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Abstract 

This work examines the Poiseuille flow of the Reynolds model's non-

isothermal couple stress fluid between heated inclined plates. Using the 

Optimal Homotopy Asymptotic Method with DJ Polynomials (OHAM-DJ) 

and the Asymptotic Homotopy Perturbation method (AHPM), the strongly 

non-linear system of ordinary differential equations have been studied. The 

AHPM and OHAM-DJ have been used to approximate the results for the 

velocity profile, shear stress, temperature distributions, average velocity and 

volume flux. It is important to note that the outcomes obtained from these 

two methods closely resemble one another. In addition to being shown 

graphically, the impact of various factors on the flow problem have been 

investigated mathematically. 

Keywords: Couple Stress Fluid, Optimal Homotopy Asymptotic Method, Asymptotic Homotopy, 

Perturbation method; Poiseuille Flow; Reynolds Model, Non-isothermal Poiseuille flow, Inclined plates 

1. Introduction  

Non-Newtonian liquids have a varied collection of applications in numerous scientific and technological 

domains, non-Newtonian fluids have become a very tempting alternative to Newtonian fluids for physicists, 

engineers, and mathematicians in recent decades [1-3]. The join stress liquid concept, which Stokes established, is 

one of the liquid concepts that have drawn a lot of attention from researchers and scientists [4]. Owing to the 

difficulty of these liquids, multiple constitutive models have remained advocated for various types of these liquids, 

as they cannot be accommodated into a solitary constitutive model. Due to the numerous beneficial uses of non-

Newtonian fluids in contemporary skill and knowledge, numerous researchers have attempted to solve many non-

Newtonian liquid movement problems. The impression of couple stress liquid arises owing to the procedure, that by 

which technique the fluid intermediate be modeled for the automated interactions. This hypothesis accurately 

describes the behaviour of fluids flowing through substructures, like as liquid crystals, lubricants, and animal blood, 
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containing polymer additives [5-10]. Amid the several fluid representations that are employed to clarify the 

performance of the non-Newtonian liquid, the pair stress fluid attracted a lot of interest.  [11-14]. The fluids 

composed of unbending particles postponed in a viscous average with random orientation are defined by the couple 

stress fluids model. In certain fluids, the stress tensor is anti-symmetric. Therefore, classical Newtonian theory is 

unable to predict the precise flow behaviour of a fluid. The couple stress fluid model's key feature is that its 

solutions resemble Navier-Stokes equations. Because it is mathematically simpler than other fluid models, this 

model has been applied widely. 

Various techniques have been employed in the literature to examine flow issues. These many approaches which   

serve as the primary instruments for researching flow problems include iterative, numerical, Homotopy-based 

techniques, and perturbation. Each of these approaches has benefits and drawbacks. Numerical techniques employ 

separation, which has an impact on exactness. The computing work and time required by the numerical methods 

were substantial. When there is significant non-linearity, numerical techniques cannot produce reliable findings. [15] 

Investigated both linear and non-linear functional equations using a novel technique. Its merging has stayed 

confirmed in [16]. Scholars in [17] dubbed this practice OHAM with DJ polynomials (OHAM-DJ) when they 

working DJM in OHAM to examine nonlinear differential equations.  

In this work, two heated parallel inclined plates and their Poiseuille flow of incompressible pair stress fluid have 

been examined. The estimated results for the temperature, velocity, shear stress and average velocity on the plates 

have been derived using the OHAM-DJ and AHPM. This paper is divided into multiple sections. Basic governing 

equations are given in section 2. Problem construction is covered in piece 3, methods are introduced in piece 4, 

while solution of problem are assumed in piece 5, average velocity, volume flux and shear stress are delivered in 

piece 6, outcomes and debates are included in piece 7, and the work's conclusion is found in the final piece 8. 

2. Basic Equations 

The following are the equations for mass, momentum, and conservation of energy for an incompressible fluid 

[18, 19].  

. 0, =        (1) 

4  .   ,f   
•

 =  −  +       (2) 

2 ,pc L  
•

 =  +       (3) 

Velocity vector is represented by ,    is the gradient of the Cauchy stress tensor, the temperature is signified 

by , signals constant density 
. 

The couple stress parameter is represented by   in this case, the body force is 

represented by f , the specific heat is represented by ,pc  and the material time derivative is represented by 
D

Dt
  

and given as below 

( ) . ( ).
D

Dt t

 
• = +  • 

 
     (4) 

Cauchy stress tensor is shown    here as below. 

1.p I A = − +       (5) 

First Rivilin-Ericksen tensor is symbolized by 1A , and given as follows, anywhere  the unit tensor is signified by 

I , the dynamic pressure is signified by p ,  the coefficient of viscosity is represented by   , 

1 .tA L L= +        (6) 

3. Formulation of Problem 

Examine the steady Plane Poiseuille flow that exists between two infinitely parallel, inclining plates. Gravity and 

the constant pressure gradient force the fluid to move while both plates remain static. The temperatures of the lower 

and upper plates remain at and, 0  and 
1.  correspondingly. Figure 1 shows the coordinate system under 
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consideration. There is an angle of among the plates and the straight direction  . The   viscosity varies with 

temperature . The velocity and temperature are displayed as follows. 

( ) ( ) ( )  ,0,0 ,       .z y and z z y = = =
    (7)

 

 

 

Figure 1:   Geometry of the problem 

By putting Eq. (7), Eq. (1) is satisfied identically. Additionally, Eq. (2) and (3) reduced to 

2 4

2 4
sin 0,

d d dµ dz p
µ g

dy dy dy dy x

z z
  


− + − + =


    (8) 

2 22 2

2 2
0.

d d µ dz

dy dy d

z

y 

    
+ =   

 
+


     (9) 

The boundaries of equations (8–9) are represented by equations (10–12). 

( ) ( )0,  0,z d z d= − =      (10) 

( ) ( )''  0, ''  0,z d z d= − =      (11) 

( ) ( )1 0 .  ,d d =   − =       (12) 

Boundary conditions with no slip are represented by equation (10). It is clear from equation (11) that couple 

stress reduces at the plates. The dimensionless restrictions as a whole are: 

* * * * * *0

1 0 0 0

2 2 2 5 4
20 0

1 0 0

  ,   ,   ,   ,   ,   ,
/

, , sin .
( )

r

y µ
y x p µ

d d Z d µ

Z d B d p g d

z x p
z

Z

B B G
Z x Z



  


   

−
= =  = = = =

 −


= = = − +

 − 

  (13) 
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With boundary conditions (10)–(12) and removing the asterisks, equations (8)–(9) can be expressed as  

4 2
2 2

4 2
0,

d dµ dz d
B B µ G

dy dy dy dy

z z
− − − =     (14) 

222 2

2 2 2
0,r

r

Bd dz d
B µ

dy dy B d

z

y

  
+ + =  

   
    (15) 

( ) ( ) ( ) ( )1 0, '' 1  0, 1  0, '' 1  0,z z z z= − = − = =     (16) 

( ) ( )1 0, 1   1. − =  =      (17) 

The Reynolds viscosity model is as shadows in its dimensionless. 

( )exp .µ M= −        (18) 

Here, let's assume that mM =  there   is a tiny parameter. By using equation (18)'s Taylor series expansion, 

one may obtain  

1 mΘ, m .
dµ d

µ
dy dy


= −  −      (19) 

4. Description of the methods 

4.1. Basic Concept of OHAM-DJ 

Suppose the differential equation 

( ( )) ( ) ( ( )) 0,L g G    + + = ( , ) 0.
d

B
d





=

    

(20)  

Here ( )g  is the known function, here the linear operator is denoted by L , the unknown function is denoted by 

( )  .  B  Is the boundary operator, non-linear operator is denoted by ( ( ))G    

By OHAM we have  

(1 )[ ( ( , )) ( ))] ( )[ ( ( , )) ( )) ( ( , ))],p L p g D p L p g G p       − + = + +
 

( , )
( , ), 0.

d p
B p

d

 
 



 
= 

       (21) 

An embedding parameter is present and f [0,1]p   here, and the secondary function is represented by ( )D p , 

so that for 0p  ( )D p
 
is non-zero or 0p =  that is (0) 0,D =  evident after 0p =  and 1p =  it generates 

0( ,0) ( ),   = ( ,1) ( ).   =      (22)  

The result ( , )q   differs from 0 ( )w   to ( ),w   as p diverges from 0  to1,  the outcome 0 ( )w   can be 

attained by putting 0p =  in Eq. (20). 

0( ( )) ( ) 0,L g  + = 0
0( ) 0.

d
B

d





=      (23)  

One way to express the auxiliary function is as  



Journal of Computational Applied Mechanics 2025, 56(3): 587-601 591 

2 3

1 2 3( ) ...,.D p pc p c p c= + + +     (24)  

Here , i 1, 2,3...ic =  are coefficients. Now let us income the answer of equation (21) in the arrangement  

0

1

( , , ) ( ) ( , ) .j

i j i

j

p c c p     


= +     1,2,...i =  (25) 

The non-linear component  ( ( , ))G p 
 
is broken down as  

2

0 0 1 0 0 1 2 0 1( ) [ ( ) ( )] [ ( ) ( )] ...G G p G G p G G        = + + − + + + − + +
  

(26) 

Where (DJ) polynomials are represented as 

0( ),G 
0 1 0[ ( ) ( )],G G  + − 0 1 2 0 1[ ( ) ( )],...G G    + + − +  

It was demonstrated by Sachin Bhalekar and Varsha Daftardar-Gejji in [16] that these polynomials converge. 

Simplified, it may be expressed as  

0 0

1 0 1 0

2 0 1 2 0 1

( ),

( ) ( ),

( ) ( ),

G G

G G G

G G G



  

    

=

= + −

= + + − +

     

Consequently, in broad form as  

1

0 0

n n

n j j

j j

G G G 
−

= =

   
= −   
   
       (27) 

0

0

n
k

k

j

G G p G
=

= +       (28)  

Putting (24), (25), (26) and (28) in (21) and matching similar powers of p  the subsequent classification revenue  

0( ( )) ( ) 0,L g  + =  
0

0( ) 0.
d

B
d





=     (29) 

1 1 0 0( ( )) ( ( )),L c G   =  
1

1( ) 0.
d

B
d





=

   (30) 

1

1 0 0

1

0 1 1

( ( ) ( )) ( ( ) [ ( ( ))

( ( ), ( ),..., ( ))],

j

j j j k j k

k

j k j

L c G c L

G

       

     

−

− −

=

− −

− = +

+


( ) 0.

j

j

d
B

d





= 1,2,...j =

 (31)  

The system of equations (23), (30) and (31), for ( ), 0,j j   can easily be solved. Equation (25)'s solution, or 

meeting, is entirely dependent on  
1 2 3, , ,...c c c At 1p =  if it is convergent, then equation (25) indicates 

0

1

( , ) ( ) ( , ).k j k

j

c c     


= +     (32)  

Typically, the outcome of equation (20) is roughly represented by  

0

1

( , ) ( ) ( , ),
n

n

l j l

j

c c     
=

= + 1,2,... .l n=    (33)  
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After putting equation (33) in equation (20) residual converts  

( , ) ( ( , )) ( ) ( ( , )),n n

l l lR c L c g G c     = + + 1,2,..., .l n=
  (34)  

The exact answer ( , )n

kc   is found if ( , ) 0kR c =  the remaining is equivalent to zero. However, if  

( , ) 0,kR c   it may be reduced as follows 

2( ) ( , ) .

b

k k

a

J c R c d =       (35)  

Where the constants a and b  represent the boundary of integral, which depends on the problem being studied.  

Additionally, the following condition can be used to evaluate constants 
1 2 3, , ,...c c c  

0,
i

J

c


=


 1,2,..., .i n=      (36)  

Equation (33), after these constants' values are obtained, provides an approximate solution. 

4.2. Basic Idea of AHPM 

AHPM is explained in this subsection; let's look at the differential equation.  

( ( )) ( ) ( ( )) 0L f N  +  +  =
    (37) 

Where ( )f  is known function, the linear operator is epitomized by L , the unknown function is indicated by 

( )  ,  here the nonlinear operator is indicated by ( ( ))N   . Consider the homotopy ( , ) : [0,1]p R   →  

[24] such that  

( ( , )) ( ) [ ( ( , ))] 0,L p f p N p  +  −  =     (38) 

wherever the constraint for embedding [0,1]p . An alternative version of the deformation equation OHAM, 

first forth by [22], is represented by equation (38) as shadows. 

(1 )[ ( ( , )) ( ))] ( )[ ( ( , )) ( )) ( ( , ))] 0,p L p f H p L p f N p  −  +  −  +  +  =  (39)  

obviously when 0p =  and 1p =  it yields  

0( ( ,0)) ( ),   =  ( ( ,1)) ( ),   =   

Consider ( ( , ))p    is in the form 

0

1

( ( , )) ( ) ( ) ,j

j

j

p v v p 


=

 =  +      (40)  

the non-linear part ( ( , ))N p   is as under  

1 0 1 1 2 3

1 0

( ( , )) , ... 1,
j

j

j n n

j n

N p Q N Q N p Q Q Q


+ −

= =

 
 = + + + + = − 

 
 

 

(41)  

where 

( , ), j 1, 2,3,...j j jQ Q c=  =      (42)  
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We obtain by replacing (40) and (41) in (38) and comparing like powers of  

0

0: ( ( )) ( ) 0,p L f  +  =        

1

1 1 0: ( ( )) ,p L Q N  =        

2

2 2 0 1 1: ( ( )) ,p L Q N Q N  = +       

3

3 3 0 2 1 1 2: ( ( )) ,p L Q N Q N Q N  = + +      

thus, in general 

1

0

: ( ( )) .
l

l

l l j j

j

p L Q N
−

−

=

 =        

The equation (38) at 1r = touches to the exact resolution of equation (37), explicitly 

0

1

( , ) ( ) ( , ), 1,2,3...k j k

j

c c k  


=

 =  +  =    (43) 

Equation (43) is substituted for equation (37) and residual becomes  

( , ) ( ( , )) ( ) ( ( , )),k k kR c L c f N c  =  +  +  1,2,..., .k n=
 (44)  

The particular answer ( , )n

kc    is got if ( , ) 0kR c = , the residual is identical to zero. However, if 

( , ) 0,kR c  it may be reduced as follows 

2( ) ( , ) .

b

k k

a

J c R c d =       (45)  

Where the constants a and b  represent the boundary of the integral, which depends on the problem being 

studied. Additionally, the following condition can be used to evaluate constants 
1 2 3, , ,...c c c  

0,
i

J

c


=


 1,2,..., .i n=      (46)  

Equation (43), once these constants' values are obtained, provides an approximate solution. 

 

5. The solution to the Problem 

Zero order OHAM-DJ results for velocity and temperature distributions 

Zero order velocity problem 
''''

0 ( ) 0,z y G− =        

'' ''

0 0 0 0( 1) 0, (1) 0, ( 1) 0, (1) 0.z z z z− = = − = =      

Zero order velocity solution 

2

0

41
= (5 - 6 + ).

24
y yz       

First order velocity problem 
2 ' ' 2 '' 2 ''

1 0 0 1 0 1 0 0

'''' ''''

1 0 1

( ) ( ) ( ) ( ) ( )

(1 ) ( ) ( ) 0,

G B m c z y y B c z y B m c z y y

c z y z y

 −  + − 

− + + =
   

'' ''

1 1 1 1( 1) 0, (1) 0, ( 1) 0, (1) 0.z z z z− = = − = =      

First order velocity solution 



594 Farooq et al. 

20 3 2 20 5 4

20 1

3

1

5 2 73 16

1
= (-0.000112 + 3.8  y + 2.0  - 5.7 - 2.2  

10080

  +2.2 +1.2  - 2.1  ).

10 10 10 10

10 10 10

z y y y

y y y

− − − −

− − −

   

  

 

OHAM-DJ solutions of velocity profile ( ) up to first order 

0 1z z = +
      

2 4 20

3 2 20 5 43 2

3

5

6

0

1 21 7

10

10

.

1/ 24 (5 -  6  )  1

0

/10080(-0.000112  3.8   

        2.0  -5.7 - 2.2 2.2

  1.2 -  2.1

1 10 10

 1 )0 10

y y

y y y y

y

y y

−

− −

−



− −

−

 = + + + 

   



+

+ 

+  (47) 

OHAM-DJ results of temperature distributions ( )  up to first order  

The related boundary conditions and the zero component equations for temperature are 
''

0 (y) 0, =  

0 0( 1) 0, (1) 1. − =  =       

Zero order solution of temperature 

0

1
(1 + y).

2
 =         

The related boundary conditions and the first component equations for temperature are

  '' 2
' 2 ' 2 '' ''1 0

1 0 1 0 0 1 0 12

( ( ))
( ( )) ( ( )) (1 ) (y) (y) 0,r

r r

B c z y
B c z y m B c z y c

B
− +  − − +  + =

  

 

1 1( 1) 0, (1) 0. − =  =        

First order temperature solution 

1

4

1

6 7

1

5 9

6

8

15 2 1

5 7 9

34.4(3.2-1.5 y - 4.3 +1.4 - 0.3 - 6.6  

         + 2.1 + 6.4 - 2. .

10 10

10 1 0 )170

y y y y

y y y

− −

− − −

  

 

=


 

 

0 1.O = +         

15 2 15

9 16 7

5 4

6 7 918

1
(1  ) (3.2 -1.5 - 4.3 2.1 1.4  

2

         -  0.3 -  2.7 -  6.6  6.4 )34.4.

10 10

10 10 10

O y y y

y y y y

y y− −

− − −

 = + + + +

+

 

     (48) 

The following are AHPM's first-order solutions for velocity profile A( )  and temperature distributions ( )A  

Zero order velocity problem  
''''

0 ( ) 0,z y G− =       

'' ''

0 0 0 0( 1) 0, (1) 0, ( 1) 0, (1) 0.z z z z− = = − = =      

Zero order velocity solution 

2 4

0

1
= (5 - 6  + ).

24
y yz       

First order velocity problem  
''''

1 1 0( ) N 0,z y c+ =       
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2 '' 2 ' '

0 0 0 0 0(1 (y)) ( ) ( ) ( )),N B m z y B m y z y = − −  −      

'' ''

1 1 1 1( 1) 0, (1) 0, ( 1) 0, (1) 0.z z z z− = = − = =      

First order velocity solution 

13 4 2

1 42 5 13

6 14

1

3 5

6 7

1
= (-0.0001 + 7.1  y

1

 + 1.6  
10080

        - 1.1  - 3.4 +4

.

10

8

10

10 1  0 10

0 10

.0

       +2.2 -3. )

z y

y y y

y y

− −

− − −

− −

 

  

 

    

0 1.A z z = +        

   

1

4

3 4 5

6

2 13 4 2

12 5 3

6 14 7

(5 -  6 ) / 24 (-0.0001 7.1 1.6  

        -1.1  -  3.4 4.0  

       2.2 -3.8 ) /10080.

10 10

10 10 10

10 10

A yy y y

y y y

y y

− −

− − −

− −

 = + + + + 

  +

+  

 (49)  

AHPM’s solutions of temperature ( )A  

Zero order problems of temperature is 
''

0 (y) 0, =         

0 0( 1) 0, (1) 1. − =  =      

  

Zero order solution of temperature is 

0

1
(1 + y).

2
 =        

First order problem of temperature is 
''

1 1 0(y) 0,c N + =        

' 2 '' 2

0 0 0 02
(1 )( ( )) ( ( )) ,r

r

B
N B m z y z y

B
= −  +      

1 1( 1) 0, (1) 0. − =  =        

First order temperature solution 
15 15 2

1 9 1

6

5

1

54 6 8 7

91

34.4 (8.3 - 3.8  y  +5.4 - - 11.3 

+ 3.8 7.5 -7.2 -1.7  

         + 1.7  ).

10 10

10 10 10

10

y y

y y y y

y

− −

− − −

−

  

 



=

     

0 1A = +         

15 1

15 2 15 9

6

5 4 7 8

1 96

(1  ) / 2  34.4 (8.3 -  3.8   -  7.5 

         5.4 -  11.3  3.8  -1.7 - 7.2  

          1.7  ).

10 10

10 10 10

10

A y

y y y y y

y y

y

− −

− − −

−



+





= + + 



+ +   (50)  
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6. Volume Flux, Average Velocity, Shear Stress 

6.1. Volume Flux 

The formula for volume flux is as follow: 
1

1

d .Q y
−

=        (51) 

Equations (47) and (49) can be substituted in (44) to indicate 
2 29 92.8 10 0.26 G - 5.7 10  .OQ B Gm B G− −= +     (52) 

2 2 0.1  G m - 0.1 
4

.
15

G A

G
Q B B= +     (53) 

6.2. Average Velocity 

The average velocity is represented by and is described as follows: 

.
Q

d
 =       (54) 

Equation (54) in dimensionless form agrees by the movement amount provided in equations (52) and (53). 

6.3. Shear Stress 

In dimensionless form the shear stress is represented and clear as under 

 , , 1.t µ D y y= −  =p       (55) 

2 21
t =-(- (0.0001792 G+0.00007168 B G - 0.0000401067 B G m )) .

3 10080
O

G
  +  (56)  

2 21
t =-(- (1343.99 B G- 751.995 B G m )) .

3 10080
A

G
  +     (57) 

The superior plate is fronting the coordinate system's negative directiony− , which is why there is a minus 

symbol [23]. O tQ , Q ,A O  and t A
The shear stresses  and volume fluxes in this case were determined via AHPM 

and OHAM-DJ, respectively. 

7. Results and Discussion 

In this paper, the Poiseuille flow between two inclined plates has been studied using two homotopy-based 

approaches (AHPM and OHAM-DJ). Using both of these methods, the velocity also temperature difference for 

various parameters, such as , , ,
r

B m G B and , have been studied. Temperature distributions, velocity profiles, and 

the matching residuals for both approaches are provided in tables 1-2. Table 3 shows the absolute variations in the 

temperature distributions and velocity profiles for the two approaches for various parameter values , , ,
r

G B m B and 

.  Figures (2–5) show how various parameters , , ,
r

G B m B and  affect the distributions of temperature and 

velocity. The velocity profiles of OHAM-DJ and AHPM are compared for various parameters in figures (2–3), and 

they show great agreement. These figures make it obvious that both approaches' velocities are parabolic. As can be 

seen from these graphs, the temperature of the fluid was examined for various parameters in figures (4-5) using both 

approaches, and the results showed great similarity. Both approaches have been used to investigate the volumetric 

flow rate for a range of factors, and the results are in good agreement, as figures (6-7) demonstrate. Using both 

approaches, the shear stress is examined for a range of parameters and is found to be very comparable, as shown in 

figures (8–9).  Shear stress p
 and parameter G  both are in direct connection as perfect from these data. 
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Table 1: For 0.0003, 0.5,  0.0001,  0.0004 and 0.0002.rG B B m = = = = =  

y OHAM-

DJ ( )  

Residual ( )  OHAM-    

DJ ( )O  

Residual ( )O  

-1. -5.3×10-26 -1.66667×10-9 4.2×10-14 1.42193×10-13 

-0.9 1.6×10-2 -1.19167×10-9 50.9488 2.55224×10-8 

-0.8 3.27×10-2 -7.66667×10-10 101.507 6.99766×10-8 

-0.7 4.8×10-2 -3.91667×10-10 150.799 1.0208×10-7 

-0.6 6.2×10-2 -6.66665×10-11 197.592 1.08393×10-7 

-0.5 74×10-2 2.08333×10-10 240.471 8.80076×10-8 

-0.4 8.5×10-2 4.33333×10-10 277.986 4.79471×10-8 

-0.3 9.3×10-2 6.08333×10-10 308.78 -7.34879×10-10 

-0.2 9.9×10-2 7.33333×10-10 331.69 -4.61336×10-8 

-0.1 0.102919 8.08333×10-10 345.827 -7.79771×10-8 

0. 0.104167 8.33333×10-10 350.636 -8.93945×10-8 

0.1 0.102919 8.08333×10-10 345.927 -7.79771×10-8 

0.2 0.0992 7.33333×10-10 331.89 -4.6133×10-8 

0.3 0.0930854 6.08333×10-10 309.08 -7.3478×10-10 

0.4 0.0847 4.33333×10-10 278.386 4.79468×10-8 

0.5 0.0742187 2.08333×10-10 240.971 8.80078×10-8 

0.6 0.0618667 -6.66667×10-10 198.192 1.08393×10-7 

0.7 0.0479187 -3.91667×10-10 151.499 1.0208×10-7 

0.8 0.0327 -7.66667×10-10 102.307 6.99769×10-8 

0.9 0.0165854 -1.19167×10-9 51.8488 2.55224×10-8 

1. -5.2519×10-26 -1.66667×10-9 1. 9.92803×10-15 

Table 2: For 0.0002, 0.5,  0.0004, 0.0001,  and 0.0003.rm G B B = = = = =
 

y AHPM
A( )  Residual 

A( )  AHPM ( )A  Residual ( )A  

-1. -4.8×10-27 1.33331×10-13 -7.64869×10-14 -2.91937×10-14 

-0.9 0.016585 1.37057×10-13 133.305 1.08081×10-7 

-0.8 0.03270 1.27869×10-13 265.588 2.96368×10-7 

-0.7 0.047918 1.06927×10-13 394.554 4.32345×10-7 

-0.6 0.061866 7.66364×10-14 516.979 4.59085×10-7 

-0.5 0.074218 4.04687×10-14 629.156 3.72744×10-7 

-0.4 0.08470 2.58757×10-15 727.292 2.03062×10-7 

-0.3 0.093085 -3.26415×10-14 807.831 -3.13252×10-9 

-0.2 0.0992 -6.11625×10-14 867.728 -1.95422×10-7 

-0.1 0.102919 -7.9698×10-14 904.658 -3.30299×10-7 

0. 0.104167 -8.61218×10-14 917.167 -3.78658×10-7 

0.1 0.102919 -7.9698×10-14 904.758 -3.30299×10-7 

0.2 0.0992 -6.11625×10-14 867.928 -1.95422×10-7 

0.3 0.093085 -3.26415×10-14 808.131 -3.13165×10-9 

0.4 0.0847 2.58757×10-15 727.692 2.03062×10-7 

0.5 0.074218 4.04687×10-14 629.656 3.72744×10-7 

0.6 0.061866 7.66364×10-14 517.579 4.59085×10-7 

0.7 0.0479187 1.06927×10-13 395.254 4.32346×10-7 

0.8 0.0327 1.27869×10-13 266.388 2.96368×10-7 

0.9 0.0165854 1.37057×10-13 134.205 1.08082×10-7 

1. -5.424×10-27 1.33331×10-13 1. 2.83172×10-13 
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Table 3: For 0.9, 0.09, 1.2, 0.9 and 0.6.    rG m B B= = = = =  

y OHAM 

DJ ( )  

AHPM

A( )  

  Difference OHAM-

DJ ( )O  

AHPM

( )A  

  Difference 

-1 -1.387×10-17 -1.105×10-17 0 1.041×10-17 -2.440×10-17 0 

-0.8182 0.0536797 0.0463047 0.007375 0.111749 0.145484 0.033735 

-0.6162 0.107473 0.0926519 0.014821 0.233894 0.301841 0.067947 

-0.4142 0.150002 0.129246 0.020756 0.352185 0.448111 0.095926 

-0.2122 0.177445 0.152851 0.024594 0.464686 0.57922 0.114534 

-0.0102 0.187477 0.16151 0.025967 0.569949 0.69138 0.121431 

0.0102 0.187477 0.161515 0.025962 0.580146 0.701573 0.121427 

0.2122 0.177445 0.152953 0.024492 0.676829 0.791272 0.114443 

0.4142 0.150002 0.129407 0.020595 0.766278 0.862031 0.095753 

0.6162 0.107473 0.0928115 0.014662 0.849958 0.917685 0.067727 

0.8182 0.0536797 0.0463992 0.007281 0.92984 0.963398 0.033558 

1 -1.387×10-17 -1.105×10-17 0 1. 1. 0 

 

  

Figure 1: Velocity profile for    and 0.3, 0.002, 0.2 0.0003rB B m= = = =  using OHAM-DJ.  

  

Figure 2: Velocity profile for and0.002, 0.2, 0.3 0.0003rB B m= = = =  using AHPM.  
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Figure 4: Temperature distributions for   1,  1,     0.1 and   2B m G= = = =  by OHAM-DJ. 

  

Figure 5: Temperature distributions for m = 0.1,  G = 2, = 1 and B = 1
  

by AHPM. 

  

Figure 6: By OHAM-DJ variation in volume flux for 3, 0.1.m = =  



600 Farooq et al. 

  

Figure 7: By AHPM variation in volume flux for 3, 0.1.m = =   

  

Figure 8: Shear stress variation for and1, 0.1 3B m= = =  by OHAM-DJ.  

  

Figure 9: Shear stress variation for and3, 0.1 1m B= = =  by AHPM.  

8. Conclusion 

The current work presents a relative study of the pair stress fluids' steady Poiseuille flow among dual in similar 

inclined Reynolds model plates. The extremely nonlinear differential equations of couple stress fluids for 

temperature distribution, velocity, shear stress, and average velocity have been studied using OHAM-DJ and AHPM 
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methodologies. Both approaches' approximations for the volumetric flow rate, velocity, temperature distributions, 

and shear stress are shown mathematically and clearly, and it is discovered that they closely resemble each other. 
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