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Abstract 

 

Chemically reacting flows of non-Newtonian fluids through porous media 

have numerous medical and industrial applications, including targeted drug 

delivery, polymer processing, and extrusion operations. In these contexts, 

convective heat transfer is a critical mechanism that must be accurately 

predicted. This article analyzes the thermosolutal convection of a chemically 

reactive Rivlin-Ericksen fluid in a porous medium, accounting for viscous 

dissipation, using both linear and nonlinear stability approaches. The 

nonlinear analysis is performed using a truncated Fourier series method, 

while the linear stability is examined via the normal mode technique. It is 

found that oscillatory convection occurs only when the solutal Rayleigh-

Darcy number is negative. The range of this number that allows oscillatory 

convection depends on several physical parameters. An increase in the 

Rivlin-Ericksen parameter, the modified heat capacity ratio, and the Péclet 

number reduces this range, whereas a higher Lewis number expands it. 

Moreover, the Lewis number, solutal Rayleigh-Darcy number, and Gebhart 

number accelerate the onset of convective waves, while the Rivlin-Ericksen 

parameter and the modified heat capacity ratio delay it. Additionally, both 

convective heat and mass transfer rates decrease with increasing Rivlin-

Ericksen parameter and modified heat capacity ratio, but they increase with 

higher values of the thermal and solutal Rayleigh-Darcy numbers, the Lewis 

number, the chemical reaction parameter, the Péclet number, and the 

Gebhart number. 
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1. Introduction 

Thermal instability, or convective instability, in Rivlin-Ericksen fluids is crucial for understanding heat and 

mass transmission in non-Newtonian fluids, often encountered in polymeric solutions and industrial processes. This 

study aids in analysing the arrival of convection driven by temperature and solute gradients, considering the 

viscoelastic properties unique to Rivlin-Ericksen fluids, and is vital for applications in material processing, 

geophysical flows, and enhanced energy systems. The Rivlin-Ericksen (R-E) fluid, a kind of viscoelastic liquid, was 

initially introduced theoretically by Rivlin and Ericksen [1] in 1955. Sharma and Kumar [2] investigated the thermal 

convection of a Rivlin-Ericksen fluid under the influence of uniform rotation. In another investigation, Sharma and 

Kumar [3] explored the thermal convection of Rivlin-Ericksen liquid in the attendance of a constant magnetic field. 

Sharma et al. [4-6] utilized normal mode philosophy to investigate the thermal convection of a Rivlin-Ericksen liquid 

layer under various conditions, including porous media, and Hall effects. Gupta and Sharma [7] further extended the 

analysis by incorporating extra features such as concentration, compressibility, Hall influence, and rotation into the 

study of thermal instability. Kango and Singh [8] contributed by including the outcomes of a magnetic power and 

permeable medium in their investigation. 

Thermosolutal instability in Rivlin-Ericksen fluid plays a crucial role in analysing heat and mass spread 

processes in viscoelastic fluids, with significant applications in polymer processing, chemical engineering, and 

geophysical fluid dynamics. This instability provides insights into the collective effects of heat and solutal gradients 

on the stability of fluid layers, helping optimize industrial processes involving complex fluids. Sharma and Chand 

[9] examined thermosolutal convective drive in a porous medium occupied with Rivlin-Ericksen fluid, predisposed 

by a constant upright magnetic field. They instituted that the solutal gradient and magnetic power stabilized the 

system, while the medium's permeability had a non-stabilizing influence. Kinematic viscoelasticity did not affect 

stationary convection, but oscillatory modes appeared when a stable solutal gradient and magnetic power were 

ensued. Kishor and Sharma [10] studied the collective effects of Hall currents and gravity on a Rivlin-Ericksen 

liquid with a solutal gradient, noting that Hall currents accelerated convection onset, whereas the magnetic field 

delayed it. Xu [11] explored the nonlinearity of double-diffusive convective drive in Rivlin-Ericksen fluid within a 

porous matrix, assuming stress-free boundary restrictions. Sharma et al. [12] inspected the influence of Hall currents 

on compressible Rivlin-Ericksen liquid with solutal gradients under a constant magnetic field. They concluded that 

Hall currents hastened thermosolutal instability onset, while compressibility, stable solute gradient, and magnetic 

power delayed it.  

Thermosolutal instability in porous media is critical for understanding heat and mass transmission processes in 

natural and industrial systems. It plays a key role in geothermal energy extraction, petroleum recovery, carbon 

sequestration, and groundwater management, where temperature and concentration gradients significantly influence 

fluid flow and stability. Gupta and Sharma [13] analysed thermosolutal convection in a rotary Rivlin-Ericksen liquid 

with Hall currents, finding that Hall currents and medium permeability expedited instability onset, whereas rotation 

and magnetic field postponed it. Wang and Tan [14] investigated the initiation of thermosolutal convective motion 

based on the Brinkman model with a reacting tenure in a horizontally oriented lightly packed permeable medium 

applying the normal mode analysis. Aggarwal [15] studied thermosolutal convective movement in a rotary 

permeable matrix containing Rivlin-Ericksen elastic-viscous dusty fluid, revealing that suspended particles and 

permeability destabilized the system, while rotation and a stable solute gradient stabilized it. Singh and Gupta [16] 

investigated how fine suspended dusty particles influenced thermosolutal convective drive in compressible Rivlin-

Ericksen liquid. They observed that a stable solutal gradient enhanced system stability, while suspended particles 

accelerated convection onset. Aggarwal and Verma [17] observed the double-diffusive convective motion in a 

compressible Rivlin-Ericksen liquid with included particles and Hall currents. They instituted that the solutal 

gradient and magnetic field stabilized convection, while compressibility, included particles, Hall currents, and 

permeability were destabilizing factors. Kumar et al. [18] studied Veronis-type thermosolutal instability in Rivlin-

Ericksen viscoelastic liquid within a permeable medium subjected to unvarying magnetic field. They identified 

benchmarks for oscillatory waves, which could be either neutrally stable or unstable depending on groupings of free 

and rigid boundary conditions. Their analysis also extended to Stern-type configurations. 

Viscous dissipation presents a crucial role in thermosolutal convection by renovating mechanical energy into 

heat, which can significantly affect the temperature distribution within the fluid. This phenomenon can either 

stabilize or destabilize the arrangement reliant on the relative magnitudes of the heat generation and the solute 

gradient, influencing the onset and evolution of convection in fluid dynamics. Cheng and Wu [19] explored how 

viscous dissipation influences the launch of convection in longitudinal vortices within the temperature entrance 

region of a flat parallel channel. Using numerical methods, they focused on the scenario where one plate is 

consistently heated and the other is consistently chilled. Barletta and Storesletten [20] performed a linear stability 

analysis of uniform flow in a horizontal porous channel with a rectangular cross-section, investigating thermal 
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boundary circumstances at the impermeable channel walls, which involved a consistent entering warmth flux at the 

bottom, constant warmth at the higher, and adiabatic lateral walls. Barletta and Nield [21] studied the combined 

effects of double-diffusion and viscous dissipation on convective instability in a fluid-saturated porous matrix with 

horizontal throughflow. Barletta et al. [22] focused on thermal instability in plane Poiseuille movement, particularly 

examining the influence of viscous dissipation stimulus. Alves et al. [23] re-examined the Prats problem, analysing 

thermal instability due to small-amplitude distributions overlaid on basic horizontal throughflow in a porous plane 

layer. Barletta [24] further discovered the role of viscous dissipation as a cause of thermal convection, highlighting 

how mechanical energy dissipation into heat can trigger convective instabilities. Norouzi et al. [25] investigated the 

effects of viscous dissipation on thermo-viscous fingering convection, using the finite element method to model the 

delicacies of viscous fingering in porous matrix and examine the dissipation's role in affecting instability shapes. 

Requilé [26] analysed the impact of viscous dissipation on Rayleigh-Bénard-Poiseuille/Couette mixed convective 

currents using linear stability law, considering both the upright heat gradient from exterior boundaries and thermal 

stratification caused by volumetric heating from dissipation. Sene et al. [27]  provided a detailed analysis of the 

conditions that lead to dissipation-induced thermal instability in the plane Couette movement of a Newtonian liquid 

with temperature-dependent viscosity. Yadav et al. [28] reconnoitred the combined influence of viscous dissipation 

and upright throughflow on the initiation of convective motion in a Jeffrey fluid-drenched rotary porous layer. They 

utilized an enhanced Darcy model to represent the rheological performance of Jeffrey fluid flow within a permeable 

medium. 

The occurrence of a chemical reaction significantly influences thermosolutal instability by altering the 

concentration gradients and heat distribution within the fluid. Chemical reactions can either stabilize or destabilize 

the arrangement, reliant on the nature of the reaction (exothermic or endothermic) and its impact on temperature and 

solute concentration. This interaction affects the onset and evolution of convection, influencing heat and mass 

transfer processes in various industrial and natural systems, such as in chemical reactors and geophysical flows. 

Chamkha [29] explored the impacts of a chemical reaction and magnetic power on heat and mass transmission in a 

heat-producing or absorbing liquid over a continuously moving upright porous surface. Malashetty and Biradar [30] 

observed the chemically reacting double-diffusive convective drive within an anisotropic permeable layer. The 

combined power of chemical reactions, warmth and mass transmission, and viscous dissipation on 

magnetohydrodynamic (MHD) flow over a upright porous wall were analysed by Ahmed et al. [31]. They used the 

perturbation method.  In low-temperature dimethyl ether oxidation, this instability manifests as a transition from 

uniform plasma to fil-mentation and back to uniformity before ignition as observed by Zhong et al. [32].  

The combined influence of chemical reactions and solute gradient on the thermal instability of Rivlin-Ericksen 

fluids has not been extensively studied, to the best of our awareness. Therefore, an attempt has been made to 

examine the stability of thermosolutal convective flow in Rivlin-Ericksen fluids, particularly focusing on the 

influence of chemical reactions and solute gradients, through a porous medium with the inclusion of viscous 

dissipation influences. This study is unique in its exploration of both linear and nonlinear stability conditions, 

offering a more comprehensive understanding of how these factors influence the convective behaviour and thermal 

stability of Rivlin-Ericksen fluids under different physical conditions. By addressing these factors, this research 

targets to fill a gap in the current literature and provide valuable insights for real-world applications involving 

viscoelastic fluids, porous media, and chemical reactions. 

 

2. Mathematical construction 

Consider an inestimable horizontal reacting porous medium layer of incompressible Rivlin-Ericksen fluid of 

width L
 
restricted by the planes

 
at 0y =   and y L= , as exhibited in Fig. 1.  

 
Fig. 1. Physical arrangement of the problem. 
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This layer is heated from bottom and exposed to a stable solute gradient so that the temperatures and solute 

concentrations at the lower plane 0y =  are L  and
LS , and at the top plane y L= are 

U  and US  respectively, 

with L U  
 
and

L US S .  Here, y -axis is considered as vertical such that the gravity force ˆ
yg= −g e  

permeates the system. It is anticipated that there presents a homogeneous chemical reaction among the Rivlin-

Ericksen liquid and the species concentration of rate RC . Further, the permeable layer is enthused by the uniform 

upright throughflow of strength 0F . On using the amended Rivlin-Ericksen-Darcy model and the Boussinesq 

guesstimate with the influence of viscous dissipation contribution in the energy balance equation, the prevailing 

equations of the arrangement can be stated as [12, 13, 21, 33-35]:  

. 0D =U ,                                                                     (1) 

( ) ( ) 0
ˆ

y
D

U S UP g SS
M

   


 

 
+ = + 


 − − + −

 
e

U
,

                

(2) 

( )
( )

( )2

1

0

.  . 
c

D D D
M





 


 
+  = 


+

U U U ,

                                   

(3) 

( ) ( )21
. D S URS S C SD S

 




+

 
+  =  


−


U ,

                                        

(4) 

where, 
DU  shows the Darcy’s velocity of the Rivlin-Ericksen fluid, ˆ ˆ ˆ

x y z
x y z

  
  + +
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e e e ,  ˆ

xe , ˆ
ye  

and ˆ
ze  signify unit vectors in x , y  and z  paths,   terms the time,   and   represent the viscosity and 

viscoelasticity of the Rivlin-Ericksen liquid, respectively,   shows the temperature, S  symbolizes the solute 

concentration, 0  specifies the density of the Rivlin-Ericksen fluid at the reference temperature U , M  indicates 

the porous medium’s permeability, P  specifies the pressure,   
and

 S   signify the thermal and solute extension 

coefficients, respectively,   signifies the effectual thermal diffusivity of the permeable medium,   designates the 

porosity of the porous medium, SD  signifies the mass diffusivity,
 1  

indicates the ratio of heat capacities of the 

Rivlin-Ericksen fluid and effective porous medium, respectively and ( )0 c   shows the heat capacity of Rivlin-

Ericksen fluid. 

The appropriate boundary positions are: 

0
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For non-dimensional examination, we describe the dimensionless variables as: 
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Then, the non-dimensional practice of Eqs. (1)-(5) are: 

. 0D =U ,                                                                                       (7) 
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,  1,  1     at 0,

,  0,  0    at 1.

D
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Here,
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L
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= (Péclet number). 

2.1. Basic state flow 

The basic state flow of Rivlin-Ericksen liquid is taken to be free of time, and considered as:  

( )0, ,0Db Pe=U , ( )b b y =  , ( )b bS S y= .                              (12) 

Then, Eqs. (9) - (11) produce for the basic state drive as: 
2
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On solving Eqs. (13) and (14) with Eq. (15), we have: 
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Here, 
e

aD

G
Ec

R
= is the Darcy–Eckert number. The result presented in the Eq. (16) is identical with the outcome 

achieved by Barletta et al. [36]. In the absence of throughflow ( 0Pe→ ), Eqs. (16) and (17) provide: 

( ) 1b y y = − ,                                                                (18) 

( ) ( )csc s n 1i CRb CRS y L ye eK LK   −
 

−


=


.                                                  (19) 

The outcome obtainable in the Eqs. (18) and (19) are identical with the consequence achieved by Yadav et al. 

[33, 34].  

 In the nonappearance of chemical reaction and viscous dissipation ( )0,  0CRK Ec→ → , Eqs. (16) and (17) 

give: 
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e e
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The Eqs. (20) and (21) are the same results attained by Nield and Kuznetsov [37] and,  Kuznetsov and Nield [38] 

with scaling  of ( )bS y .   

 

3. Perturb equations 

Here, we implement slight perturbances on the basic state movement as: 

b b,  ,      ,     b D DbP P P S S S   = + = +  = + = +U U U . 
                            

(22) 

Here, the variables with “dash” superscript are the perturbed dealings on their basic states. On applying Eq. (22) 

into Eqs. (7)-(11) and eradicating the pressure tenure, we have: 
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Here 
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4. Linear stability investigation 

In this segment, we discover the onsets for the convective movement applying the linear concept. Now, we take 

that the amounts of the perturbation are actual slight and can be considered as [39-48]:  
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where   signifies the rate of turbulences and, ax  and ay  are wave numbers in the trend of x  and z ways, 

respectively. On using Eq. (27) into Eqs. (23)-(26) and avoidance the nonlinear tenures with perturbed flexibles, we 

have:  
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Here
d

D
dy

 and
 

2 2

x ya a = + is the resulting wave number. 

The Galerkin method of weighted residuals technique is applied to get a closed form solution to the arrangement 

of Eqs. (28)-(31). The test functions are taken as [49-53]: 

sin ,  sin ,  sinV A y B y S C y  =  = = .                                                    (32) 
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Here, ,  A B  and C
 
are unidentified coefficients. On substituting Eq. (32), into Eqs. (28)-(30) and performing 

the orthogonal procedures, three linear algebraic equations are obtained with three unidentified ,  A B  and C . For 

the incidence of non-singular result, we have:  
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On solving Eq. (33) for DTR , we have:  
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4.1. Nonoscillatory convection 

In the circumstance of nonoscillatory convection, we have 0 = . Then, Eq. (34) offers the nonoscillatory 

thermal Darcy-Rayleigh number DTR  as: 
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 
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+ − − 
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−
= 


.         (35) 

The threshold of DTR  for the arrival of nonoscillatory convection occurs at the critical wave number c , 

here c a =  justifies: 

( ) ( )( ) ( )( )

( )( ) ( ) ( )

2 2 4 2 2 2 3 2 2 2 2

3

2
2 2 4 6 4 2 2 2 0.

4 2 4 4 2 2

2 4 4
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    

     

− − + − + − + − +

+ + − + + + =+ −
   

(36) 

From Eqs. (35) and (36), it is established that the arrival of nonoscillatory convection does not encouragement 

by the Rivlin-Ericksen parameter  . Also from Eq. (36), it is noted that c  does not differ on the Gebhart number 

eG . 

 In the lack of throughflow ( 0Pe→ ), Eqs. (35) and (36) offer:  
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( ) ( )
( )( )

2
2 2 2 2 2
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4
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LeR
R

K Le K Le

    
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( ) ( ) 4 3 2 2 2 2 4 2 4

1 1 2 2 1 2 1 2 1 22 4 2 0.DSE a E E a E E E Le R a E E a E E    + + − + − − − =            (38) 

Here 
2

1 4 CRE K Le= −  and 
2

2 CRE K Le= − . The results offered in Eqs. (37) and (38) are same as found 

by Yadav et al. [34].  

In the absenteeism of chemical reacting ( ( )0CRK = ), Eqs. (37) and (38) become:  

( )
2

2 2

2DT DSR LeR
 



+
= − ,                                                        (39) 

c = .                                                                         (40) 

These are the standard outcomes for a thermosolutal fluid convection in a porous layer [39, 54, 55]. For the single 

component of regular fluid and absence of viscous dissipation ( 0DS eR G= = ), Eq. (35) develops:   

( ) ( )
2

2 2 2 2

2 2

4

4
DT

Pe
R

  

 

+ +
= .                                                           (41) 

 This is the matching consequence as developed by Nield and Kuznetsov [56] and Yadav [57]. 

 

4.2. Oscillatory convection 

The oscillatory design of convective wave happens when 0  and 
5 0J = . Then, Eq. (34) provides the 

oscillatory thermal Darcy-Rayleigh number DTR  and the rate of the growth of disturbances   , respectively 
 
as: 

( ) ( ) ( )
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The convective drive launches as a form of oscillatory style only if 
2 0  .  Thus, to get an oscillatory arrival, 

the analytical result for DTR
 
indicated by Eq. (42) is lessened corresponding to the wave number   numerically for 

the condition 
2 0   for diverse evaluations of involved physical factors and results are displaced via tables and 

figures. 

 

5. Weak nonlinear exploration 

In this division, we execute the weakly nonlinear exploration to find the convective heat and mass 

transportation, which is accommodating to distinguish the physical appliance of convective flow with less extent of 

mathematical calculation. For minimalism, we restrain our exploration to two dimensional rolls; accordingly all 

physical measures are free of z  which sanctions to present a perturbed no dimension stream function  
 
as  

U y = − 
 
and V x =   . Then, the prevailing Eqs. (23)-(26) with the nonlinear standings are: 

2 2 21 0HDT DS HR R S
x




   
 + −  − =   
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
 
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
,   

                          

(44) 
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0,  0,  0    at  0,1S y
x

 
 =  = = =


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(47) 

Now, let us describe a minimal double Fourier sequence expressions for the variables under consideration 

fulfilling the boundary conditions (Eq. (47)) as [58-62]: 

( ) ( ) ( )11 sin sinA x y    = ,                                              (48) 

( ) ( ) ( ) ( ) ( )11 02cos sin sin 2B x y B y     = + ,                          (49) 

( ) ( ) ( ) ( ) ( )11 02cos sin sin 2S C x y C y     = + .                                (50) 

Here, the amplitudes ( ) ( ) ( ) ( )11 11 02 11,  B ,  B ,  A C     and ( )02C   depend on time and to be 

determined. On applying Eqs. (48)-(50) into Eqs. (44)-(46), we achieve the following nonlinear autonomous 

differential equations: 
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Here, ( )2

2 4 CRJ Le K LePe= − + . The analytical resolution of above non-linear equations with time needy 

variables is too difficult. Therefore, it is needy to crack it numerically exhausting the Runge-Kutta-Fehlberg practice 

(RKF45). For initial condition, we acquired
11 11 02 11 021,  0A B B C C= = = = = . The consequences are also 

validated with ODE45 function in MATLAB.  

 

5.1. Convective heat and mass transmissions 

Here, the Nusselt number Nu  and the Sherwood number Sh  are defined to compute the convective heat and 

mass spreads in the system, respectively as:  
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On using Eqs.  (16), (17), (49) and (50) into Eqs. (56) and (57), we have: 
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Here ( )2

2 4 CRJ Le K LePe= − + . 

 

 

Table 1 Contrast of ,DT cR , 
c  and c  for miscellaneous values of Le , DSR  and   at  1.5 = , 0.2CRK = , 

0.8Pe =
 
and

 
0.8eG = . 

 

 

DSR  Le  
0.00 =  0.05 =  0.10 =  0.15 =  

,DT cR  
c  c  ,DT cR  

c  c  ,DT cR  
c  c  ,DT cR  

c  c  

-50 

3 123.76 3.13 10.21 128.93 2.93 6.57 140.50 2.75 4.51 153.95 2.64 3.03 

4 111.34 3.12 11.67 109.40 3.02 8.38 115.12 2.85 6.46 123.11 2.73 5.24 

5 100.33 3.12 11.78 95.75 3.08 8.77 98.82 2.91 6.91 104.15 2.79 5.75 

6 90.38 3.12 11.31 85.23 3.11 8.56 87.07 2.95 6.82 90.99 2.83 5.73 

-30 

3 97.56 3.13 6.81 107.86 2.88 3.40 119.83 3.24 0.00 119.83 3.24 0.00 

4 88.11 3.12 8.54 91.90 2.96 5.74 99.99 2.80 4.16 109.32 2.70 3.09 

5 80.30 3.12 8.81 81.30 3.01 6.28 86.65 2.86 4.83 93.27 2.75 3.90 

6 73.52 3.12 8.54 73.43 3.03 6.22 77.33 2.89 4.89 82.41 2.79 4.04 

-10 

3 65.84 3.17 0.00 65.84 3.17 0.00 65.84 3.17 0.00 65.84 3.17 0.00 

4 64.88 3.12 3.09 71.10 3.20 0.00 71.10 3.20 0.00 71.10 3.20 0.00 

5 60.27 3.12 4.08 66.78 2.94 2.12 73.97 3.22 0.00 73.97 3.22 0.00 

6 56.67 3.12 4.25 61.56 2.96 2.61 67.54 2.84 1.61 73.79 2.75 0.69 

0 

3 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 

4 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 

5 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 

6 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 

5 

3 25.32 3.13 0.00 25.32 3.13 0.00 25.32 3.13 0.00 25.32 3.13 0.00 

4 22.68 3.11 0.00 22.68 3.11 0.00 22.68 3.11 0.00 22.68 3.11 0.00 

5 21.24 3.11 0.00 21.24 3.11 0.00 21.24 3.11 0.00 21.24 3.11 0.00 

6 20.88 3.10 0.00 20.88 3.10 0.00 20.88 3.10 0.00 20.88 3.10 0.00 

7 

3 19.92 3.12 0.00 19.92 3.12 0.00 19.92 3.12 0.00 19.92 3.12 0.00 

4 16.22 3.10 0.00 16.22 3.10 0.00 16.22 3.10 0.00 16.22 3.10 0.00 

5 14.20 3.09 0.00 14.20 3.09 0.00 14.20 3.09 0.00 14.20 3.09 0.00 

6 13.69 3.08 0.00 13.69 3.08 0.00 13.69 3.08 0.00 13.69 3.08 0.00 
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6. Results and discussion 

In this effort, we have discovered the inspiration of chemical reaction, the through flow and the viscous 

dissipation effect on the thermosolutal convective flow of Rivlin-Ericksen liquid through permeable medium. 

Applying the linear stability conception, the conditions for the onset of nonoscillatory and oscillatory convections 

were developed analytically in tenures of ,DT cR whereas, the convective heat and mass transfer were concluded 

numerically in terms of Nu  and Sh  using weakly nonlinear stability exploration.  The results are offered in Figs. 

2-10 and Tables 1-3. The collection of the involved physical parameters are reserved from the available literature 

[33]. 

Fig. 2 shows the deviancies of DT,cR , 
c  and 

c  as a efficacy of DSR  for diverse evaluations of the Lewis 

number Le . The outcomes are also recorded in Table 1. From Fig. 2 (i), it is observed that with a boost in the 

assessments of Le , the critical heat Rayleigh-Darcy number ,DT cR  decreases for the both nonoscillatory and 

oscillatory approach of convections. This establishes that the Lewis number Le  quickens the inductee of convective 

flows. This is since the effectual thermal diffusivity of the Rivlin-Ericksen fluid rises with growing Le  and this 

increases the drive of Rivlin-Ericksen liquid movement. From Fig. 2 (i), it is also observed that the assessment of the 

DT,cR  losses on enlarging the assessment of the solutal Rayleigh-Darcy number DSR  for both nonoscillatory and 

oscillatory approaches. This shows that DSR increases the instability of the system. The equivalent result of DSR  

was also established by Roy et al [63]. From Fig. 2 (ii), it is acknowledged that the critical wave number 
c  

increases with increasing the Lewis number Le  for oscillatory mode of convection while, this consequence was 

opposite for nonoscillatory approach of convective flow. From Fig. 2 (ii), it is also perceived that the critical wave 

number
c  decreases with increasing the solutal Rayleigh-Darcy number DSR  for both nonoscillatory and 

oscillatory approach of convections. It displays that the size of convective cell upsurges with increasing the solutal 

Rayleigh-Darcy number DSR . From Fig. 2 (iii), it is distinguished that the oscillatory approach of convection is 

conceivable only if the estimation of DSR is non-positive and also it relies on the Lewis number Le . The range of 

DSR at which oscillatory wave happened rises with increasing Le .  

The impact of the Rivlin-Ericksen parameter  on the constancy of the system is offered in Fig. 3. From Fig. 3 

(i), it is found that the assessment of DT,cR  increases with accumulating the Rivlin-Ericksen parameter   for the 

oscillatory mode of convection, while it has no impact on nonoscillatory convection. This show that the increasing 

  postpones the arrival of convective current by increasing the viscoelasticity possessions of the Rivlin-Ericksen 

fluid. From Fig. 3(ii), it is detected that the dimension of the convective cell enhances with the Rivlin-Ericksen 

parameter   for the oscillatory approach of convection, whereas it has no impression on nonoscillatory convection.  

The Rivlin-Ericksen parameter   also decreases the range of DSR at which the oscillatory wave favored, as 

detected from Fig. 3 (iii).  

Fig. 4 shows the disparities of DT,cR , 
c  and 

c  as a occupation of DSR  for varied evaluations of the 

modified heat capacity ratio  . The results are also delivered in Table 2. The influence of   suspensions the 

occurrence of oscillatory type of convection by increasing DT,cR as detected from Fig. 4 (i). This is for the reason 

that the energy reinstating capability of the arrangement increases with growing  . From Fig. 4 (ii), it is perceived 

that the modified heat capacity ratio   increases the extent of convective cells by decreasing
c . The modified heat 

capacity ratio   also diminishes the range of DSR  on which the oscillatory approach of convection favored, as 

established from Fig. 4 (iii). Furthermore, from Fig. 4, it is perceived that the modified heat capacity ratio   has no 

impression on the nonoscillatory approach of convection. 

 

 

https://link.springer.com/chapter/10.1007/978-981-10-5329-0_33
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(i) 

 

(ii) 

 

(iii) 

 

 

Fig. 2. Discrepancy of DT,cR , c   and 
c  with DSR  for various values of Le  at 0.05 = , 

1.5 = , 0.2CRK = , 0.8Pe =
 
and

 
0.8eG = . 
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Table 2 Contrast of ,DT cR , 
c  and c  for miscellaneous values of  , DSR  and 

CRK  at  5Le = , 0.05 = , 

0.8Pe =
 
and

 
0.8eG = . 

 

Fig. 5 offerings the effect of the chemical reaction parameter 
CRK  on the instability of the system. From Fig. 5 

(i), it is established that the estimate of DT,cR decreases with 
CRK for oscillatory mode of convection. It shows that 

increasing 
CRK  accelerates the onset of oscillatory convective motion, whereas this conclusion is reverse for the 

nonoscillatory convection. From Fig. 5(ii), it is found that the dimension of convection cell enhances with 
CRK  for 

both nonoscillatory and oscillatory mode of convections. The chemical reaction parameter 
CRK  has no major 

impact on the range of DSR on which the oscillatory mode of convection ideal, as detected from Fig. 5 (iii).  

The weight of the Péclet number Pe  on the instability of the arrangement are presented in Fig. 6. The results 

are also documented in Table 3. From Fig. 6(i), it is found that the estimation of DT,cR increases with Pe  for 

nonoscillatory approach of convection. It shows that increasing Pe  delays the start of nonoscillatory convective 

motion, whereas this conclusion was contrary for the oscillatory mode of convection. From the Fig. 6 (ii), it is found 

that extent of the convective cells increases with rising the Péclet number Pe  by decreasing c  for oscillatory mode 

of convection, whereas this conclusion was opposed for the nonoscillatory mode of convective drive. The Péclet 

number Pe  also lessens the range of DSR  on which the oscillatory approach of convection desired, as recognized 

from Fig. 6 (iii). 

 

 

DSR    0.0CRK =  0.2CRK =  0.4CRK =  0.6CRK =  

,DT cR  c  
c  ,DT cR  c  

c  ,DT cR  c  
c  ,DT cR  c  

c  

-50 1 78.12 3.09 11.08 75.30 3.06 10.67 72.01 3.03 10.08 68.11 2.99 9.21 

2 123.93 3.11 7.35 117.49 3.07 7.17 109.81 3.03 6.85 100.53 2.98 6.30 

3 173.24 3.06 4.34 162.83 3.02 4.45 150.36 2.97 4.40 135.20 2.93 4.17 

4 219.61 3.14 0.00 209.33 2.95 1.32 191.91 2.91 1.96 170.68 2.86 2.16 

-30 1 69.32 3.02 8.09 67.22 3.00 7.82 64.84 2.97 7.40 62.10 2.95 6.78 

2 100.65 3.03 5.03 96.13 3.00 4.97 90.88 2.97 4.78 84.67 2.93 4.41 

3 134.03 3.00 2.29 126.90 2.97 2.56 118.54 2.93 2.66 108.56 2.89 2.56 

4 147.30 3.14 0.00 144.13 3.37 0.00 137.54 3.58 0.00 126.28 3.75 0.00 

-10 1 60.46 2.95 3.45 59.10 2.94 3.41 57.64 2.92 3.26 56.06 2.91 2.96 

2 74.98 3.14 0.00 73.97 3.22 0.00 71.89 2.91 0.53 68.29 3.35 0.00 

3 74.98 3.14 0.00 73.97 3.22 0.00 71.90 3.29 0.00 68.29 3.35 0.00 

4 74.98 3.14 0.00 73.97 3.22 0.00 71.90 3.29 0.00 68.29 3.35 0.00 

0 1 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 

2 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 

3 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 

4 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 38.83 3.14 0.00 

5 1 20.75 3.14 0.00 21.24 3.11 0.00 22.23 3.07 0.00 23.97 3.04 0.00 

2 20.75 3.14 0.00 21.24 3.11 0.00 22.23 3.07 0.00 23.97 3.04 0.00 

3 20.75 3.14 0.00 21.24 3.11 0.00 22.23 3.07 0.00 23.97 3.04 0.00 

4 20.75 3.14 0.00 21.24 3.11 0.00 22.23 3.07 0.00 23.97 3.04 0.00 

7 1 13.52 3.14 0.00 14.20 3.09 0.00 15.58 3.04 0.00 18.00 3.00 0.00 

2 13.52 3.14 0.00 14.20 3.09 0.00 15.58 3.04 0.00 18.00 3.00 0.00 

3 13.52 3.14 0.00 14.20 3.09 0.00 15.58 3.04 0.00 18.00 3.00 0.00 

4 13.52 3.14 0.00 14.20 3.09 0.00 15.58 3.04 0.00 18.00 3.00 0.00 
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Table 3 Contrast of ,DT cR , 
c  and c  for miscellaneous values of Pe , DSR  and 

eG  at  5Le = , 0.05 = , 

1.5 =
 
and

 
0.2CRK = . 

 

Fig. 7 shows the influence the Gebhart number   on  ,   and  . From Fig. 7 (i), it is distinguished that an enhance 

in the estimation of   is to accelerate the convective drive slightly by decreasing the  . This ensued because the 

specific heat capacity of the Rivlin-Ericksen fluid decreases with increasing the Gebhart number   . Consequently, 

the stability of the organism decreases by decreasing the energy restoring capability of system. From Fig. 7(ii) and 

7(iii), it is seen that the Gebhart number   has no control on the extent of the convection cells and the occurrence of 

oscillatory mode of convection. 

Fig. 8 and Fig. 9 show the impact of DTR , DSR , Le , 
CRK , Pe ,

eG ,   and   on heat and mass 

transportations in tenures of  the Nusselt number Nu and Sherwood number Sh  as a utility of the time  . It is 

established that the supreme surge of Nu and Sh  appearance near to the initial time; it makes spatial activities of 

progressing frequency. Lastly, the oscillations go to stable form for appropriately huge time. From Fig 8, it is 

established that the convective heat and mass spreads of arrangement increase with increasing DTR , DSR , Le , 

CRK , Pe  and 
eG

 
whereas, from Fig. 9, it is observed that that these spreads of arrangement decrease with 

increasing  and  .  

Fig. 10 presents the streamlines, isotherms and isohalines with various times. From this figure it is found that 

the convective cells appear when the convective movement in the arrangement started. From Fig. 10, it is also 

perceived that with increasing time, the extent of the streamlines and isotherms augmented.  Additionally, the 

isotherms and isohalines are more and more horizontal with growing time.  

 

DSR  Pe  0.0eG =  0.8eG =  1.6eG =  2.4eG =  

,DT cR  c  
c  ,DT cR  c  

c  ,DT cR  c  
c  ,DT cR  c  

c  

-50 0 115.32 3.19 11.60 115.32 3.19 11.60 115.32 3.19 11.60 115.32 3.19 11.60 

0.5 105.82 3.13 10.20 105.02 3.13 10.20 104.21 3.13 10.20 103.41 3.13 10.20 

0.6 102.88 3.11 9.73 101.92 3.11 9.73 100.95 3.11 9.73 99.99 3.11 9.73 

0.7 99.92 3.10 9.27 98.80 3.10 9.27 97.67 3.10 9.27 96.54 3.10 9.27 

-30 0.0 93.26 3.07 8.42 93.26 3.07 8.42 93.26 3.07 8.42 93.26 3.07 8.42 

0.5 87.66 3.04 7.38 86.86 3.04 7.38 86.05 3.04 7.38 85.25 3.04 7.38 

0.6 85.95 3.03 7.03 84.99 3.03 7.03 84.02 3.03 7.03 83.06 3.03 7.03 

0.7 84.24 3.02 6.66 83.11 3.02 6.66 81.99 3.02 6.66 80.86 3.02 6.66 

-10 0.0 71.00 2.96 3.75 71.00 2.96 3.75 71.00 2.96 3.75 71.00 2.96 3.75 

0.5 69.37 2.95 3.02 68.57 2.95 3.02 67.77 2.95 3.02 66.97 2.95 3.02 

0.6 68.91 2.94 2.75 67.95 2.94 2.75 66.98 2.94 2.75 66.02 2.94 2.75 

0.7 68.47 2.94 2.45 67.34 2.94 2.45 66.22 2.94 2.45 65.09 2.94 2.45 

0 0.0 39.48 3.14 0.00 39.48 3.14 0.00 39.48 3.14 0.00 39.48 3.14 0.00 

0.5 39.73 3.14 0.00 38.93 3.14 0.00 38.12 3.14 0.00 37.32 3.14 0.00 

0.6 39.84 3.14 0.00 38.87 3.14 0.00 37.91 3.14 0.00 36.95 3.14 0.00 

0.7 39.97 3.14 0.00 38.84 3.14 0.00 37.71 3.14 0.00 36.59 3.14 0.00 

5 0.0 12.45 3.08 0.00 12.45 3.08 0.00 12.45 3.08 0.00 12.45 3.08 0.00 

0.5 17.55 3.10 0.00 16.75 3.10 0.00 15.95 3.10 0.00 15.15 3.10 0.00 

0.6 19.18 3.10 0.00 18.22 3.10 0.00 17.26 3.10 0.00 16.29 3.10 0.00 

0.7 20.86 3.10 0.00 19.73 3.10 0.00 18.61 3.10 0.00 17.48 3.10 0.00 

7 0.0 1.63 3.06 0.00 1.63 3.06 0.00 1.63 3.06 0.00 1.63 3.06 0.00 

0.5 8.68 3.08 0.00 7.88 3.08 0.00 7.07 3.08 0.00 6.27 3.08 0.00 

0.6 10.92 3.08 0.00 9.95 3.08 0.00 8.99 3.08 0.00 8.03 3.08 0.00 

0.7 13.21 3.09 0.00 12.09 3.09 0.00 10.96 3.09 0.00 9.83 3.09 0.00 
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(i) 

 
(ii) 

 
(iii) 

 
 

Fig. 3. Disparity of DT,cR , c   and 
c  with DSR  for miscellaneous values of   at 5Le = , 

1.5 = , 0.2CRK = , 0.8Pe =
 
and

 
0.8eG = . 
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(i) 

 
(ii) 

 
(iii) 

 
 

Fig. 4. Disparity of DT,cR , c   and 
c  with DSR  for miscellaneous values of   at 0.05 = , 

5Le = , 0.2CRK = , 0.8Pe =
 
and

 
0.8eG = . 
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(i) 

 
(ii) 

 
(iii) 

 
 

Fig. 5. Disparity of DT,cR , c   and 
c  with DSR  for miscellaneous values of 

CRK  at 0.05 = , 5Le = , 

1.5 = , , 0.8Pe =
 
and

 
0.8eG = . 
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(i) 

 

(ii) 

 

(iii) 

 

 

Fig. 6. Disparity of DT,cR , c   and 
c  with DSR  for miscellaneous values of Pe  at 0.05 = , 5Le = , 

1.5 = , 0.2CRK =
 
and

 
0.8eG = . 
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(i) 

 
(ii) 

 
(iii) 

 
 

Fig. 7. Disparity of DT,cR , c   and 
c  with DSR  for miscellaneous values of 

eG  at 0.05 = , 5Le = , 

1.5 = , 0.2CRK =  and 0.8Pe = . 
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(i) 

 

(ii) 

 
(iii) 

 

(iv) 

 

 

Fig. 8. Variation of the time dependent Nu and Sh  with  for varied values of DTR , DSR , Le ,   and CRK  at 

0.05 = , 2Le = , 1.5 = , 0.1CRK = , 0.8Pe = , 0.8eG = , 3.1 = ,  50DSR = −  and 400DTR = . 

 

 

 



Journal of Computational Applied Mechanics 2025, 56(3): 561-586 581 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

 

 

Fig. 9. Variation of the time dependent Nu and Sh  with  for varied values of Pe , 
eG ,  ,   and   at 

0.05 = , 2Le = , 1.5 = , 0.1CRK = , 0.8Pe = , 0.8eG = , 3.1 = ,  50DSR = −  and 400DTR = . 
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Fig. 10. Streamlines, isotherms and isohalines with miscellaneous time at 0.05 = , 2Le = , 

1.5 = , 0.2CRK = , 0.8Pe = , 0.8eG = , 3.1 = ,  50DSR = −  and 400DTR = . 

 

 

7. Conclusions 

 

In this analysis, the power of the chemical reaction, the through flow and the viscous dissipation on the 

thermosolutal convective flow of Rivlin-Ericksen fluid through porous medium was analyzed using linear and weak 

nonlinear constancies theories. The core outcomes of this analysis are itemized as: 

• The assortment of the solutal Rayleigh-Darcy number DSR  for which oscillatory mode of convective 

movement occurred reduces with growing the Rivlin-Ericksen parameter  , the modified heat 

capacity ratio   and the Péclet number Pe  whereas this range increases with increasing the Lewis 

number Le .   

• The chemical reaction parameter 
CRK  and the Gebhart number 

eG
 
have no impact on the occurrence 

of oscillatory mode of convective movement. 

https://link.springer.com/chapter/10.1007/978-981-10-5329-0_33
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• The oscillatory approach of convective movement is feasible only if the assessment of the solutal 

Rayleigh-Darcy number DSR  is negative. 

• The Lewis number Le , the solutal Rayleigh-Darcy number DSR  and the Gebhart number 
eG

 
hurry 

the commencement of convective wave, while the Rivlin-Ericksen parameter   and the modified heat 

capacity ratio   postponement it. Further, the chemical reaction parameter 
CRK  and the Péclet 

number Pe  accelerate the oscillatory convective motion while the nonoscillatory convective motion 

delay with increasing 
CRK  and Pe . 

• The dimension of the convective cell increases with cumulating the Rivlin-Ericksen parameter  ,  the 

chemical reaction parameter 
CRK  and the modified heat capacity ratio  .  

• The Rivlin-Ericksen parameter  , the Gebhart number 
eG

 
and the modified heat capacity ratio   

have no major influence on the nonoscillatory mode of convection.  

• The convective heat and mass spreads of the arrangement upsurge with increasing DTR , DSR , Le , 

CRK , Pe  and 
eG

 
whereas, this result was opposite with increasing   and  . 
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