperature drops as a result of the heat produced by this 
resistive force. Thus by increasing Grashof number and Brainkman number, the temperature distribution are 
decreasing. 
Figure 4 shows that there is an increasing effect on temperature distribution as Hall parameter m increases. 
As we raise the rate of diffusion coefficient values, the Homogeneous reaction becomes slow due to  decrease 
in the kinetic energy of particles. If the ambient temperature is lower, diffusion will occur more slowly. 
Decrease in temperature means that the decrease in molecules speed i.e (kinetic energy). As a result, the 
molecules move slower and the substance spreads less spontaneously, implying that diffusion happens at a 
slower rate. His effect can be seen in Figure 5.  The variation of Sr is sketched in Figure 5. Here for larger Sr the 
homogeneous behavior increases. Behavior of Г2 on Homogeneous behavior is illustrated in Figure 5. Here 
Homogeneous behavior decreases for higher values of Г2. The variation of S*c is sketched in Figure 5. Here for 
larger S*c the homogeneous behavior increases. Figure 5 indicated an increase in the concentration 
distribution. The reason for the enhancement in concentration distribution is the decrease in the diffusion 
coefficient and the presence of fewer dispersed particles. It can be shown that schmidt number S*c increases 
the fluid's concentration diffusivity in Figure 5. It is because concentration decays due to greater diffusivity 
produced by increasing S*c. Due to the existence of a stronger homogeneous reaction, there is a reduction in 
the kinematic viscosity of the fluid, which leads to reduce the concentration profile. It is noticed that the 
concentration distribution is improved by the homogeneous chemical reaction parameter. 
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                         Figure 5:    Variation of various parameters on Homogeneous chemical reaction. 
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Figure 5 shows that by increasing Г1 the homogeneous behavior increases. However the inverse variation can 
be seen in Figure 5 for parameter 𝛽. The heterogeneous behavior for Sr has been shown in Figure 6, which has 
an increasing effect on concentration. It is possible to properly manage the heat transmission from the 
surfaces of both plates by using temperature boundary conditions. The variation of S*c is sketched in Figure 6. 
Here for larger S*c the heterogeneous behavior increases. As for the equations to describe a heterogeneous 
reaction  strength Г2 in Figures 6 and a homogeneous reaction strength Г1 in Figure 6 can be seen, 

respectively, illustrate the influence on the concentration profiles ( )  , ( )   and ( )   Ģ . It is noticed 

that a rise in Г1 is responsible for the concentration profiles ( )  , ( )   and ( )   Ģ . This indicates a 

decrease in viscosity due to raise in the homogeneous chemical reaction parameter. The concentration for 𝛽 

will drop primly then shows the increasing behavior shown in Figure 6. 3D variation of ),( ) ( ( ),      

and ( )   Ģ  by keeping  various parameters  constants are shown in Figures 7. 
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Figure 6:  Variation of various parameters on Heterogeneous chemical reaction. 
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Figure 7: 3D variation of ),( ) ( ( ),      and ( )   Ģ . 

 

7. Discussion on Numerical Results 

Tables (4–17) are designed to investigate the effects of different specific parameters numerically. The 
provided tables show that there is great agreement between all consequences and the results obtained using 
BVP4c and HAM. The effects of temperature, velocity and both homogeneous and heterogeneous 
characteristics are observed to have a propensity to raise the rate of mass transfer. Although, it does not 
show a significant shift in the rate of heat transfer and friction factor. Increased internal heat production 
reduces both the heat transfer rate and the skin friction coefficient. The raise in the squeeze parameter Sr has 
yielded comparable results for us. Reduces the friction factor by raising the squeezing number Sr whereas 
raising the Sherwood and Nusselt numbers locally. In this instance, the coefficient of skin friction display a 
negative direction, indicating that the fluid is being pulled by the surface. The effects of the following 

parameters are displayed in Tables (4–17): ( ) ( ) ( ) ( )'' ,  ' ,  ' ,   'and   −  −  Ģ  each. It can be 

seen that, for growing parameters  Sr  and P*r, the magnitude of the momentum transfer coefficient increases 
in tables (4-5), whereas for rising values of N, it reduce in table (6). 

Tables (7) show a result that by increasing parameter 𝛽 the -Ģ '(0) decreasing. As the values of the 

parameters E1 and E2 raises, shows that the effect on temperature distribution is to decreases shown in tables 
(8-9). Since the Eckret number typically serves to quantify the effect of Joule heating, table (8-9) are 
constructed to display the temperature distributions for constructed Eckret number values. It has been noted 

that when the Eckert number increases, the thickness of the thermal boundary layer reduces. 
 
Table 4: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when G1=0.1, G2=0.1, Re=0.2, m=0.1, 
L=0.2, δ=0.1, β=0.5, S*c=0.5, Г1=0.1,  Sr=0.3, Г2=0.5, N=0.5, E1=0.1, E2=0.2, M=0.3, φ a*=0.2. by different values 
of Pr. 

 HAM 
results 

   Numerical        
results 

                                      

Pr                       Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ(0) 

0.5  
0.7 

3.0048 

3.0048  

1.0198 

1.0278 

-0.1839 

-0.1839 

1.8394  

1.8394  

3.0048 

3.0048  

1.0198 

1.0278 

-0.1839 

-0.1839 

1.8394  

1.8394  

0.9 

1.1 

3.0048 

3.0048 

1.0357 

1.0436 

-0.1839 

-0.1839 

1.8394  

1.8394  

3.0048 

3.0048 

1.0357 

1.0436 

-0.1839 

-0.1839 

1.8394  

1.8394  
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Table 5: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when G1=0.1, G2=0.1, Re=0.2, m=0.1, 
L=0.2, δ=0.1, β=0.5, S*c=0.5, Г1=0.1, Pr =0.5, Г2=0.5, N=0.5, E1=0.1, E2=0.2, M=0.3, φ a*=0.2. by different values 
of Sr 

 HAM 
results 

   Numerical        
results 

                                      

Sr                       Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ(0) 

0.1 

0.2 

0.3 

0.4  

3.0017 

3.0032 

3.0048 

3.0065 

1.0066 

1.0132 

1.0198 

1.0264 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394  

1.8394 

1.8394  

1.8394  

  

3.0017 

3.0032 

3.0048 

3.0065 

1.0066 

1.0132 

1.0198 

1.0264 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394  

1.8394 

1.8394  

1.8394  

         

 
Table 6: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when G1=0.1, G2=0.1, Re=0.2, m=0.1, 
L=0.2, δ=0.1, β=0.5, S*c=0.5, Г1=0.1, Pr =0.5, Sr=0.3, Г2=0.5,  E1=0.1, E2=0.2, M=0.3, φ a*=0.2. by different 
values of N. 

 HAM 
results 

   Numerical        
results 

                                      

N                     Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ(0) 

0.5 

1 

1.5 

2  

3.0048 

3.0048 

3.0048 

3.0048 

1.0198 

1.0143 

1.0087 

1.0031 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394  

1.8394 

1.8394  

1.8394  

  

3.0048 

3.0048 

3.0048 

3.0048 

1.0198 

1.0143 

1.0087 

1.0031 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394  

1.8394 

1.8394  

1.8394  

         

 
 
 
 
 
 
 
 
 
Table 7: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when G1=0.1, G2=0.1, Re=0.2, m=0.1, 
L=0.2, δ=0.1, S*c=0.5, Г1=0.1, Pr =0.5, Sr=0.3, Г2=0.5,  E1=0.1, E2=0.2, M=0.3, φ a*=0.2, N=0.5,. by different 
values of β. 

 HAM 
results 

   Numerical        
results 

                                      

β                     Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ(0) 

0.1 

0.2 

0.3 

0.4  

3.0065 

3.0065 

3.0065 

3.0065 

1.0159 

1.0159 

1.0159 

1.0159 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394  

0.9197 

0.6131 

0.4598  

3.0065 

3.0065 

3.0065 

3.0065 

1.0159 

1.0159 

1.0159 

1.0159 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394  

0.9197 

0.6131 

0.4598  

         

 
 

 

Table 8: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when G1=0.1, G2=0.1, Re=0.2, m=0.1, 
L=0.2, δ=0.1, S*c=0.5, Г1=0.1, Pr =0.5, Sr=0.3, Г2=0.5,  β=0.1, E2=0.2, M=0.3, φ a*=0.2, N=0.5,. by different 
values of E1. 

  HAM 
results 

   Numerical        
results 
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E1                    Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ(0) 

0.1 

0.3 

0.5 

0.7  

3.0065 

3.0065 

3.0065 

3.0065 

1.0159 

1.0141 

1.0123 

1.0105 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394  

1.8394 

1.8394 

1.8394 

3.0065 

3.0065 

3.0065 

3.0065 

1.0159 

1.0141 

1.0123 

1.0105 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394  

1.8394 

1.8394 

1.8394 

         

 
Table 9: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when G1=0.1, G2=0.1, Re=0.2, m=0.1, 
L=0.2, δ=0.1, S*c=0.5, Г1=0.1, Pr =0.5, Sr=0.3, Г2=0.5,  β=0.1, E1=0.1, M=0.3, φ a*=0.2, N=0.5,. by different 
values of E2. 

 HAM 
results 

   Numerical        
results 

                                      

E2                    Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ(0) 

0.1 

0.3 

0.5 

0.7  

3.0065 

3.0065 

3.0065 

3.0065 

1.0177 

1.0141 

1.0105 

1.0069 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394  

1.8394 

1.8394 

1.8394 

3.0065 

3.0065 

3.0065 

3.0065 

1.0177 

1.0141 

1.0105 

1.0069 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394  

1.8394 

1.8394 

1.8394 

         

 
Table 10: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when G1=0.1, G2=0.1, Re=0.2, m=0.1, 
L=0.2, δ=0.1, E2=0.2, Г1=0.1, Pr =0.5, Sr=0.3, Г2=0.5,  β=0.1, E1=0.1, M=0.3, φ a*=0.2, N=0.5,. by different values 
of S*c. 

 HAM 
results 

   Numerical        
results 

                                      

S*c                  Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ(0) 

0.1 

1 

2 

4  

3.0065 

28917 

28917 

28917 

1.0159 

0.6441 

0.6441 

0.6441 

-0.1839 

-0.0368 

-0.0368 

-0.0368 

 

1.8394 

0.1226 

0.1226 

0.1226 

 

3.0065 

28917 

28917 

28917 

1.0159 

0.6441 

0.6441 

0.6441 

-0.1839 

-0.0368 

-0.0368 

-0.0368 

 

1.8394 

0.1226 

0.1226 

0.1226 

 
         

Table 11: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when G1=0.1, G2=0.1,, m=0.1, L=0.2, 
S*c=0.5, δ=0.1, E2=0.2, Г1=0.1, Pr =0.5, Sr=0.3, Г2=0.5,  β=0.1, E1=0.1, M=0.3, φ a*=0.2, N=0.5,. by different 
values of Re. 

 HAM 
results 

   Numerical        
results 

                                      

Re                  Φ''(0) -𝜗'(0)                    -φ'(0), -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0), -
Ģ '(0) 

0.1 

2.8 

7 

12  

3.0065 

3.0066 

3.0067 

3.0068 

1.0159 

1.0159 

1.0159 

1.0159 

-0.1839 

-0.0368 

-0.0368 

-0.0368 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

 

3.0065 

3.0066 

3.0067 

3.0068 

1.0159 

0.6441 

0.6441 

0.6441 

-0.1839 

-0.0368 

-0.0368 

-0.0368 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

         

 

Table 12: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when G1=0.1, G2=0.1,, m=0.1, L=0.2, 
S*c=0.5, δ=0.1, E2=0.2, Г1=0.1, Pr =0.5, Sr=0.3, Г2=0.5,  β=0.1, E1=0.1, M=0.3, Re =0.2, N=0.5,. by different values 
of φ a* 

 HAM 
results 

   Numerical        
results 

                                      

φ a*                  Φ''(0) -𝜗'(0)                    -φ'(0), -𝒢'(0) Φ''(0) -𝜗'(0)                    -φ'(0), -
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Ģ '(0) 

0.2 

1.4 

2.2 

3.2 

3.0065 

3.0163 

3.0308 

3.0579 

1.0159 

1.0159 

1.0159 

1.0159 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

 

3.0065 

3.0163 

3.0308 

3.0579 

1.0159 

1.0159 

1.0159 

1.0159 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

         

 
Table 13: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when G1=0.1, G2=0.1,, m=0.1, L=0.2, 
S*c=0.5, δ=0.1, E2=0.2, Г1=0.1, Pr =0.5, Sr=0.3, Г2=0.5,  β=0.1, E1=0.1, φ a*=0.2, Re =0.2, N=0.5,. by different 
values of M 

 HAM 
results 

   Numerical        
results 

                                      

M                  Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ(0) 

0.3 

0.7 

1.2 

1.6 

3.0065 

3.0065 

3.0065 

3.0065 

1.0159 

1.0151 

1.0141 

1.0132 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

 

3.0065 

3.0065 

3.0065 

3.0065 

1.0159 

1.0151 

1.0141 

1.0132 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

         

 
Table 14: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when G1=0.1, G2=0.1,, m=0.1, 
M=0.3, S*c=0.5, δ=0.1, E2=0.2, Г1=0.1, Pr =0.5, Sr=0.3, Г2=0.5,  β=0.1, E1=0.1, φ a*=0.2, Re =0.2, N=0.5,. by 
different values of L 

 HAM 
results 

   Numerical        
results 

                                      

L                  Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ(0) 

0.1 

0.3 

0.5 

0.7 

3.0065 

3.0069 

3.0073 

3.0078 

1.0159 

1.0159 

1.0159 

1.0159 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

 

3.0065 

3.0069 

3.0073 

3.0078 

1.0159 

1.0159 

1.0159 

1.0159 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

         

 
Table 15: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ  (0) when L=0.2, G2=0.1,, m=0.1, M=0.3, 
S*c=0.5, δ=0.1, E2=0.2, Г1=0.1, Pr =0.5, Sr=0.3, Г2=0.5,  β=0.1, E1=0.1, φ a*=0.2, Re =0.2, N=0.5,. by different 
values of G1 

 HAM 
results 

   Numerical        
results 

                                      

G1                  Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ(0) 

0.1 

0.3 

0.5 

0.7 

3.0067 

3.0067 

3.0067 

3.0067 

1.0159 

1.0148 

1.0137 

1.0127 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

 

3.0067 

3.0067 

3.0067 

3.0067 

1.0159 

1.0148 

1.0137 

1.0127 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394 

1.8394 

1.8394 

1.8394 
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Table 16: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when L=0.2, G1=0.1,, m=0.1, M=0.3, 
S*c=0.5, δ=0.1, E2=0.2, Г1=0.1, Pr =0.5, Sr=0.3, Г2=0.5,  β=0.1, E1=0.1, φ a*=0.2, Re =0.2, N=0.5,. by different 
values of G2 

  HAM 
results 

   Numerical        
results 

                                      

G2                  Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ(0) 

0.1 

0.2 

0.3 

0.4 

3.0067 

3.0067 

3.0067 

3.0067 

1.0159 

1.0158 

1.0157 

1.0156 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

 

3.0067 

3.0067 

3.0067 

3.0067 

1.0159 

1.0158 

1.0157 

1.0156 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

         

 
Table 17: Working with calculations for Φ''(0), -𝜗'(0), -φ'(0), and -Ģ '(0) when L=0.2, G1=0.1,, G2=0.1, M=0.3, 
S*c=0.5, δ=0.1, E2=0.2, Г1=0.1, Pr =0.5, Sr=0.3, Г2=0.5,  β=0.1, E1=0.1, φ a*=0.2, Re =0.2, N=0.5,. by different 
values of m 

  HAM 
results 

   Numerical        
results 

                                      

m                 Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ '(0) Φ''(0) -𝜗'(0)                    -φ'(0) -Ģ(0) 

0.1 

0.5 

1 

2 

3.0067 

3.0067 

3.0067 

3.0067 

1.0159 

1.0160 

1.0162 

1.0164 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

 

3.0067 

3.0067 

3.0067 

3.0067 

1.0159 

1.0160 

1.0162 

1.0164 

-0.1839 

-0.1839 

-0.1839 

-0.1839 

 

1.8394 

1.8394 

1.8394 

1.8394 

 

         

 
 
 The variation of S*c is shown in table 10.  Here for larger S*c the homogeneous behavior increases, whereas 
the velocity profile, temperature distribution and heterogeneous reaction are all decreasing. Table 10 
indicated an increase in the concentration distribution. The reason for the enhancement in concentration 
distribution is the decrease in the diffusion coefficient and the presence of fewer dispersed particles. It can be 
shown that schmidt number S*c increases the fluid's concentration diffusivity. It is because concentration 
decays due to greater diffusivity produced by increasing S*c 
 
Tables (11) show a result for Reynolds number that by increasing parameter Re the smoothly increasing. 
Whereas the Hartman number, convection parameter also show that in table (12,14) that increasing it, the 
velocity profile increases.   
 
It is observed that in tables (13, 15, 16) temperature distribution decreases with increasing the parameters 
M, G1 and G2.  An increase in M is observed to cause a reduction in the temperature profile, which is caused by 
the Lorentz force. Additionally, it is well known that a bigger magnetic parameter results in a stronger 
Lorentz force, which raises temperature and forms a thicker thermal boundary layer. The temperature and 
concentration profile rise as a conclusion of that aspect. However, when considering with enhancing Hall 
parameter m as a result of reducing the velocity and increasing temperature shown in table 17. 
 

8. Conclusions 

The flow in presence of Hall current and viscous dissipation with both homogeneous and heterogeneous 
reactions between two squeezing plates are considered in this research paper along with the numerical 
solution have been analysed. Together with the skin friction factor, Sherwood numbers and local Nusselt 
number, graphs and tables are utilized to show and explain the impacts of non-dimensional leading 
arguments on velocity, viscous and joule heating dissipation, and homogeneous/heterogeneous profiles. 
Following are the conclusions of current investigation; 
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• With rising values of the Hall parameter m, porosity parameter N, and magnetic parameter M, the velocity 

field and temperature profile both increase. 
• It is evident that the velocity field increases as Sr increases. In actuality, increasing the amount of 

pressure applied to the fluid reduces its kinematic viscosity, which lowers fluid velocity. 
• The behaviour of flow with the Hartman number φa*, the normal velocity profile decreases for the 

enhancing φa* levels. Greater resistance to the flow results from larger Lorentz forces, which causes 
the velocity field to decrease. 

• The velocity and temperature profiles decreases for increasing the Groshof parameter G1, Brainkman 
number G2, Reynolds number and convection parameter. 

• The temperature profile's response to the prandtl number Pr is illustrated as, because Pr express the 
ratio of the viscous diffusion rate to the thermal diffusion rate, greater prandtl number values result 
in lower thermal diffusivity. The temperature profiles thus increase as Pr  rises. 

• Temperature distributions for contracting Eckert number values yields a general description of the 
Joule heating effect, denoted as E1 and E2, respectively. When the Eckert number increases, it was 
established that the thickness of the thermal boundary layer and the volume percentage of nano-
particles both rise. This occurs as a result of viscous dissipation, which heats the regime by acting as 
an internal heat source and raising thermal energy in the energy equation. 

 

9. Nomenclature 

 

            Dynamic viscosity 

p            Pressure of fluid 

               Effective density 

pC               Specific heat capacity 
               Electrical conductivity 

      ,           Velocity components 
                       Temperature distribution 
     ,l u                 Temperature of upper and lower plates 

, *BD D       Diffusion coefficients of the chemical species 

                      Ratio of the diffusion coefficients 
     1               Homogeneous reaction strength 

     
2                     Heterogeneous reaction strength 

     rS              Squeeze Reynolds number 

     rP                       Prandtl number 

   
*a              Hartman number 

   fC               Skin-friction coefficient 
    

 uN                         Local Nusselt number 
      hS                       Sherwood number  
   1 2,             Chemical species 

    1E                        Local Eckert number 

    
2E                       Eckret number 

    M               Magnetic field parameter 

      *cS                    Schmidth number 
     L                   Convection or buoyancy parameter 
     eR                       Reynolds number 

     1G                      Grashof number 

     
2G                       Brainkman number 

      m               Hall parameter  

                      Small parameter 
       N               Porosity number 
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