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Abstract 

In the present study, the magneto-electro vibration analysis of a moderately 

thick double-curved sandwich panel with porous core and graphene 

platelets reinforced composite (GPLRC) based on the nonlocal strain 

gradient theory (NSGT) is investigated. The displacement field of a 

moderately thick double-curved sandwich panel is considered as the first-

order shear deformation theory (FSDT). The equations of motion are 

derived using Hamilton's principle and these equations are solved by 

Navier's method. The effect of various parameters, including magnetic and 

electric fields, aspect ratio, core-to-face thickness ratio, volume fraction of 

GPLs, different porosity distributions, various GPLs distributions, and 

curvature radius on the dimensionless natural frequencies of a moderately 

thick doubly-curved sandwich panel is examined. In this research, the 

sandwich structures become consist of two thin face sheets with high 

strength and a thick, soft, and flexible core with low density, because the 

scientists follow to enhance the strength to weight in the sandwich structures 

that these structures are used in various industries. In this article, the 

doubly-curved sandwich panel includes cylindrical, spherical, and elliptical 

shapes. The main finding of this research is that the dimensionless natural 

frequency reaches its maximum value at 6c fh h = .  

Keywords: Magneto-electro vibration; Moderately thick double-curved sandwich panel; Porous core; GPLs; 

Nonlocal strain gradient theory and First-order shear deformation theory. 

1. Introduction 

In recent decades, researchers have focused on sandwich structures to improve their strength-to-weight ratio. 

This study examines sandwich structures with a soft core, reinforced by graphene platelets (GPLs) in the matrix. 

Due to their high strength-to-weight ratio, these structures are widely used in industries such as aerospace, aviation, 
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automotive, and the body of ship. Some researchers [1-5] studied spherical vibrations and investigated the effects of 

boundary conditions (mechanical), geometry (thickness), various polar angles, different materials, material length 

scale parameter, temperature gradient, and specific heat capacity in constant volume on the natural frequency. The 

cylindrical vibrations are analyzed by some researchers [6-10] and investigated the effect of external loads amplitude, 

isolators, damping, the taper wedge compared to uniform wedge, external excitation frequency, random excitation 

strength, harmonic excitation, geometric and material properties, the number of circumferential and axial waves, and 

the multi-layer method on the natural frequency. Some scientists [11-15]  analyzed vibrations under magnetic and 

electric fields and studied the effects of parameters such as the intensity of the magnetic and electric fields, multi-

physical loads, the type and geometric properties of the panel, different materials, and the control coefficients of the 

electrical and magnetic fields, electric and magnetic potentials on the vibration control of sandwich shells. One of 

their results is that with increasing the magnetic power, the area of the convective cells reduces. The vibrations of 

porous panels [16-20]  are investigated and showed the effect of aspect ratio and geometry, porosity parameter, 

complete and partial porosity, the shape and distribution pattern of the porosity area on the natural frequency. They 

found that the natural frequency decreases by 15 to 18 percentage, when the porosity increases to 70%. Some 

researchers [21-25] analyzed vibrations based on nonlocal strain gradient theory and investigated the effects of 

material length scale parameter, size-dependent effects, and Eringen's nonlocal parameter on the natural frequency. 

They demonstrated that inverse phenomena are created by the effect of the nonlocal strain gradient. Some scientists 

[26-30] investigated the vibrations of thick panels that the effect of the fluid on the nonlinear behavior of the system 

decreases with increasing shell thickness, and the behavior of the shell becomes more dominant in the system. 

Another of their result is that for thicker plates, the frequency and amplitude of vibrations increases and decreases, 

respectively. Also, they investigated the effect of crack position, crack length on the vibrations of thick plates and 

the effects of core thickness, boundary conditions, temperature-dependent material properties and temperature 

gradients in the thickness direction on the dynamic characteristics. The vibrations of shallow shells [31-36] and the 

effects of porosity coefficient, boundary conditions, geometric parameters, elastic foundation, orthotropy, 

nonlinearity, shear stresses, types of carbon nanotube distribution, number of reinforcements, and scale dependence 

on the dynamic response and natural frequencies of the system are investigated. The vibration of shells and panels 

reinforced with graphene platelets (GPLs) and carbon nanotubes (CNTs) by some researchers [13, 37-40] were 

studied, and they investigated the effects of factors such as the reinforcement distribution pattern of GPLs and 

CNTs, weight fraction, volume fraction index of GPLs and CNTs, number of layers, elastic foundation parameters, 

external electric voltage and magnetic potential, geometrical parameters such as layers thickness and physical 

parameters such as temperature changes and Winkler foundation on the natural frequency of the system. One of their 

results was that the stiffness, with the weight fraction without a change in mass increases.  

The novelty of this research lies in the simultaneous investigation of a moderately thick double-curved sandwich 

shells with a porous core and graphene platelets under magnetic and electric fields, based on first-order shear 

deformation theory. The equations of motion for the sandwich panel have derived using Hamilton's principle and the 

extended mixture rule. The effects of various parameters, such as the geometric dimensions of the doubly-curved 

panel, different porosity distributions, porosity coefficient, various GPL distributions, volume fraction of GPL, and 

magnetic and electric fields on the dimensionless natural frequency have evaluated.  

1. Geometry and material properties of a sandwich panel 

Fig. 1 shows a moderately thick double-curved sandwich panel with porous core and GPL reinforced composite 

(GPLRC) in face sheets layers. It is shown that the thickness of the porous core, top and bottom face sheet are 
ch , 

th , 

and 
bh  , respectively. The total thickness denotes h ,. ,x yL L  are the length of double-curved sandwich panel.  

, ,x y z are the curve linear coordinate axes. Also, a and b  show the arc length of the sandwich panel. Moreover, 

  and ,x yR R  are panel angle, and the curvature radii of the sandwich panel. 

The relationships between different porous core structures; including uniform porosity, symmetric (type 1), and 

asymmetric porosity (type 2) are expressed as follows [41]: 



Journal of Computational Applied Mechanics 2025, 56(3): 673-693 675 

1 0

1

2

0

0 0

( ) (1 )

( ) (1 )

cos( )

cos( 4)

1 1 2 2
1 1

c

c

c

c m

c

c

E z E e

z e

z h

z h

e
e e



  

 

  


 

= −

= −

=

= +

 
= − − − + 

 

 

 

 

 

Type 1 

 

Type 2 

 

 

Type 3 

 

 

 

 

 

 

 

(1) 

 

 

 

 

where 
1

c  and 
1

cE denote values of mass density and Young’s modulus of the pure metal core.  

The various distribution types of GPLs for the lower and upper layers are defined as follows [42]: 

In this section, three different types of GPL distribution are considered: symmetric distribution (GPL-S), and 

asymmetric distribution (GPL-A), uniform distribution (GPL-U). The volume fraction patterns are defined below: 
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Fig. 1: A schematic view of a moderately thick double-curved sandwich panel with porous core and graphene platelet face sheets 

42
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where 
11 5.6466GPLE TPa= , 

22 7.08GPLE TPa= and 2.5mE GPa=  are the elastic modulus for GPL and the matrix, 

respectively, and also, 
12 1.9445GPLG TPa=  and 2(1 )m m mG E = +  where 0.3m =  are the shear modulus for GPL and 

matrix Poisson's ratio of a matrix, respectively. In addition,
1 , 

2 , 
3 represent the efficiency parameters of GPL, 

incorporating the size-dependent material properties [42]. 

The mechanical properties of the porous core and GPL face sheets for a moderately thick double-curved thick 

sandwich panel are considered in Table 1.  

 
Table 1: The mechanical properties of GPL face sheets [42] and porous core [43] for sandwich panel 
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which *

GPLV  is obtained [42]. 

 

2. The governing equations of motion for a moderately thick double-curved sandwich panel 

The displacement fields for a moderately thick double-curved sandwich panel are assumed as Eq. (4) [21, 44] 
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where ,x yu u and zu are the components of displacements at a distance z from the middle plane. u  and v  

are the membrane displacements in middle plane, and w is the transverse displacement. Also, x  and y  show 

the slope of a moderately thick double-curved sandwich panel. 

 

The strain-displacement relations for the moderately thick double-curved sandwich panel are written as follows: 

 

(5a) 

 

 

 

 

 

 

(5b) 

 

 

 

 

3
1,

2
3

, , 1 , ,2

1
( )

1

1
(1 ) (1 )( )

1 4

xx x

x x

x x x x x x x

x x x

u
u

z R R

h w
z R u z z c w

z R R R



 

= +
+

 
= + + − + + + 

+  
 



Journal of Computational Applied Mechanics 2025, 56(3): 673-693 677 

 

(5c) 

 

(6a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6b) 

 

 

 

 

 

(6c) 

 

 

 

 

 

 

3
2,y

2
3

,y y,y 2 ,y ,y2

1
( )

1

1
(1 ) (1 )( )

1 4

yy

y y

y y

y y y

u
u

z R R

h w
z R v z z c w

z R R R



 

= +
+

 
= + + − + + + 

+   
 

0zz =  

1
1, ,

2
2

1 ,2

2
3 1

, ,2

1
( )

1

3 (1 )( )
4

1
(1 ) (1 )( )

1 4

xz z x

x y

x x x

x x

x
x x x x

x x x x x

u
u w

z R R

u h
z c w

R R

z cu h
w z R z w

z R R R R R



 




= + −
+

= + − + +

 
+ − + − + + + 

+  

 

2
2, ,y

2
2

2 ,y2

2
3 2

,y ,y2

1
( )

1

3 (1 )( )
4

1
(1 ) (1 )( )

1 4

yz z

y y

y y

y y

y

y y

y y y y y

u
u w

z R R

v h
z c w

R R

z cv h
w z R z w

z R R R R R



 




= + −
+

= + − + +

 
+ − + − + + + 

+   
 

2, 1,y

2
3

, ,x 2 ,y ,2

2
3

, , 1 , ,2

1 1
( ) ( )

1 1

1
(1 ) (1 )( )

1 4

1
(1 ) (1 )( )

1 4

xy x

x y

y x y y x

x y

x y x y x x y

y x

u u
z R z R

h
z R v z z c w

z R R

h
z R u z z c w

z R R



 

 

= +
+ +

 
= + + − + + 

+   

 
= + + − + + 

+  

 

where ,x yR R  are the radius of the panel from the center to the middle of the core for double-curved panel 

including spherical y xR R=  , ellipsoidal 1 . 5y xR R= , cylindrical ,x yR R R= =  . x , y , and z  are the 

components of normal strain and xy ,  xz and yz are the components of shear strain.  

The constitutive equations along the off-axis coordinate based on nonlocal strain gradient theory (NSGT) are 

obtained as follows [45]: 
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where ml  and 0e a  denote the strain gradient and nonlocal parameters based on nonlocal strain gradient theory. 

2  is the Laplacian operator. ijklC  denotes the fourth-order stiffness tensor along the off-axis coordinates. kl  and 

ij  are the components of strain and stress along the off-axis coordinates. Also , , ,ikl ikl ik ike q s d and ik  are 

piezoelectric, magnetic, dielectric permeability, electromagnetic coupling, magnetic permeability.  

The kinematic energy for a moderately thick double-curved sandwich panel based on FSDT is written as follows 

[21, 44]: 
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where ,T U   and extW are the variations of the kinetic energy, strain energy, and potential energy due to 

the work of the external force. 

The variations of the kinematic energy and the strain energy for the moderately thick double-curved sandwich 

panel based on FSDT are considered as follows [44-46]: 
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where   is mass density and ( , , )iu i x y z=  is velocity along the coordinate axes of a moderately thick double-

curved sandwich panel. 
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The variation of the external work based on multi-physics including magneto-electro-mechanical loadings is 

defined as follows [47]: 
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in which Npx and Npy indicate pressure preload in the x and y directions. Moreover, electrical and magnetic 

preloads are indicated as NE and NM. The relations of the vectors and tensors are specified as [48]: 

The preload relations for a sandwich panel can be written as [49]: 
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in which P0 is biaxial force, and inertial electric voltage and magnetic potential are presented by V0 and Ψ0. All 

components of the above equations are calculated. 
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The resultant forces and moments of a moderately thick double-curved sandwich panel are expressed as follows: 
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where the above variables show the resultant axial/shear forces and bending/torsion moments of a moderately 

thick double-curved sandwich panel. 

The coefficients of the mass moment of inertia for the sandwich panel are calculated as follows: 

 (19) 

where 
*iI  are the mass moments of inertia for a moderately thick double-curved sandwich panel. 

The stiffness coefficients of a moderately thick double-curved sandwich panel with a porous core and 

nanocomposite tops reinforced with GPLs are described in Appendix A. The coefficients of the mass matrix for the 

sandwich panel are shown in Appendix B. 
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Assuming the following equations and placing the resulting forces and moments in the equations of motion, the 

governing equations of motion for a double-curved thick sandwich panel with porous core and nanocomposite face 

sheets reinforced by GPL based on first-order shear deformation double-curved theory (FSDT) and NSGT are 

considered in the Appendix C.  

The displacement functions based on Navier's solution are defined in Eq. (22). where mn
  is the natural 

frequency for a moderately thick double-curved sandwich panel. Also, the coefficients of m  and n  are defined in 

Eq. (23). where m and n are the wave numbers in x and y directions, respectively. Also, xL and yL  denote 

the length of a moderately thick double-curved sandwich panel in x and y directions, respectively. 
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By substituting Eq. (23) into Eqs. (D-1) and (D-2), the stiffness and mass matrices for a moderately thick 

double-curved sandwich panel are obtained as follows: 

   ( ) 2
07 7 7 7 7 1 ~

K M umnx x x
− =                                                                                                (24) 



Journal of Computational Applied Mechanics 2025, 56(3): 673-693 681 

11 12 13 14 15 16 17

21 22 23 24 25 26 27

31 32 33 34 35 36 37

2 2 2

41 42 43 44 45 46 47

51 52 53 54 55 56 57

61 62 63 64 65 66 67

71 72 73 74 75 76 77

2

0

(1 )( ) ,

[1 ( a) ]

m m n

K K K K K K K

K K K K K K K

K K K K K K K

K l K K K K K K K

K K K K K K K

K K K K K K K

K K K K K K K

M e

 

 
 
 
 
 

= − +  
 
 
 
 
 

= −

11 12 13 14 15 16 17

21 22 23 24 25 26 27

31 32 33 34 35 36 37

2 2

41 42 43 44 45 46 47
~

51 52 53 54 55 56 57

61 62 63 64 65 66 67

71 72 73 74 75 76 77

( ) ,

mn

mn

mn

m n x mn

y mn

M M M M M M M u

M M M M M M M v

M M M M M M M w

M M M M M M M

M M M M M M M

M M M M M M M

M M M M M M M

u  





 
 
 
 
 

+  
 
 
 
 
 

=

mn

mn

 
 
 
 
  
 
 
 
 
 
  

 

(25) 

So, the stiffness and mass matrices are described in Appendix D. 

The vibration analysis of a moderately thick double-curved sandwich panel with a porous core and 

nanocomposite face sheets reinforced by GPLs based on NSGT and FSDT is investigated. The effect of different 

parameters such as the material length scale parameter, the non-local Eringen's parameter, the different angles of the 

porous core, the volume fraction of GPLs, and its various distributions for different double-curved structures, 

including spherical, ellipsoidal, cylindrical, and plate, on the dimensionless natural frequency are studied. 

In this study,   is the dimensionless natural frequency that is defined as follows: 

c
mn

c

h
E


 =  

(26) 

in which h is the total thickness of a sandwich panel and c , cE  shows the density and elastic modulus of the 

porous core, respectively. 

 

 

 

 

The geometry of a double-curved thick sandwich panel is shown in Table 2. 
Table 2: The geometry of a double-curved thick sandwich panel 

200

var

0.25

2 18

x y

x y
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c f
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h L

h h to

= =

=

=

 

 

The results of this research have been validated by the other literature by Sayyad and Ghugal [50]. This 

validation is shown in Table 3. It is seen that there is a good agreement between them. 

Fig. 2 shows that the dimensionless natural frequency for a cylindrical panel with a porous core and graphene 

platelets face sheets is higher than that of a spherical panel. Additionally, the dimensionless frequency for the 

spherical panel is directly related to the curvature radius, meaning that as the curvature radius of the sphere 

increases, the dimensionless frequency increases. For the cylindrical panel, however, there is an inverse relationship 

as the curvature radius of the cylinder increases, the dimensionless frequency decreases. Moreover, the smaller the 

ratio of the porous core thickness to the graphene platelet thickness, the higher the dimensionless natural frequency. 
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Fig. 2: Dimensionless natural frequency of spherical and cylindrical sandwich panel 

 

Fig. 3 shows the effect of different distribution of graphene platelets on dimensionless natural frequency of a 

moderately thick sandwich panel. It is shown that the symmetric graphene platelets face sheet has the highest 

dimensionless natural frequency, followed by the asymmetric graphene platelet and then the uniform graphene 

platelet. Additionally, a ratio of  6c fh h =  has the highest dimensionless natural frequency. 

 
Table 3: The dimensionless natural frequency for the present work and th3e obtained results by Sayyad and Ghugal [57] 

(
** c

mn

c

h
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
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xR a

 

yR b

 

PSD

T 

TSD

T 

HSD

T 

ESD

T 

FSD

T 
CST 

Presen
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Cylindrical 
Shells 

5 ∞ 
0.147

59 
0.147

59 
0.147

60 
0.147

63 
0.149

96 
0.159

90 
0.14968 

10 ∞ 
0.147

39 
0.147

39 
0.147

39 
0.147

42 
0.149

78 
0.159

80 
0.14948 

20 ∞ 
0.147

38 
0.147

41 
0.147

39 
0.147

42 
0.149

78 
0.159

84 
0.14948 

50 ∞ 
0.147

41 
0.147

42 
0.147

41 
0.147

44 
0.149

81 
0.159

88 
0.14951 

100 ∞ 
0.147

43 
0.149

36 
0.147

43 
0.147

46 
0.149

83 
0.159

90 
0.14953 

Spherical 

Shells 

5 5 
0.149

36 
0.147

75 
0.149

36 
0.149

39 
0.151

68 
0.161

36 
0.15146 

10 10 
0.147

75 
0.147

43 
0.147

75 
0.147

78 
0.150

12 
0.160

06 
0.14984 

20 20 
0.147

43 
0.147

39 
0.147

43 
0.147

46 
0.149

82 
0.159

84 
0.14952 

50 50 
0.147

40 
0.147

41 
0.147

40 
0.147

43 
0.149

80 
0.159

86 
0.14950 

100 100 
0.147

41 
0.146

82 
0.147

41 
0.147

44 
0.149

82 
0.159

88 
0.14951 

Elliptical 

paraboloid 
Shellls 

5 7.5 
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67 
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66 
0.148

67 
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70 
0.151

00 
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79 
0.15076 

10 15 
0.147

60 
0.147

60 
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60 
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63 
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98 
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95 
0.14969 

20 30 
0.147

41 
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40 
0.147

41 
0.147

44 
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80 
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84 
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50 75 
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40 
0.147

40 
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40 
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43 
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80 
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86 
0.14950 

100 150 0.147 0.147 0.147 0.147 0.149 0.159 0.14952 
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42 41 42 45 82 89 

 

 

Fig. 4 shows the effect of various porosity distributions including uniform distribution on dimensionless natural 

frequency of a moderately thick sandwich panel. It is shown that the porous core type 2, followed by porous core 

type 1, and then the uniform core, have the highest dimensionless natural frequency, respectively. Additionally, the 

core with a ratio of 6 8c fh h = −  has the highest dimensionless natural frequency. 

 

 

 

 

 
Fig. 3: The effect of different distribution of graphene platelets on dimensionless natural frequency of sandwich panel 

 
Fig. 4: The effect of various porosity distributions including uniform distribution on dimensionless natural frequency sandwich panel 

Fig. 5 illustrates the graph of different volume fractions of graphene platelets, showing that as the volume 

fraction of the graphene layers increases, the dimensionless natural frequency also increases, because the stiffness of 
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the sandwich panel enhances. The highest dimensionless natural frequency occurs at the ratio of 6c fh h =   

 
Fig. 5: The dimensionless natural frequency of the sandwich panel for different volume fraction of graphene platelets 

 

Fig. 6 shows the effect of magnetic and electric fields, where the combination of both magnetic and electric 

fields results in the highest dimensionless natural frequency. In contrast, when neither field is applied, the lowest 

dimensionless natural frequency is observed. In this case 0 01.5 , 12.5V V A=  = , the effect of the magnetic 

field is greater than that of the electric field. 

 
Fig. 6: The effect of magnetic and electric fields on dimensionless natural frequency sandwich panel 

 

 

3. Conclusion 

In previous studies, researchers have focused on the vibrational behavior of double-curved sandwich shell 

panels. In contrast, the present study concentrates on the vibration analysis of a moderately thick double-curved 

sandwich panels with a porous core reinforced and graphene platelets reinforced composite face sheets. This 

analysis is based on the first-order shear deformation theory and the non-local strain gradient theory, which are 

widely used in various industries including marine, military, and construction industries. The results obtained by 
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research of Sayyad and Ghugal [50] are validated that there is a good agreement between them. Moreover, because 

increasing high strength to weight in the double-curved sandwich panel, these structures are used. The obtained 

results of this research can be listed as follows: 

• The dimensionless natural frequency for a cylindrical panel with a porous core and graphene sheets is 

higher than that of a spherical panel 

• For the spherical panel, the dimensionless natural frequency is directly related to the curvature radius of 

sphere; however, there is an inverse result for the cylindrical panel. 

• The symmetric graphene platelets in face sheet layers has the highest dimensionless natural frequency, 

rather than the asymmetric and uniform graphene platelets. 

• The highest dimensionless natural frequency is occurred for the porous core type 2, and then followed by 

porous core type 1, and the uniform core. 

• The dimensionless natural frequency increases with increasing the volume fraction of the graphene platelet, 

because the stiffness of a moderately thick sandwich panel. 

•  Magnetic and electric fields have a significant impact on double-curved sandwich panels. Also, it is shown 

that the effect of the magnetic field is greater than that of the electric field. 

• As the figures show, in 6c fh h =  the dimensionless natural frequency has the highest value, which can 

be considered in the design of thick double-curved sandwich panels. 
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Appendix A. The stiffness coefficients 

The stiffness coefficients of a double-curved moderately thick sandwich panel with a porous core and 

nanocomposite tops reinforced with GPLs are considered as follows: 
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where the coefficients are defined as: 
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Appendix B. The mass moment of inertia  

The coefficients of the mass moment of inertia for the sandwich panel are calculated as follows: 
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(B) 

 

Appendix C. The governing equations of motion for a double-curved, thick sandwich panel 

 

Assuming the following equations and placing the resulting forces and moments in the equations of motion, the 

governing equations of motion for a double-curved thick sandwich panel with porous core and anocomposite face 

sheets reinforced by GPL based on first-order shear deformation double-curved theory (FSDT) and NSGT are 

calculated as follows: 

 

,m n

x y

m n

L L

 
 = =  (C-1) 

 
2 2 2 3 3

2 2 * ** * **

11 11 11 12 13 13 132 2 3 2

22 2
* **x x

14 x 14 14 15 16 172 2

22
2 2 *0 *1

0 2 2

(1 ){

}

[1 ( ) ]{ } 0

m

y

x

u u v w w w
l a u a a a a a a

x y x y x x x y

a a a a a a
x y x y x x

u
e a I I

t t

   




     
−  + + + + + +

       

   
+ + + + + +

     


+ −  + =

 

 

(C-2) 

22 2 2 3 3
2 2 * ** * **

21 22 22 22 23 23 23 242 2 3 2

2 2 22
* ** 2 2 *0 *1

25 25 25 26 27 02 2 2 2

(1 ){

} [1 ( ) ]{ } 0

x
m

y y y

y

u v v w w w
l a a v a a a a a a

x y x y y y x y x y

v
a a a a a e a I I

x y y y t t



   


     
−  + + + + + + +

         

    
+ + + + + + −  + =

     

 

(C-3) 



690 Mohammad Ali Mohammadimehr et al. 

3 3 3 3
2 2 * ** * **

31 31 31 32 32 32 333 2 3 2

32 2 4 4 4
* ** *** 2* 2** *

33 33 33 33 33 34 342 2 2 2 4 4 3

33
** *

34 35 352

(1 ){m

x x

y yx

u u u v v v
l a a a a a a a w

x x x y y y x y

w w w w w
a a a a a a a

x y x y x y x x

a a a
x y y

 

 

     
−  − − − − − − +

       

     
+ + + + + + +

       

 
+ + +

   

3

**

35 36 373 2

2
2 2 *0

0 2

}

[1 ( ) ]{ } 0

y
a a a

y x y

w
e a I

t


 


+ − −

 


+ −  =



 

(C-4) 

2 2 2 3 3
2 2 * ** * **

41 41 41 42 43 43 432 2 3 2

22 2
* **x x

44 x 44 44 45 46 472 2

22
2 2 *1 *2

0 2 2

(1 ){

}

[1 ( ) ]{ } 0

m

y

x

u u v w w w
l a u a a a a a a

x y x y x x x y

a a a a a a
x y x y x x

u
e a I I

t t

   




     
−  + + + − − −

       

   
+ + + + + +

     


+ −  + =

 

 

(C-5) 

2 2 2 3 3
2 2 * ** * **

51 52 52 52 53 53 532 2 3 2

2 22
* **

54 55 55 55 56 572 2

22
2 2 *1 *2

0 2 2

(1 ){

}

[1 ( ) ]{ } 0

m

y yx
y

y

u v v w w w
l a a v a a a a a

x y x y y y x y

a a a a a a
x y x y y y

v
e a I I

t t

   




     
−  + + + − − −

       

   
+ + + + + +

     


+ −  + =

 

 

(C-6) 

2 2 x
16 26 36 46 56 66 67(1 ){ } 0

y

m

u v
l a a a w a a a a

x y x y


 

 
−  − − − − − + + =

   
 

(C-7) 

2 2 x
17 27 37 47 57 67 77(1 ){ } 0

y

m

u v
l a a a w a a a a

x y x y


 

 
−  − − − − − + + =

   
 

(C-8) 

 

where the coefficients of 
* * ** **, , , , 1, 2,3,4,5,6,7ij ji ij ji ij jia a a a a a i j= = = =  in Eqs. (D-1) and (D-2) are 

defined as follows: 
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Appendix D: The stiffness and mass matrices 

The stiffness and mass matrices are described as follows: 
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Nomenclature 

higher-order shear deformation theory FSDT non-local strain gradient theory NSGT 
GPL reinforced composite GPLRC graphene platelets GPLs 

symmetric distribution of GPL GPL-S asymmetric distribution of GPL GPL-A 

symmetric porosity type 1 unioform distribution of GPL GPL-U 

uniform porosity type 3 asymmetric porosity type 2 
the volume fraction of GPL and matrix , m

GPLV V  the density of porous core 
c  

the density of GPL and matrix , m

GPL   
length ,x yL L  

the components of displacements at  

a distance z from the mid-plane 0z =  
, ,iu i x y z=  total thickness h  

the components of displacements in the 

mid-plane 
, ,u v w  the thickness of the porous core 

ch  

the slope of double-curved sandwich 

panel 
,j j x y =  the thickness of bottom face 

sheet 
bh  

the components of normal and shear 

strains  
, , ,ij i j x y z =

 

the thickness of top face sheet 
th  

the normal stress along off-axis 

coordinates 
, ,i i x y z =

 

the coordinate axes , ,x y z  

the normal strains along off-axis 

coordinates 
, ,i i x y z =

 

panel angle   

the shear stresses , , ,ij i j x y z =

 

the arc length of the panel ,a b  

the shear strains , , ,ij i j x y z =

 

the Poisson’s ratio along off-

axis coordinates 
, , ,

ij

i j x y z



=

 
elastic modulus for porous core and 

face sheets 
, , ,iE i t c b=

 

elastic modulus for off-axis , , y,ziE i x=

 
the coefficients of the stiffness matrix , 1 6ijQ i j to=

 

the CNT efficiency parameters 1,2,3i i =

 
the variations of the kinetic energy T  the variations of the potential 

energy 
U  

the Poisson’s ratio of GPL and matrix , m

GPL   the variations of the work of 

the external force 
V  

Eringen's non-local parameter 
0e a  

the small-scale parameter 
ml  

Laplacian operator 2  
the mass moments of inertia *iI  

the components of stress and strain 

along the off-axis ij and kl  
fourth-order stiffness tensor 

along the off-axis coordinates 

coordinates 

ijklC  

piezoelectric 
ikle  

the dimensionless natural 

frequency 
  

dielectric permeability 
iks  

magnetic 
iklq  

magnetic permeability 
ik  

electromagnetic coupling 
ikd  

magnetic potential   electric potential   

magnetic field H  electric field E  
inertial magnetic potential 

0  
inertial electric voltage 

0V  

 


