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Abstract

In this paper, the inclined Poiseuille flow of a couple stress fluid between
two parallel plates under the influence of a magnetic field is investigated
using two analytical techniques: the Homotopy Analysis Method (HAM)
and the Optimal Auxiliary Function Method (OAFM). The effects of various
non-dimensional parameters on the velocity profile, temperature
distribution, shear stresses, and flow rate are analysed in detail. The
solutions obtained from HAM and OAFM are compared through graphical
and tabular representations, including residual error analysis. The results
demonstrate that OAFM provides a more efficient and accurate solution
than HAM. Ultimately, we conclude that both methods are effective in
solving highly nonlinear differential equations and complex physical models.

Keywords: Couple Stress Fluid; Poiseuille Flow; Optimal Auxiliary Function Method; Homotopy
Analysis Method; Magnetohydrodynamic

1. Introduction

Magnetohydrodynamics (MHD) has numerous applications in both biological and engineering sciences,
playing a crucial role in various fluid flow problems. Its applications extend beyond fluid mechanics to a wide range
of engineering disciplines. For instance, Kumar et al.[1] analyzed fluid flow across a stretching cylinder under the
influence magnetic dipole. Gowda et al. [2] investigated the MHD effect using magnetized flow, heat diffusion
theory, and Stefan blowing conditions. In another study, Gowda et al. [3] examined the contribution of MHD flow
across a stretching sheet to the fluid flow influenced by the magnetic dipole. Magneto bioconvection flow across an
inclined plate with entropy generation was discussed by Yusuf et al.[4] . The effect of MHD on thermophoretic
particles in the fluid flow over a stretching sheet was discussed by Kumar et al.[5]. The flow of a squeezed nanofluid
between two plates was investigated by Domairry and Hatami [6]. Pourmehran et al.[7] have researched the
squeezing flow that occurs when two parallel plates are squeezed together. Khan et al.[8] have expanded on this
analysis by taking the viscous dissipation features into consideration. The effect of a magnetic field on an
electrically conducting fluid, such as water, is known as magnetohydrodynamics (MHD), and it has just been
introduced [9]. MHD cooling reactors, castings, and sensors all have extensive uses in industry and engineering. The
influence of couple stress on pulsatile hydromagnetic Poiseuille flow was discussed by El-Dabe and EI-Mohandis
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[10]. Farooq et al.[11] investigated the laminar flow of couple stress fluids using Vogel's model. In an inclined
magnetic field, Manyonge et al.[12] describe steady Poiseuille flow between two infinitely parallel porous plates.

A linearization or discretization process is generally used in numerical methods, which can result in
divergent solutions in some cases. The efficiency of OAFM can be demonstrated by comparing its numerical results
with those produced by the Runge-Kutta method of order 4. OAFM is a new optimization methodology developed
by Herisanu [13, 14] that does not require linearization, discretization, or problems with small parameters as is the
case with perturbation methods. The large convergence region of the OAFM is controlled by an optimal constant. It
produces an accurate response after one iteration without the need for complicated mathematical techniques, and
even low-spec computers are capable of running it. Additionally, OAFM is easy to use and quickly converges when
compared to other semi-analytical methods such as HAM and OHAM. According to Reference. [15], Optimal
Auxiliary Function Method (OAFM) is used to solve the nonlinear differential equations that describe the Blasius
problem. In Reference [16], the Optimal Auxiliary Function Method (OAFM) is used to roughly solve the thin film
flow problem on a moving belt. In reference [17], an analytical approach to the Optimal Auxiliary Function Method
may be applied to the boundary nonlinear problem resulting from a stretching surface with partial slip. The OAFM
is used in Reference [18] to investigate the nonlinear oscillations of a pendulum wrapped around two cylinders.
Using Lax's seventh-order Kdv and Sawadara Kotera equations as an approximate solution, the OAFM is extended
to partial differential equations (PDES) in Ref. [19].

The Homotopy Analysis Method (HAM), which is proposed by Liao [20] is used for the solution of nonlinear
problems. Srinivasacharya and Kaladhar [21, 22] provide examples of the methodology and current advances of the
HAM. Ramzan et al.[23] solved the three-dimensional couple stress fluid flow with Newtonian heating analytically
by using the Homotopy Analysis Method (HAM). Khan et al.[24] research considered the numerical solution of a
spinning disk’s fluid flow through a time-dependent magneto hydrodynamic coupling stress. The analytical solution
of a three-dimensional magnetohydrodynamic couple stress nanofluid flow across a nonlinear stretched surface with
convective heat and mass boundary conditions was well thought out by Hayat et al.[25]. Ramzan et al.[26] used the
HAM to find a set of solutions for three-dimensional couple stress nanofluid flow with joule heating. It was recently
reported by Hayat et al.[27] that a three-dimensional magnetohydrodynamic coupled stress nanofluid flow
accompanied by heat generation and absorption under convective conditions could be solved as a series solution.

Couple stress fluid model is one of the many viscoelastic fluid models that have been proposed and depicted the
behavior of hon-Newtonian fluids. Couple stresses and body couples are included in the couple stress fluid model,
which are the generalization of the classical fluid model (i.e., the viscous fluid) [28]. Blood from both humans and
animals, colloidal fluids, liquid crystals and fluids with long-chain molecules are a few examples of couple stress
fluids. In these kinds of fluids, the constitutive equations essentially link the angular component of velocity to the
gradient of angular velocity and the skew-symmetric component of the stress tensor to the couple stress The Navier-
Stokes equations cannot be used to simulate coupled stress fluids because their stress tensor is not symmetric. Fluids
with solid particles suspended in a viscous medium, such as blood, lubricants containing a small amount of polymer
preservative, and synthetic fluids with solid particles can all be considered couple stress fluids [29]. Many
researchers have recently used couple stress fluids in their investigations due to the importance of these fluids. In
this investigation, Hadjesfandiari and Dargush [30] looked at various iterations of couple stress fluid. A permeable
medium with peristaltic hemodynamics and a slip effect at the boundary were studied by Tripathi [31] in his
investigation of couple stress fluid. Solutions for CSF flows under slip boundary conditions were derived by
Devakar et al.[32]. They investigated many different kinds of examples in their study, including (Poiseuille, Couette
and generalized Couette flow). In this study, the couple stress parameter was found to be responsible for the
retardation of fluid velocity. Ramanaiah et al.[33] investigated the effects of CSF lubrication on the squeezing films.
Accordingly, he concluded that squeeze times were increased when CSF was used as a lubricant. Chippa and
Sarangi [34]. It has been shown that incompressible CSF flows across porous materials by Alsaedi et al.[35]. As a
function of the CSF parameter, they also examined the expressions of several parameters. Basha et al.[36] present
numerical solutions for the transient two-dimensional natural convection of CSF flow past a vertical plate. The
solutions for CSF moving hydromagnetic peristaltically through a porous channel were investigated by Reddy et
al.[37]. According to Awais et al.[38], CSF flow on a convective sliding surface was investigated.

In this study, we consider the steady flow of couple stress fluid between two infinitely parallel inclined plates
under the impact of MHD. We use the two well-known techniques of HAM and OAFM to investigate this problem.
Section 2 provide nomenclature Basic equations are provided in Section 3. Problem formulation is mentioned in
Section 4. Section 5 discussed the methodology of the proposed approach. Sections 6 and 7 contain solutions to the
suggested model. We calculate the volume flux, average velocity, and shear stress on the plates in Section 8. Results
and discussions of the suggested problem are given in Section 9. The conclusion is provided in Section 10.
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2. Nomenclature

@ = velocity vector

@ = temperature

U= characteristic velocity

I= unit tensor

f= body force

S= Hight of plates

L = dimensional velocity in the x-direction
v’ =non- dimensional velocity in the x-direction
O = Dimensional y-coordinate

S = non-dimensional y-coordinates

€ =Small parameter

n =Couple stress parameter

@ = Dimensional temperature

@ = Dimensionless temperature

@, =Lower plate temperature

@, =Upper plate temperature

k= Thermal conductivity

M, = Dimensional coefficient of viscosity
p= Constant density of the fluid

3. Basic Equation

An incompressible couple stress fluid flow according to the following basic equations are

div® =0, (1)

p%(f=div.T1+ nVio+pf +jxp, )
Do

pC,—— Bt =kV’p+T.E. (3)

Where @ is the velocity vector, E is the gradient of @, 77 is the couple stress parameter, Co is the specific
heat, p is the constant density, f is the body force perDmlt mass, T is the Cauchy stress tensor @ is the
temperature, k is the thermal conductivity and the operator a denotes the material time derivative which is define
as:

—(*) ( +V Vj(*)
The Cauchy stress tensor A, can be define as:

=—pl+7, T=uA, (4)

Where P is the dynamic pressure, 4 is the coefficient of viscosity, | is the unit tensor and Al is the first
Rivlin-Erickson tensor which is define as:

=q+q", q' is the transpose of .

4. Formulation and Solution of Inclined Poiseuille Flow

The steady MHD Poiseuille flow over two parallel inclined plates are studied in this article; the flow is
influenced by both gravity and a constant pressure gradient. The distance between the two plates is 2S. Where O =
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-Sand 0 =S, respectively, represent the lower and upper plates of the channel. In Fig. 1, we show the model
chosen coordinate system and geometrical skew.

Figure 1: Geometry of the problem

O =D(v,0,0), v=v(5) andp = (V). (5)

Using these assumptions, we observe that the continuity Eq. (1) is identically satisfied and the momentum Eg.
(2) reduced to

op 0 d‘v .

0=—£+%(ra5)—n@+pgsm@—aﬂozv, (6)

p
0=———-0ogcosé, 7
a5 C g ()
0= _a_p. (8)

dy
Eq. (11) implies that P # P (7/) using Eqg. (5) in Eq. (4) the non- zero components of the extra stress tensor are

do
aé‘:ﬂE:Tﬁa' (9)
Substituting Eq. (9) into Eg. (6) we obtain
4 2

dv_ 4 U—d—ﬂd—v+@—pgsin0+aﬁozu:0. (10)

Ta5" "4s? ds ds  da

Eq. (4), (5) and Eq. (9) change the form of energy equation Eq. (3) to the form

2 2 2
e I
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The associate boundary conditions are

v(=s) =v(s)=0, 12)
v"(=s)=0"(s)=0, (13)
P(=s) =, o(s)=¢. (14)

Eq. (12) is the usual no-slip boundary condition Eq. (11) implies that couple stress is zero at the plates. We
introduce the following non-dimensional parameters:

e U . O . a s P=Q, o« M o« P

1)) =—,5 =—, =—,¢ :—lﬂ =—, p = ,
U S S @~ P Ho JTARNAS
2 2 205 4 2p2c?2
r=—ﬂ°U ,BZ=’UOS ,G:—BS P, PGS sinH,l":—GﬂoBS :
k(o — ) n U oa  nu Ho

Where 14, is the reference viscosity, U is the characteristic velocity and B, is the Brinkman number. Using
these dimensionless parameters in Eq. (10) and (11) take the form

d‘v d’v dudo

S Blu-—-B2-EZY i Tp-G=0 . (15)

do do do do

2 2 2, \?
j—;;JrBr,u(j—;j +%(372] =0. (16)
And the corresponding boundary condition (12)-(14) become.
v(-1)=0, o(@)=0, 17
v'(-1)=0, 0"(1)=0, (18)
o(-1)=0, ¢o@)=1. (19)

Assume that the Reynolds' model [21-25, 39-42] provides the temperature-dependent fluid viscosity. The model's
dimensionless form is [43, 44].

u=exp(-Mg). (20)

Using the Taylor series expansion, Eg. (20) reduce to

du do
=1-Mep, ——z=-M—=. 21
H ® ds 45 (21)

Substituting Eq. (21) in the governing Eq. (15) and (16) the following couple system is obtained

d'v dv de do
-B*(1-M +B*M £ —+T0v-G=0, 22
a5r B (1-Me)m ds do 22)

d’p (du}z B (dw)

—+B (1-M — | +— =0. 23
a57 "B (1Me)\ 55 ) 57| 052 #)

5. Basics of the Proposed Method

5.1. Methodology of OAFM
We consider the most general form of a non-linear differential equation as
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L[D(0)]+ N[®(v)] =0. (24)

Where L represents the linear operator, N represents the non-linear operator, and ®(v) is a given function. The
initial or boundary condition is known as

(CD( ), d@(u)] 0. (25)
For Eq. (24) and (25) the approximate solution can be written as
O (1,C,) = Dy (V) + D, (v,C,), i=1,23...,n. (26)
Substituting Eq. (26) into Eg. (24) we get
L[®, (v) + D, (v, C;)]+ N[D, () + D, (v, C;)] =0. @7)

The linear term can be used to get the initial approximation @, (v)is

L[, ()] =O. (@ (0), 32 (”)j 0. )

Now to find the value of first approximation from the remaining equation

L[, (1, ;)] + N[, (1) + D, (0,C)] =0, [@( ), 3%y (“’] 0. 9

The non-linear term from Eq. (29) is expanded in the form

NP, (w) + @, (0, Gl = N[ (0)] + ZCD (kU.C)N [, (V)] Nk=iu'f-

Instead of the last term arising in Eq. (29), we propose another expression, allowing Eq. (29) to be written in a
new form, in order to avoid the challenges that arise when solving the nonlinear differential eqyation (29) and to
speed up the convergence of the first approximation and implicitly of the approximate solution @ (v, C;)

(30)

L[®, (0, C)]+ A (D (0, C;))PIN (@, (0))]+ Ay (P, (v),C,) =0, (31)

(cp( y, 4P (“)j 0, 32)

Where A, and A, are arbitrary auxiliary functions that depend on the initial approximation of CI)0 (v) and a
number of unknown parameters, C;,C and C, . j = 1, 2..., p, k=p+1, p+2..., n, and i= j+k. where i= 1, 2..., n
PIN(®D,(v))] denotes a component 'of the operator N[®D,(v)] . The auxmary functions A, and called
optimal auxiliary functions are not unique and can take on the same form as of ®,(v) or N[D (V)] or a
combination of both of ®,(v) and N[®,(v)]. By using several techniques, the unknown parameters C; and
C can be recognized in the best possible way. They include minimizing the square residual error.

iC.c)= [ R*(v.C.C)dv. (33)
(D)
Where R(v,C;,C,) = L[® (v,C.)]+ N[® (v,C)], j =1, 2., p, k=p+1, p+2.., n, and i= j+k. The
condition of the minimization of the result are
g = J =.= 9 =0. (34)
aC, @C, oC

n

To find the values of the unknown parameters we also use different methods either by Ritz method, Collocation
method, Galerkin method or Kantorovich method.

6. Solution of the Problem Using OAFM

As of the first component, the OAFM solutions for velocity and temperature are shown below.
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Zeroth component problems are listed below
d“y,
-G=0, 35
ds* (39
0,(-1) =0, 1,(1) =0, v,"(-1)=0, v,"(1)=0, (36)
dz(oo
—_— 0, 37
052 @37
9, (-1)=0,¢,(1)=1. (38)
The solution of these problem is
_1 2 4
Uy _ﬁ(se—eea +G5*), (39)
1+0
=_ 40
2 2 (40)
The non-linear part is given by
N(U)z—BZ(l—Mg0)65150+ B*Mo,p0,0+Tv . (41)
Substituting vyand @, in Eq. (44), we obtain
N (v,)=-B*(1-M@,)d; 50, + B°M 00,00, + vy, (42)
Also
1+ Y 1+5)
L
2 2
The first approximation v, can be obtain as
d‘o,
a5t TAN@)+ AN, C;) =0, (44)
u(-1)=0, v,()=0, v"-1)=0, v,"(1)=0, (45)

Using Eq. (39), Eq. (40) and Eq. (42) into Eq. (44), we get
v =

1
31933440

(~767448B°Gc, +608652B°GMc, —309738GI ¢, — 98208B°G ¢, +126544B2GM S¢, —

38588GT 'S¢, +931392B°G52c, — 709632B°GM 87, + 377190GI 57, +155232B°G3°C, —
189024B°GM &%, + 61776GI" 5%, —166320B°G5*c, +83160B°GM 5'c, — 69300GI"5*c, —

66528B°G5°c, +66528B°GM 6°c, — 27720GI " 6°c, +22176B°GM 6°c, +924GI"5°¢, +

9504B%G57c, —3168B2GM 57¢, + 4752GI 8¢, + 2376B%G°c, — 4356B°GM 5°C, +

990GI"5°%c, —880B°GM 6°c, — 220GTI"5°c, —66GI"6™c, —313038B*Gc, +309903B*GMc, —

124601GI"c, — 63096BGJc, + 76622B2GM ¢, — 24642GT 5¢, + 365310B°Gs°C, —

347391B°GM 57, +145992GT 52c, + 95040B°G5°c, —106172B°GM &%, +37598GT 5°C, —
41580B2G5*c, + 20790B°GM 5°c, —17325GI"5"c, — 33264B%G5°¢, + 24948B°GM 5%, —
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1386061“5502 —138608265602 +18018B°GM 5602 —5544GF5602 +6336B°GM 5702 +
396GF57C2 + 297OBZGé'SC2 —693B°GM 5802 +148SGF5SC2 +lBZOBZG§9C2 —~1650B°GM 5902 +
5506F5902 +19882G51002 —627B*GM 510C2 —84B°GM 51102 - 4261"5”C2 - 7GF51202) . (46)
Adding Eqg. (39) and Eq. (46) Our approximation's outcome up to the first component is.

Uopgns = i(se ~6G5? +G5* )+ L (767448B°Ge, +608652B°GMc, —309738GTc, —
24 31933440

98208B°Gc¢, +126544B°GM S¢, —38588GT 5¢, +931392BG5°c, — 709632B2GM 5°¢, +
377190GT"5°¢, +155232B°G 5%, —189024B°GM 5°, +61776GI 5°C, —

166320B°G5*c, +83160B°GM &*c, — 69300GT 5*c, — 66528B°G5°c, + 66528B°GM 5°C, —
27720GT' 8%, + 22176B°GM &%, + 924G 5°¢, +9504B°Go7c, —

3168B°GM &, +4752GT'57c, + 2376B2G°c, — 4356B°GM &°C, +990GI5°C, —

880B°GM §°%, — 220GI"5°c, — 66GI' 5, —313038B°Gc, + 309903B°GMc, —

124601GIc, — 63096BGJ¢, + 76622B2GM ¢, — 24642GT 5¢, + 365310B°Gs°C, —
347391B°GM 5°c, +145992GI"5°C, +95040B°G 5%, —106172B°GM 5°C, + 37598GI'5°C, —
41580B2G5*c, + 20790B°GM 5c, —17325GI5c, —33264B%G5°C, + 24948B°GM 5°C, —
13860GI"5°c, —13860B°G5°c, +18018B°GM 5°c, —5544GI" 5%, + 6336B°GM &7c, +
396GI'57c, + 2970B%G5°c, — 693B2GM 5°c, +1485GT 5%, +

1320B°Gs°c, —1650B°GM &°, + 550G 5°C, +198B2G5™c, —

627B2GM 5"c, —84B>GM 5*'c, — 42GT'5'c, - 7GI'5'2c,) . 47)

The non-linear component of the energy equation is denoted as
2

B
N(p) =B, (1-Mg)(d,0) +57(9550) (48)

The same method can also be used to determine the value of U and @ when vyand @, are substituted in Eq.
(48), we obtain

B 2
N(¢,) =B, (1-Ma, )(9,0, )2 +B_r2(85,5”o) . (49)
6 8
A3:C3(1+5j +c4(1+5] | A, =0, (50)
2 2
The first approximation ¢, can be obtain as

d2
T T AN@) +AN(,.C) =0, 61
@, (—1) =0, ¢ (l) =0. (52)

Using Eqg. (40), Eqg. (49) and Eg. (50) into Eq. (51), we get

Q= L ~(898646112G’B, ¢, +510847008B*G*B, ¢, — 432665232B°G*MB,c, +
2258332876808

793054080G°5B, ¢, + 508540992B°G25B, ¢, — 431818768B°G°M 5B, ¢, — 441080640G25°B, ¢, —
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882161280G*5°B,c, —955674720G*5*B, ¢, — 73513440B°G*5"B, ¢, + 36756720B*G°M 5B, C, —
352864512G°5°B, ¢, — 264648384B°G*5°B, ¢, +154378224B°G*M 5°B,c, +
411675264G°6°B, ¢, —421477056B°G*5°B, ¢, + 298954656B°G*M 6°B, C, +
588107520G°5'B,c, —336061440B°G*5'B,c, +318558240B°G°M &'B,c, +
220540320G*5°B, ¢, —80514720B°G*5°B, ¢, +166280400B*G*M &6°B, ¢, —
98017920G°5°B, ¢, +81681600B*G*5°B, ¢, —9529520B*G*M §°B, ¢, —
127423296G*5"°B, ¢, + 71879808B*G*5'°B, ¢, — 68612544B*G*M 6B, c, —
48117888G°6"B,c, +14257152B*G*5'B, ¢, —36533952B°G*M 5"'B, ¢, —
6683040G°5B, ¢, —6683040B°G*5**B, c, — 2598960B°G*M 5B, ¢, —
3769920B*G°6"B, c, +4712400B°G*M 5B, c, —538560B°G*5™ B, c, +
1884960B°G*M 5B, ¢, +233376B°G’M 5*°B, ¢, + 448975440G*B, C, +
370338778B°G”B,c, —319943349B°G*MB,c, + 427567680G*5B,c, +
370019008B*G*5B,c, —319819635B*G°M 6B, c, —110270160G*5°B,c, —
294053760G°5°B, ¢, —477837360G°5*B,c, —18378360B°G*5B,c, +
9189180B*G°M 5B, c, —441080640G°5°B,c, —88216128B*G*5°B,c, +
49621572B°G*M §°B,c, —110270160G°5°B, ¢, — 200936736B°G*5°B,c, +
129873744B°G*M 6°B, ¢, + 252046080G*5'B,c, — 266048640B°G*5'B,c, +
204787440B*G*M 5B, ¢, +330810480G>5°B, ¢, — 202599540B°G*5°B,c, +
201068010B°G*M 6°B, ¢, +147026880G°5°B, ¢, —59899840B°G*5°B,c, +
108738630B°G*M §°B,c, —36756720G°5"B, ¢, + 38118080B°G*5"°B,c, +
4900896B°G*M 5B, ¢, —80196480G>5"'B,c, + 46335744B°G*5"'B,c, —
38761632B*G°M 5''B,c, —43439760G°5B, ¢, +16521960B°G*5"’B,c, —
27567540B*G*M 6B, ¢, —11309760G*5*°B,c, —1256640B°G*5"°B,C, —
6361740B*G°M 5*°B,c, —1211760G*5"B,c, — 2962080B°G*5"B,c, +
2019600B*G*M 6B, c, —933504B°G*5°B, ¢, +1750320B*G°M 5B, c, —
102102B*G*5"B, ¢, + 459459B°G*M 6B, ¢, + 45045B°G*M 6''B,c,). (53)
Adding Eqg. (40) and Eq. (53) Our approximation's outcome up to the first component is

1+6 N 1
2 225833287680B2
510847008BZGZBrc3 - 43266523ZBZGZMBrc3 +

793054080G°5B, ¢, +508540992B*G*5B, ¢, — 431818768B*G*M 5B, c, —
441080640G*5°B, ¢, —882161280G>5°B, ¢, — 955674720G*5B,C, —
73513440B*G*5*B, ¢, +36756720B°G*M 5*B, ¢, —352864512G*5°B, C, —
264648384B°G*5°B, ¢, +154378224B°G*M 5°B, ¢, + 411675264G*5°B, ¢, —
421477056B*G*6°B, ¢, + 298954656B°G*M 5°B, ¢, +588107520G°5 B, C, —

DPonrm =

(898646112GB.c, +
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336061440B*G?5"B,c, +318558240B°G°M 6B, ¢, + 220540320G *5°B, ¢, —
80514720B°G°5°B, ¢, +166280400B°G*M &°B, ¢, —98017920G*5°B, ¢, +
81681600B°G*5°B, ¢, —9529520B°G°M 5°B, ¢, —127423296G*5"B, c, +
71879808B°G*5"°B, ¢, — 68612544B°G>*M 5'°B, ¢, — 48117888G°5™'B,c, +
14257152B°G*5"'B, ¢, —36533952B°G*M 5''B, ¢, — 6683040G*5**B, C, —
6683040B°G*6"B, ¢, — 2598960B°G*M 5"B, ¢, —3769920B°G*5"B, c, +
4712400B*G*M "B, ¢, —538560B°G°5™B, ¢, +1884960B°G*M 5B, ¢, +
233376B*G*M 6™B, ¢, + 448975440G°B, ¢, + 370338778B°G*B,c, —
319943349B*G>MB,c, +427567680G*5B,c, +370019008B°G°5B,c, —
319819635B°G*M 6B, ¢, —110270160G>5°B, ¢, —294053760G°5°B,c, —
477837360G*5*B, ¢, —18378360B*G’5*B,c, +9189180B°G*M 5*B,c, —
441080640G*5°B, ¢, —88216128B°G°5°B,c, + 49621572B°G*M 5°B,c, —
110270160G*5°B, ¢, — 200936736B*G*5°B, ¢, +129873744B*G°M 5°B,c, +
252046080G>5"B, ¢, — 266048640B°G*57B, ¢, + 204787440B°G’M 6B, ¢, +
330810480G°5°B, ¢, — 202599540B*G>5°B, ¢, + 201068010B°G*M &°B, ¢, +
147026880G°5°B, ¢, —59899840B°G*5°B, ¢, +108738630B°G*M 5°B,c, —
36756720G*5"B, ¢, +38118080B*G*5'B, c, + 4900896B°G*M 5'°B,c, —
80196480G*5"'B, ¢, +46335744B°G*5"'B,c, —38761632B’G’M 6"'Bc, —
43439760G*5"B, ¢, +16521960B°G’5"’B,c, — 27567540B°G°M 5%*B,c, —
11309760G*6"B, ¢, —1256640B°G*5"B,c, —6361740B°G’M 6"B,c, —
1211760G*5"B,c, — 2962080B*G*5"B,c, +2019600B°G*M 5B, c, —
933504B°G?5"B, ¢, +1750320B°G°M 5" B, ¢, —102102B°G*5"B,c, +
459459B°G°M 5'°B, ¢, + 45045B*G*M 6B, c,) . (54)

7. Solution of the Problem Using Homotopy Analysis Method

Solutions obtain from first iteration of velocity and temperature as given below,
61 43B*GhMx 5

= B°Gh—-——

v _ O B2Ghs? + - BIGhM &® + = B2GhxS* — — B2GhM &°
160 28 480

720 10080 48
2 7 2
L pegpge BCMMST +i(5G ~6G5° +Go" )+ 277GhT_6IGNOT | 5 (o sap_
720 10080 24 8064 1440 576
Ghs°T"  Ghy°T
+ . (55)
1440 40320
2 2 2
__53BrG’h 53BrG’hM  809BrG*hMS 1 o oo 1o
3360 6720 181440 48 96
1 1 1 1 BrG*hs®

—BrG°hM¢° —— BrG°hs® + — BrG°hM 6° + — BrG’hM §" +
160 180 360 504 2016
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BrG’hMs®  BrG*hMs° . 1+8
4032 5184 2

Solutions obtain from second iteration of velocity and temperature as given below,

4 2 2 32
_56h_ 61 oo 6L go o 277B'GR’  2406463B°BIG°h°M

(56)

24 360 720 8064 5448643200
2329B°Gh°M” _2406463B°BrG°h’M* 43B’°GhMo _43B°Gh°Mo _3973B‘Gh°M & _
14515200 10897286400 5040 10080 1814400

2 32 2 4 292
453031B°BrG°M’S 1. 5 posyso 5 pocpose  61B'GN%S?
130767436800 4 24 48 1440
2 3RK2 2 4 2 2¢2 2 312 2¢o2
3067B°BrG°h°Mo”  73B‘Gh’M’6® 3067B°BIG°N'M’S” 1 Lopyr s
6652800 322560 13305600 80
4 2 3 2 32 2 o3
L peape gt LBG°MS® 1403B°BIG°h'MS° 1 o h 1 oo
160 3360 80870400 24 24
4 2 2 g4
L pighist+ 2 pighst BB OMMIOT 1 pagpyss L prgnemss -
48 576 483840 240 480
4 2 5 2 32 2 o5 4 2 o6
17B'Gh*M&° 809B’BIG°N'M’S® 1 oo 1 onposs BUGH'S®
14400 43545600 360 720 1440

B'Gh°M’5° B’GhMJ’ B’Gh’MJ” BGh’M&’  809B’BrG°h’M*s’
38400 5040 10080 10080 914457600
B‘Gh’s® B’BrG°h’Ms® B'Gh*M?5° B’BrG*h°M*s° B‘Gh’°MJ°  BBrG*h’M?*s°

+ +
40320 40320 322560 80640 362880 193536
11B°BrG°h*M 6™ N B*‘Gh*M?5" _1leBerh2M 25" B 7B’BrG°h’M*s™ B
1814400 14515200 3628800 4561920

19B*BrG°h* M 6 +1QBZBrG3h2M 257 N B*BrG*h’M?s" N B*BrG°h’M&* B
29937600 59875200 5391360 36324288

2 32 2 <14 2 327 2 <15 2
B°BrG°h“M ‘5 B BrG°h*M 6 +i(5G_6652+G54)+2776h1“+2776h1“+

72648576 113218560 24 4032 8064
50521B°Gh’T’ 90137B°Gh°Mdr 61 . o, 61Gh°S°T 277B°Gh*5°T |
1814400 119750400 720 1440 8064
2 2 3 2 2 54 2 2 5
12133B°Gh*MST | 5 o 5 pogep, 61B°GN°S'T  47B°Gh*M ST
10886400 288 576 8640 120960
1 6. Gh?6°T" B’Gh*s°T" 17B*Gh*MJS'T  GhoI’
—Gho'T' - - + + +
720 1440 1728 604800 20160
Gh’s°T  B°Gh*S°T B*Gh°MS°T’ B°Gh*s™TI'  B'Gh°M&™T
40320 40320 725760 1814400 39916800
540553Gh’T* 50521Gh*5°I”* | 277Gh*5'T*  61Gh*6°T”
95800320 7257600 193536 518400

Gh*s"T? _Gh’6™I*  Gh’s™r”
193536 7257600 479001600

(57)
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B 53BrG*h B 53BrG2h? B 11687B>*BrG2h? N 53BrGhM N 53BrG2h’m
1680 3360 907200 3360 6720
11687B*BrG*h*M _17324597Br2G4h2M 3 91B%BrG2h*M 2 N 17324597Br’G*h>M? N
1814400 87178291200 2851200 174356582400
809BrG*hM & N 809BrG*h*M s N 4471B°BrGh*M S N 289B°BrG2h’M %5 N
90720 181440 1247400 13305600
2312301143Br’G*h*M?5 43B%BrG*h’Ms°  43B%BrG*h*M?%5° 1 oL oa
+ - +—BrG°hé" +
80029671321600 60480 120960 24
1 BrG2h%s* +i B2BrG?h%s* L BrG*hM §* L BrG*h*Ms* —
48 288 48 96

S B*BrG°h*M&* +
576

53Br’G*h’°Ms*  43B°BrG*h®M2s* 53Br’G*h’m*s*
161280 241920 322560
2 2112 5 2 2112 235
1 oethms® L prathem st ATBBIG’'MS®  61B’BIG*h'MS°
80 160 7560 120960

809Br'G'n°M*s” 1 o o6 1 goooags 11B°BIG°h'S® 1
14515200 90 180 2160 180
1 prathmst o HB°BrGTh*M&®  53Br’G*h°Ms° | 61B°BrG*h’M*s”
360 4320 604800 181440
53Br'G'h*M*0° | 1 o avsty L prainims’ s 8B BrG°MST
1209600 252 504 30240
B°BrG*h°M*s’  809Br’G*h°’mM*s” BrG°hs® BrG°h’s® 13B°BrG*h’s”
5040 45722880 1008 2016 20160
BrG’hM&®  BrG*h*Ms°  13B*BrG*h’M&°  577Br’G'h’M&°  B’BrG*h’M *5°
2016 4032 40320 6773760 6720
577Br’G*h*M*s° BrG*hMs°® BrG*h°Ms° B°BrG*h°Mo°
13547520 2592 5184 3240
B°BrG*h*M*s° A 9397Br’G*'h*M*s° B’BrG*h’s”  B°BrG*h°Ms™
34560 470292480 32400 64800
7Br’G*h*Ms”  B’BrG*h’M*s* 7Br’G*h’M’s*  7B’BrG°h°Ms" B’BrG*h°M’s™
129600 43200 259200 475200 950400
31Br’G*h*M*s™ 197Br’G*h’Ms” BBrG*h°M*s™  197Br’G'h°M’s™
2217600 15966720 1140480 31933440
401Br’G*h°M*s™  43Br’G*h’M4* 43Br’G'h°M’s™ 19Br'G*n°M’s”
113218560 33022080 66044160 45722880
Br'G*n°Ms™  BriG*h’M*s* BriG'n°M’s" 1+5
17418240 34836480 50761728 2
10429BrG*h’T" | 10429BrG*h°MT | 1144841BrG*n°Mel’ | 61BrG*h°s'T
1995840 3991680 778377600 8640
61BrG°h*M ol  61BrG*h°M&°T 17BrG°h’s°T' | 17BrG*h*MS°T |
17280 28800 8100 16200

BrG*hM &° +
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17BrG°h*M¢s'T N 17BrG°h*s°T 17 BrG*h’M s°T 17 BrG*h’M s°T" B
22680 60480 120960 155520

BrG°h*s™ T N BrG’h*M &I N BrG’h*M &' N BrG*h*s™T 3

56700 113400 138600 1995840

BrG*h*M 6™T B BrG*h*M 6" T 59)

3991680 4717440

8. Flow Rate, Average Velocity and Shear Stress on the Plates
7.1 Flow Rate

The non-dimensional volume flux is given by

Q=|" v(6)ds, (59)

substituting Eq. (47) in Eq. (59) we obtained

4G _ 29 o, 139B’GMc, _386GIc, 131B°Ge, 56B°GMc, 2032GTc,
405405

=——-— +
Qose 15 945 0 5670 31185 10395 4455
Where ¢, =10.043092231251727, ¢, =—14.531897881927883.
Now substituting Eq. (55) in Eq. (59) we obtained

O = 4G 34 oo, 124GHT

— :
15 315 2835

7.2 Average Velocity
The average velocity V is given by

Q.
S

Which in the non-dimensional form coincides with flow rate given in Eq. (60) and Eq. (61).

7.3 Shear Stress on the Upper Plate
The dimensionless share stress on the offer plates is given by

r=—uD[v,5],6 =1.

(60)

(61)

(62)

(63)

Here the minus sign accounts for the upper plate facing the negative y-direction of the coordinate system as

shown in figure 1. Using Eq. (47) in Eq. (63) we obtained,

1317888B*Gc, —1126400B*GMc, +529408GIc,
G |\ +C,574464B°G —603904B°GMc, + 227328GTI ¢,

|

Toaem =Y~ H| 7=+

3 31933440

Now using Eq. (55) in Eq. (63) we obtained

G 2., 1, 17Ghl“j
tor =d—u| ~2 — £ B2Gh+ —= B2GhM — |
Ham { # ( 3 15 210 315

(64)

(65)
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7.4 Shear Stress on the Lower Plate
Now the shear stress on the lower plate is calculated by the following formula
7= uD[v,5],0 =-1, (66)
using Eq. (47) in Eqg. (66) we obtained,
~1115136B°Gc, +850432B*GMc, — 450560GIc, —
G | 439296B°Gc, +426752B°GMc, —175104GIc,
Toarm =V "H| 5+ (67)
3 31933440
Now, using Eq. (55) in Eq. (66) we obtained
G 2, 1, 17Ghl“j
T ={—u| —+—B°Gh+—B“GhM + . 68
HaM { H ( 315 210 315 (%8)
Table 1: Residual error of OAFM and HAM solutions for velocity when I'=0.02, G=0.0001, B=0.003, M=0.0005, B, =0.001.
y OAFM Solution D Residual R (D) HAM Solution U Residual R (D) Average Residual
-1 -1.69718x10% -1.67243x107 1.06228x10%* —0.0001 —3.50836x10°
—0.9 3.30471x10° —9.55272x10°® 3.2319x10°* —9.97999x10° —3.49748x10°
—0.8 6.51552x10° —2.22832x10°  6.38413x10°  —9.96054x10"° —3.48672x10°
—0.7 9.54769x10° 4.07313x10°® 0.37898x10°%  —9.94218x10° -3.47688x10°
—0.6 1.23265x10°° 8.48947x10°® 1.21427x107  -9.92535x10° —3.46853x107°
—0.5 1.47872x10° 1.05704x10~" 1.46072x107  —9.91045x10° —3.46205x10°
—04 1.6875x10° 1.03267 %10’ 1.67119x107 -9.8978x10°  —3.45756x10°
—0.3 1.85452x10° 8.211x10°® 1.8405x10°’ —0.88768x10° —3.45493x10°
-0.2 1.9763x10° 5.00582x10°® 1.9645x107~7 —9.88031x10° —3.45384x10°
-0.1 2.05035x10° 1.61669x10°® 2.04014x10" -9.87582x10° —3.4539x10°
0. 2.07518x10° —1.19245%x10®  2.06556x10" —9.87431x10° —3.45476x10°
0.1  2.05031x10° —3.02603x10° 2.04014x10" —9.87582x10° —3.45622x10°
0.2 1.97623x10° —3.91934x10°® 1.9645x10°7 —9.88031x10° —3.45831x10°
0.3  1.85443x10° —4.14701x10°  1.8405x10”7 -9.88768x10° —3.46111x10°
04  1.6874x10° —3.82653x10° 1.67119x107 -9.8978x10°  —3.46464x10°
05 1.47862x10° —2.58484x10° 1.46072x107  —9.91045x10° —3.46863x10°
0.6 1.23257x10° 2.4856x107° 1.21427x107  —9.92535x10° —3.47265x10™°
0.7  9.54705x10° 4.49492x107° 0.37898x10°%  —9.94218x10° —3.47666x10°°
0.8  6.5151x10° 7.13306x10°® 6.38413x10°  —9.96054x10° —3.48204x10°
09  3.3045x10° 7.8733x10°° 3.2319x10°° —9.97999x10° —3.49231x10°
1. ~1.71552x10%"  —2.42568x10" 1.3722x10%*  —0.0001 —3.51213x10°°
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Table 2: Residual error of OAFM and HAM solutions for temperature when I'=0.02, G=0.0001, B=0.003, M=0.0005, B, =0.001.

y OAFM Solution @ Residual R (@) HAM Solution (@) Residual R (@) Average Residual
-1. 6.82794x10%  4.15076x10* —4.89094x10%°  1.11122x10™  2.63099x107*
-0.9 0.05 2.01263x10°® 0.05 1.78754x10*  1.0064x10°®
-0.8 0.1 7.46622x10°° 0.1 3.75338x10™  3.7333x10°
0.7 0.15 1.55612 x10~" 0.15 6.81879x10™  7.78095x10°®
0.6 0.2 2.56275x10”" 0.2 1.06841x10™  1.28143x10”’
-0.5 0.25 3.71395x10°’ 0.25 1.49701x10™  1.85705x10°’
-0.4 0.3 4.96806x10’ 0.3 1.92563x10™  2.48413x10°’
-0.3 0.35 6.28535x10~" 0.35 2.31225x10™"  3.14279x107
-0.2 0.4 7.61599x107 0.4 2.61903x10™  3.80812x10~7
-0.1 0.45 8.88884x10~’ 0.45 2.81596x10™  4.44456x10”
0. 05 1.00049x10°° 0.5 2.88381x10™  5.0026x10~'
0.1 0.55 1.08381x10°° 0.55 2.81596x10™"  5.41917x107
0.2 0.6 1.12449%10°° 0.6 2.61903x10™"  5.62261x10’
0.3 0.65 1.10859x10°° 0.65 2.31225x10™"  5.54308x10”’
0.4 0.7 1.02592x10°° 0.7 1.92562x10™"  5.12969x10’
0.5 0.75 8.74798x10~7 0.75 1.49699x10™  4.37407x10”"
0.6 0.8 6.67273x1077 0.8 1.06839x10™"  3.33642x10”’
0.7 0.85 4.32393x10°7 0.85 6.81849x10™  2.162x10”’
0.8 0.9 2.13674x1077 0.9 3.75298x10™  1.06839x10~7
0.9 0.95 5.78024x10°® 0.95 1.78705x10™  2.89021x10°®

1. —1.33663x10™" 1. 1.11066x10™"  —1.12983x10**

9. Numerical Results and Discussions

In this paper we successfully implemented the Optimal Auxiliary Function Method (OAFM) and
Homotopy Analysis Method (HAM) to analyze the inclined flow of couple stress fluid under the influence of MHD.
Several parameters were studied in relation to velocity profile and temperature distribution. Figures (2) and (3) are
plotted to see the effect of MHD parameter I" on velocity profile Using OAFM and HAM. In this study, we found an
inverse relationship between parameter I' and velocity profile. Figures (4) and (5) show that as we increase the
parameter B the graph of velocity profile is also increases. Figures (6) and (7) show the direct relation between
parameter G and velocity. Figures (8-11) shows the effect of different parameters M and Br on temperature
distribution using OAFM and HAM solution The non-dimensional parameter Br stands for the Brinkman number,
which is directly relation to the temperature distribution. Figures (12-15) show the effect of shear stress on the upper
plate against different parameters by using OAFM and HAM solutions. Figures (16-19) show the behaviour of shear
stress on the lower plate against different parameters in the OAFM and HAM solutions. The flow rate is shown in
Figures (20) and (21) for various parameters of the OAFM and HAM solutions. Tables 1 and 2 show the solutions
for the velocity profile and temperature distributions, as well as their residual error and average residual using the
OAFM and HAM solutions. The following tables illustrate a comparison of the results of the two methods for
varying values of the independent variable y and the parameters G, M, B, and I'. Tables 3 and 4 show the velocity
profile and temperature distribution as well as the absolute difference between them for various parameter values.
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Table 3: Absolute difference for velocity field u on both OAFM and HAM technique, keeping '=0.02, G=0.0001, B=0.003, M=0.0005,
B, =0.001.

Y

OAFM Solution U

HAM Solution U

Absolute difference

-1.

-0.9
-0.8
-0.7
-0.6

-0.5
-0.4
-0.3

—0.2
0.1
0.

0.1
0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.

~1.69718x107%

3.30471x10°°
6.51552x10°
9.54769x10°
1.23265x10°°
1.47872x107°
1.6875x10°°

1.85452x10°°
1.9763x10°

2.05035x10°°
2.07518x10°°
2.05031x107°
1.97623x10°°
1.85443x10°°
1.6874x107°

1.47862x10°°
1.23257x10°°
9.54705x10°°
6.5151x10°°

3.3045x10°°

~1.71552x10*

1.06228x107*
3.2319x10°°
6.38413x10°°
9.37898x107°
1.21427x1077

1.46072x10"
1.67119x10”7
1.8405x10”"

1.9645x10”"
2.04014x10”7
2.06556 %10’

2.04014x10”7
1.9645x10”"

1.8405x10”"
1.67119x10”7
1.46072x10’
1.21427x1077
9.37898x10°°
6.38413x10°°
3.2319x10°°
—1.37221x10*

2.19651x107*
2.28923x10°°
4.51331x10°°
6.6135x10°°

8.53801x10°°

1.02421x107°
1.16877x107°
1.28441x107°

1.36872x107°
1.41998x10™°
1.43717x107°

1.41995x10™°
1.36866x10°

1.28433x10°°
1.16868x10™°
1.02411x10°°
8.53719x10°°
6.61286x107°
4,51289x10°°
2.28902x10°°
2.03175x107*

10. Conclusion

In this study, employing the Reynolds viscosity model between two parallel inclined plates with no slip
boundary conditions, we investigate the impact of MHD on couple stress fluid. The governing equations of a couple
stress fluids under the influence of MHD is solved using the Optimal Auxiliary Function Method (OAFM) and
Homotopy Analysis Method (HAM). For resolving nonlinear differential equations involving velocity profile,
energy distribution, volume flux, flow rate, and shear stresses on both plates, the Homotopy Analysis Method
(HAM) is an analytical technique, and the Optimal Auxiliary Function Method (OAFM) is a numerical technique.
On the graphical representation, we can see that flow rate, average velocity, shear stress, and dimensionless

parameters G, B, M, and Br are strongly correlated.



552

Farooq et al.

Table 4: Absolute difference for temperature on both OAFM and HAM technique, keeping I'=0.02, G=0.0001, B=0.003, M=0.0005,

B, =0.001.
y OAFM Solution @ HAM Solution @ Absolute difference
-1 6.82794x107% —4.89094x107%° 4.77956x107%
-0.9 0.05 0.05 1.0819x10°®
-0.8 0.1 0.1 2.1638x10°®
-0.7 0.15 0.15 3.24569x10°®
0.6 0.2 0.2 4.32753x10°®
-0.5 0.25 0.25 5.40902x10°®
-0.4 0.3 0.3 6.48883x10°®
-0.3 0.35 0.35 7.56279x10°®
-0.2 0.4 0.4 8.62047x107°
-0.1 0.45 0.45 9.63988x10°®
0. 0.5 0.5 1.05812x10~"
0.1 0.55 0.55 1.13808x10~"
0.2 0.6 0.6 1.19496 %10~
0.3 0.65 0.65 1.21772x107
0.4 0.7 0.7 1.19473x10°7
0.5 0.75 0.75 1.11625x10”"
0.6 0.8 0.8 9.77637x107®
0.7 0.85 0.85 7.8215x10°®
0.8 0.9 0.9 5.41935x10°®
0.9 0.95 0.95 2.75367x10°°
1. 1. 1. 0.

Figure 2: Velocity profile against parameter I' using OAFM.
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Figure 6: Velocity profile against parameter G using OAFM.
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Figure 9: Temperature profile against parameter M using HAM.
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Figure 12: Shear stress on upper plate against parameter B at G = 2 and M = 3 using OAFM.
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Figure 13: Shear
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Figure 15: Shear stress on upper plate against parameter M at G = 2 and B = 5 using HAM.
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Figure 16: Shear stress on lower plate against parameter B keeping G =2and m =3 using OAFM.
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Figure 17: Shear stress on lower plate against parameter B keeping G =2 and M =3 using HAM.
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Figure 18: Shear stress on lower plate against parameter M keeping G =2 and B =3 using OAFM.
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Figure 19: Shear stress on lower plate against parameter M keeping G =2 and B =3 using HAM.
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Figure 20: Flow rate for different values of G when B=1and M =4 using OAFM.
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Figure 21: Flow rate for different values of G when B=1and M =4using HAM.
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