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Abstract 

This paper develops a framework for buckling and free vibration analysis of 

in-plane heterogeneous orthotropic nanoplates, considering nonlocal 

elasticity, surface effects and elastic foundation, by formulating a simple 

boundary method whose basis functions are set to approximately satisfy the 

governing equilibrium equation, as in Trefftz methods. The novelty of the 

work is in two points: first, the surface effects based on Gurtin-Murdoch 

model are formulated considering variable thickness of the nanoplate; second, 

for the first time, simultaneous effect of surface layer, elastic foundation and 

in-plane heterogeneity are investigated on the behavior of orthotropic 

nanoplates along with nonlocal effects, considering simple, clamped, free and 

guided edges. The boundary conditions are imposed by collocation, which 

enhances the versatility of the method, while the solution has complete 

continuity over the entire domain. Verification with the literature reflects 

very good accuracy of the implemented method. In the numerical study, it 

was observed that the ratio of the buckling load and the free vibration 

frequency, with and without nonlocal and surface effects, is larger for the 

cases with constant thickness than those with variable thickness. Moreover, 

nanoplates with free or guided edges showed less variation of the ratio with 

respect to the nonlocal effect, than those with simple and clamped edges. 

Keywords: buckling, free vibration; surface effects; elastic foundation; nonlocal 

1. Introduction 

The extraordinary physical and mechanical characteristics of nano-structures are increasingly drawing attentions 

towards experimental, theoretical and computational analysis in the field of nanotechnology [1-3]. Because of the 

high expenses and difficulties in the experimental tests, great attention is nowadays given to the computational 

mechanics in nano-scaled structures. Simulation by the molecular dynamics (MD) and the continuum mechanics are 

two major trends for nano-structures. Although the former is much more accurate in terms of considering realistic 

atomic properties of the structure, the latter is getting popular since MD simulations usually impose tremendous 

computational expenses [4]. Meanwhile, since the classic mechanics fails at nanoscopic scales due to ignorance of 

the size effects [5], some modifications has been applied to import those effects into the classical continuum theory, 

which could be confirmed by the MD simulation as well, namely the non-local (NL) theory [6, 7], the couple stress 

theory [8], the strain gradient theory [9] and the modified nonlocal theory [10, 11], among which the nonlocal theory 

is very popular especially due to its simplicity of application [12]. This theory assumes that the stress at any point 

relates to the strain at every point of the continua.  
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A vast range of nanostructures have been introduced by far, including nanorods [13, 14], nanoribbons [15], 

nanobeams [16-18], nanoplates and nanoshells [19-21], nanotubes [22, 23], etc. Mechanical response of nanoplates 

could be realized by the solution of their governing partial differential equations (PDEs). To name some, we 

mention semi-analytical methods [24-31], finite difference method (FDM) [32], Finite Element Method (FEM) [33], 

iso-geometric analysis (IGA) [34, 35], differential quadrature method (DQM) [36] and boundary methods [37, 38].  

Meanwhile, nanoplates may be subjected to elastic surface effects, which can impose different properties in 

addition to the bulk material, and be of importance especially for infinitesimally small-sized structures. To account 

for that, Gurtin and Murdoch proposed mathematical simulation of the surface effects and the interfacial energies as 

an elastic material layer with zero thickness, totally bonded to the bulk material all over the upper and lower 

surfaces of the nanoplate, and having stress-strain relationship as [39],  

,( ) 2( )           , ,s s s s s s su x y                  = + + + − + =
                                                               

(1) 

in which ,s s   are the Lamé constants for the surface material, s  is the uniform surface residual stress, 
  is 

the Kronecker delta, u
 is the displacement component at surface level, and 

, ,( ) / 2u u     = +  is the local strain. 

The superscript s stands for surface parameters. For simplicity, we take the notation 
,  =    throughout the 

text. Many studies showed considerable effect of the surface layer on static, dynamic and stability of the nanoplate, 

with and without nonlocal considerations. To mention some, Ansari and Sahmani considered surface stress effects 

on free vibration of nanoplates [40]. Assadi considered size dependent forced vibration of nanoplates with surface 

effects [41]. Mohammadimehr et al. investigated surface effects on buckling of microplates based on couple stress 

theory [42]. Karimi et al. discovered positive and negative surface effects on the buckling and free vibration response 

of nanoplates [43].  Kamali and Shahabian proposed analytical solutions for buckling and post-buckling of 

nanoplates with consideration of surface effects [44].  

Besides, nanoplates could be embedded in elastic medium. The most widely used model in this regard is the 

Winkler-Pasternak foundation, which has emerged in many researches so far. To name some, Liew et al. 

investigated vibration of multilayered graphene sheets embedded in elastic medium [45]. Pradhan and Kumar 

analyzed free vibration of nanoplates resting on elastic foundation [46]. The combined effect of elastic foundation 

and surface layer was investigated by Assadi and Farshi [47]. Tong et al. studied buckling of nanoplates based on 

general third-order shear deformation theory with size and surface effects [48]. Mohammadimehr et al. investigated 

the effect of surface stress on bending and free vibration of single layered graphene sheets in elastic medium [49]. 

Radić et al. analyzed buckling of double orthotropic nanoplates embedded in elastic foundation [50]. Bahn-Thien et 

al. analyzed buckling of non-uniform nanoplates resting on elastic foundation using FEM [51]. 

Methods using basis functions, such as Trefftz method [52, 53], method of fundamental solutions (MFS) [54], 

exponential basis functions (EBF) [55, 56] and equilibrated basis functions (EqBFs) [57-59] are simple and highly 

accurate techniques, whose solution bases are set to almost accurately satisfy the governing PDE, so that only the 

boundary conditions need to be applied in order to find the deformation response. This albeit limits the extent of 

their application to problems defined in homogeneous media, except for EqBFs, which has been designed to satisfy 

the PDE regardless of the heterogeneity of the medium. Heterogeneity for nanoplates may come from sources like 

variable thickness, varying material properties or elastic foundation [60, 61].  

This paper investigates the effect of in-plane heterogeneity on the buckling and free vibration of nanoplates 

resting on elastic foundation considering surface effects. First an approximate solution series is considered, then the 

boundary conditions are applied to give every possible combination of the basis functions which satisfy the 

boundary conditions. Then the PDE based on classical plate theory is applied, by a weighted residual approach, to 

create the corresponding eigenvalue problems to be solved. In comparison to the energy-based mesh-dependent 

formulated methods such as the FEM, the proposed method has the advantage that its basis functions satisfy the 

governing PDE independently, resulting in accuracy increase. Besides, complete continuity of the solution function 

due to the use of global basis functions grants high accuracy to the deformation as well as its derivatives such as 

moments or shear forces. On the other side, a dis-advantage with respect to localized methods such as FEM is the 

global spreading of any potential pollution error, due to irregularity, concavity or singularity of internal perforations, 

over the entire domain. This undesirable phenomenon could be healed by reformulating the method in localized 

techniques such as [58]. The interested reader may follow our oncoming works in this regard.  

Numerical results, first verify the proposed formulation with the available literature, then study the effect of 

geometric characteristics, material properties, boundary conditions, and variable thickness, on the mechanical 

behavior of orthotropic nanoplates. It will be shown that variable thickness leads to reduction of the buckling load or 

free vibration frequency ratio compared to constant thickness, whose intensity depends on the edge types of the 
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nanoplate. To the best knowledge of the authors, this is the first time that simultaneous existence of nonlocal effects, 

surface effects, elastic foundation and in-plane heterogeneity, are examined for nanoplates with various edge types.  

2. Derivation of the governing equations 

As mentioned earlier, classical elasticity theory, also referred as local theory of elasticity, cannot account for the 

size effects at infinitesimal dimensions, which is vital for realistic estimation of the mechanical behavior of 

micro/nano scaled structures. To this end, a number of nonlocal elasticity theories have been proposed by far. 

Eringen's theory is very popular on this subject, which relates the stress at every point to the strain at all of the 

material by means of a kernel function. Due to sophistication of implementing this theory in its original integral 

form, an alternative differential formulation is proposed as [43],  

2(1 ) nl

   −  =                                                                                                                                                 (2) 

which is popular due to its simplicity and acceptable accuracy. The nonlocal parameter μ is related to some 

properties such as material constants, internal characteristic length (e.g. granular size, Carbon bonds) and the 

external characteristic length (e.g. physical dimensions). The superscript nl  implies the nonlocal stress field, which 

indeed relates to the local (Cauchy) stress field. The concerning problem of the present paper considers a rectangular 

plate of dimensions a b  with in-plane variable material properties or thickness, resting on elastic foundation and 

subjected to surface stress effects, occasionally loaded within the plane as shown in Fig 1. By ignoring the in-plane 

displacements of the mid-plane, the only independent deformation component will be the out-of-plane displacement 

( , , )w w x y t= . Then the curvatures in CPT are derived as,  

T T

, , ,2xx yy xy xx yy xyw w w     = =   κ                                                                                                        (3) 

The in-plane normal and shear strain components are related to the curvatures as,  

2xx yy xy z   = = − ε κ                                                                                                                                    (4) 

 

Fig 1: In-plane heterogeneous nanoplate resting on elastic foundation with surface effects. 

Effect of the above mentioned components should be considered both within the bulk material of the nanoplate, 

and over its surface with different properties.  

2.1. Effect of the bulk material 

The Cauchy stress field within the bulk material may be evaluated as,  

          , , , { , }b bC x y       =                                                                                                                     (5) 

The superscript b  is indicative of the bulk material. 
bC  is the tensor of elastic bulk material properties. 
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Considering the generic orthotropic material, the Cauchy stress components are evaluated as,  

T
b b b b b

xx yy xy z   = = − σ C κ                                                                                                                            (6) 

z  is the through thickness elevation from the mid-plane. The matrix of the bulk material constants in principal 

axes for plane stress condition is,  

( )

0
1

0
1

0 0 1

x x xy

b

y yx y

xy yx

xy xy yx

E E

E E

G




 

 

 
 

=  
−  

−  

C                                                                                                    (7) 

( )x yE  is the modulus of elasticity along ( )x y , 
xy  is the Poisson’s ratio and 

xyG  is the in-plane shear modulus. 

By integrating the above stresses through thickness, the local moments per unit length, resulted from the stress field 

within the bulk material, will be,  

2T T

2

h
b b b b b

xx yy xy xx yy xy
h

M M M zdz  
−

   = = − =   M D κ            (8) 

h  is the (variable) thickness of the nanoplate, see Fig 1. 3 12b bh=D C is the bending stiffness matrix of the bulk 

material [62].  

2.2. Effect of the surface material 

The effect of surface energy according to Gurtin-Murdoch hypothesis is imported as additional moments and 

shear forces through incorporation of the upper and lower surfaces of the nanoplate. So the variable thickness of the 

nanoplate ( h ) which causes an altering torque arm between the two surfaces, will enquire a reformulation of the 

resultants by the surface effects, since its derivatives will not vanish and thus, inserts additional terms into the 

equilibrium equation. According to (1), the in-plane stress components at the upper ( s+ ) and lower ( s− ) surfaces 

of the nanoplate are derived as [41], 

( ) ( )

( ) ( )

( )

, ,

, ,

,

2
2

2
2

2
2

s s s s s s
xx xx yy

s s s s s s
yy yy xx

s s s
xy xy

h
w w

h
w w

h
w

     

     

  







 = + + +
 

 = + + +
 

= −

                (9) 

The transverse shear stresses are also given as,  

, ,,          s s s s
xz x yz yw w    = =                                                                                                                            (10) 

In addition to (9) and (10), the effect of normal surface stress along z  should also be considered on in-plane 

stresses of the bulk material. This normal stress is derived as a result of applying the equilibrium along z  at the two 

surfaces as,  

, , , ,
s s s s
xz x yz y zz z ttw   + + =                 (11) 

where 
s  is the surface density and t is the time. Considering (10) for both upper and lower surfaces, the normal 

stress within the bulk material assuming linear variation will be [40],  

( ) ( )

( ) ( )

, , , , , ,

, , , , , ,

2

     +

s s s s s s
xx yy tt xx yy tt

b s s
zz

s s s s s s
xx yy tt xx yy tt

s s

w w w w w w

z
w w w w w w

h

     


     

+ −

+ −

+ − + + −
=

 + − − + −
  

                                                                   (12) 

Since the expression in the parentheses above is symmetric at the two surfaces, the following final relation may 

be suggested for the z  stress within the bulk material,  
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( ), , ,

2b s s s
zz xx yy tt

z
w w w

h
   = + −                                                                                                                       (13) 

The above normal stress affects the in-plane normal stresses under the rationality that the normal strains along x  

and y  due to this stress should become zero,  

,,

,,

0

0

b zb z b
yyxx zz

xy xz
x y z

b zb z b
yyxx zz

yx yz
x y z

E E E

E E E

 
 

 
 

− − =

− + − =

                                                                                                                             (14) 

The above relationships give,  

( )
( )

( )
( )

,

,

1

1

x xz xy yzb z b b
xx zz x zz

z xy yx

y yz yx xzb z b b
yy zz y zz

z xy yx

E

E

E

E

  
   

 

  
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 

+
= =

−

+
= =

−

                                                                                                                   (15) 

For isotropic materials with elastic modulus E  and Poisson’s ratio  , the above relations will simply give [40],  

(1 )x y   = = −                                                                                                                                                (16) 

The moments by the above surface stresses may be simply written as,  

( )

( ) ( )

11 12

/2
,

/2

2 2 2 2 2

, , ,

2

       2
2 6 2 6 6

s s

h
s s s b z
xx xx xx xx

h

s s s s s s s
x xx x yy x tt

D D

h
M

h h h h h
w w w

  

         

+ −

−

− −

= − +

   
= − + + + − + + −   
   


                               (17) 

( )

( ) ( )

21 22

/2
,

/2

2 2 2 2 2

, , ,

2

       2
2 6 2 6 6

s s

h
s s s b z
yy yy yy yy

h

s s s s s s s
y xx y yy y tt

D D

h
M zdz

h h h h h
w w w

  
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+ −

−

− −

= − +

   
= − + + + − + + −   
   


                               (18) 

( ) ( )( )

33

2

,2 2
2 4

s

s s s s s
xy xy xy xy

D

h h
M w   + −

−

= − = − −                                                                                                   (19) 

The above relationships may be concisely written in the form below,  

2
T

,           0
6

s s s
tt x y

h
w    = − =  M D κ η η                                                                                               (20) 

The nonzero components of the 3 3  matrix s
D  are specified in (17)-(19).  

2.3. The equilibrium and boundary conditions 

The total local moments considering both the bulk and surface effects may be written as,  

,           b s b s
ttw= + = − = +M M M Dκ η D D D                                                                                                    (21) 
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Introducing (21) into (2), the nonlocal moments will be entered as,  

2(1 ) nl−  =M M                                                                                                                                                (22) 

The nonlocal shear forces per unit length, considering both the effect of varying moments and the transverse 

surface shear stresses, are then written as [40],  

, , , , ,

, , , , ,

2

2

nl nl nl s s nl nl s
x xx x xy y xz xz xx x xy y x

nl nl nl s s nl nl s
y yx x yy y yz yz yx x yy y y

Q M M M M w

Q M M M M w

  

  

+ −

+ −

= + + + = + +

= + + + = + +
                                                                               (23) 

Then, the equilibrium of forces for an element of unit edges along z , considering in-plane applied loads, results,  

2 2
, , , , , 0 , 2 ,2nl nl

x x y y xx xx yy yy xy xy w s tt ttQ Q N w N w N w k w k w m w m w+ + + + − +  = +                                                   (24) 

2 2 2 2 2x y =   +   is the Laplacian operator. sk  and wk  are the parameters of the elastic foundation based 

on the Winkler-Pasternak model. N  is the applied in-plane load. 0m  and 2m  are respectively the translational 

and rotational moments of inertia, including both the bulk and surface effects, and defined as [43],  

/2 /2
2 2

0 2
/2 /2

2           
h h

b s b s

h h
m dz m z dz h   

− −
= + = +                                                                                         (25) 

b  is the volume density of the bulk material. For homogeneous material with respect to z , the above 

relationships give, 

3 2
0 22           12b s b sm h m h h   = + = +                                                                                                        (26) 

By substituting (23) in (24), we will have, 

2 2
, , , , , ,

2
0 , 2 ,

2 2 2nl nl nl s
xx xx xy xy yy yy x xx y yy xy xy w s

tt tt

M M M w N w N w N w k w k w

m w m w

+ + +  + + + − + 

= + 
                                          (27) 

Now, applying 21 −   to (27), considering (21) and (22), and also the time-harmonic displacement function as 

( , , ) ( , )sin nw x y t W x y t= , yields the final equilibrium equation as, 
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m W m W
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+ + 

+  +  +  +   =


                            (28) 

in which ( , )W W x y=  is the time-independent part of the lateral displacement, and n  is the natural frequency 

of free vibration. The above equation considers in-plane variation of the stiffness matrix D , the thickness, the 

elastic foundation parameters and the density. This equation should be accompanied by the following boundary 

conditions [62],  
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Table 1: Various boundary conditions applied to the problem. 

Edge type Identifier Conditions 

Simply supported S 0       0nW M= =  

Clamped C 0       0W W n=   =  

Free F 0       0n nV M= =  

Guided G 0nV =       0W n  =  

 

The components of the above table are,  

2 2 2n x x y y x y xyM n M n M n n M= + +                                                                                                                           (29) 

n x x y yV n V n V= +                                                                                                                                                    (30) 

[ , ]T

x yn n=n  is the unit normal to the boundary. Also the shear forces per unit length are,  

,     
xy xy yx

x y

M M MM
V V

x y x y

  
= + = +

   
                                                                                                              (31) 

3. Development of the solution method 

The time-independent part of displacement is approximated via the following double series,  

T

0 0

T

0 0 0 0 1

T

00 0 01

ˆ( , ) ( , ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

y x

x x y

x x y

O O

mn m n

n m

O O O

O O O

W x y W c T T

T T T T T T T T

c c c c

   

       

= =

= =

 =
 

 =
 

 f c

f

c

                                                                (32) 

( )mT   is the Chebyshev polynomial of the first kind of order m , as a function of  . The normalized variables 

2x a =  and 2y b =  map the nanoplate surface onto the normalized interval [ 1, 1] [ 1, 1]− +  − + , over which these 

polynomials are defined [63]. a  and b  are the edge lengths of the nanoplate, as in Fig.1. xO  and yO  are the 

approximation orders along x  and y , respectively. The indefinite coefficients mnc  should be defined so that the 

above series satisfies the equilibrium equation in (28) and the boundary conditions in Table 1. To this end, first the 

boundary conditions should be applied to the approximated solution series, as a means to find any possible 

combination of the basis functions capable of satisfying the boundary conditions. Therefore, a proper number of 

boundary points are distributed over the boundaries of the nanoplate. To ensure sufficient satisfaction of the 

boundary conditions, the following nodal spacing should be obeyed [64],  

min
2 2x y

a b

O O

  
   

  
                                                                                                                                       (33) 

This relation implies that at least two boundary points should exist at every half cycle of the basis function with 

the highest order. Assuming Bn  boundary points, two conditions according to the edge type should be applied at 

every point, which results the following homogeneous equation at thi  boundary point ( Bix ),  

ˆ
BiBi

TW
==

= =
x xx x

B Bf c 0                                                                                                                                      (34) 

The 2 1  operator 1 2[ ]TB B=B  is called the boundary operator, which includes two conditions for each edge 

type according to Table 1. The inner operators 
1,2B  take either of the following forms according to Table 1,  
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1

2

1             definite lateral displacement (S or C)

definite normal rotaion (C or G)

          definite edge shear force (F or G)

    definite edge moment (S or F)

n

n

V

M

B
n

B
B

B


= 

 


= 


                                                                                     (35) 

The moment and shear force operators above are defined according to (29)-(31) as,  

2 2 2 2 2
2 2

11 12 21 22 332 2 2 2
4

nM x y x yB n D D n D D n n D
x yx y x y

         
= + + + +     

         
                                                      (36) 

2 2 2

11 12 332 2

2 2 2

33 21 222 2
     

nV x

y

B n D D D
x y x yx y

n D D D
x x y y x y

        
= + +    

        

        
+ + +    

         

                                                                                            (37) 

ijD  are the material properties according to (21). Repeating (34) for all boundary points makes the homogeneous 

matrix equation below,  

=Vc 0                   (38) 

The matrix V  is of dimensions 2 2B Bn n , and its rows are the result of applying the boundary operators on the 

basis functions of the solution series. For the above to be true, c  must be in the null-space of V . This null-space 

may be defined via its bases, set as the columns of a matrix named φ , which is derived using some standard linear 

algebra algorithms such as singular value decomposition (SVD). It should be noted that the rows of V  should be 

normalized prior to extraction of φ . Any possible answer for c  may be an arbitrary linear combination of the 

columns of φ , here shown by rφ , as, 

rank( )

1

r r

r

d

=

= =
φ

c φ φd ,          
T

1 rank( )d d =  φd                                                                                          (39) 

 The approximated solution series may then be rewritten as,  

ˆ TW = f φd                                                                                                                                                              (40) 

The above relationship includes all possible combinations of the basis functions that satisfy the boundary 

conditions of the nanoplate. Since the employed collocation technique enforces the boundary conditions in strong 

form, and not the weak form as in FEM for instance, there will not be any interactions between the boundary 

conditions and the PDE satisfaction. Therefore, the collocation method has no restriction with the boundary 

condition operator to be enforced. Meanwhile, since global basis functions are employed, some boundary 

inconsistencies, such as internal sharp notches, can pollute the solution function. Some remedies for this issue may 

be localization or enrichment of the approximated solution function. The interested reader may see our recent work 

on the latter topic in [59].  

The unknown coefficients in d  should be defined via imposition of the equilibrium equation, which results an 

eigenvalue equation from which the critical buckling loads or the free vibration frequencies can be extracted. To this 

end, the equilibrium PDE is decomposed into three parts as,  

2

1 2 3( ) ( ) ( ) 0cr nL W N L W L W+ + =                                                                                                                        (41) 

Considering { , , } { , , }xx yy xy cr xx yy xyN N N N   =  with crN  being the critical buckling load and   being the 

coefficients of the in-plane loads, the triple parts above are,  
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1 11 , 11, , 11, , 12 , 12, , 12, ,

33 , 33, , 33, , 33, , 21 , 21, ,

21, , 22 , 22, , 22, ,

( ) 2 2

       4 4 4 4 2

       2

xxxx x xxx xx xx xxyy x xyy xx yy

xxyy y xxy x xyy xy xy xxyy y xxy

yy xx yyyy y yyy yy yy

L W D W D W D W D W D W D W

D W D W D W D W D W D W

D W D W D W D W

= − − − − − −

− − − − − −

− − − − + 2

4 4
, , , , , , , ,

2 2 2
, , , , , ,

(2 )

       2 2 2

               2 2 ( )

s
s w

s
w xx w x x w xx w yy w y y w yy s

s x x s y y s xx s yy

k W k W

W k W k W k W k W k W k W k W

k W k W k k W



 

+  −

+ −  + + + + + + − 


−  −  − + 
  

( )2 2 2
2 , , , , , ,( ) 2 2xx xx xy xy yy yy xx xx xy xy yy yyL W W W W W W W      = + + + −  −  −   

(

)

2 2 2
3 0 2 0 0, , 0, , 0

4 2 2 2 2
2 0, , 0, , 0

( ) 2 2 ( )

       2 2 ( )

x x y y

x x y y

L W m W m W m W m W m W m W

m W m W m W m W

= +  −  + + + 

+  +  +  +  
                                                          (42) 

To impose the PDE in (41), after substituting the approximated solution series (40), a weighted residual 

approach is implemented as,  

( )2

1 2 3( ) 0,           1, ,T

i cr nw L N L L d i M


+ +  = = f φd                                                                                   (43) 

  is the domain of the nanoplate. iw  is the selective weight function, defined in the normalized plane 

corresponding to some weight points as below,  

2 2( ) ( )2 2(1 )(1 )
l kW

iw e
   

 
 − − + −
 = − − ,            

2 11, ,      1, ,w wl n k n= =                                                            (44) 

The weight point coordinates { , }l k   in a rectangular grid are specified based on the comprehensive studies in 

[64] as,  

2 2

1 1

1 (2 1) /   ,      1,...,

1 (2 1) /  ,     1,...,

l w w

k w w

l n l n

k n k n





= − + − =

= − + − =
                                                                                                                 (45) 

where the number of rows and columns of the grid are,  

1 23,      3w y w xn O n O= − = −                                                                                                                                  (46) 

The indices in (44) are correlated as,  

2( 1) wi k n l= − +                                                                                                                                                    (47) 

The weight parameter W  controls sharpness of the weight function, and may be calculated with respect to the 

approximation order through the following proposed relation [64],  

2
max

max2.5
max( 29)max

max

30                                                     
     25

          max{ , }25
     2530 160 15

10

x yO

O
W O O OO

Oe
− −




= = − 
+ +  

 

                               (48) 

Evaluating (43) for all weight functions gives,  

2
1 2 3( )cr nN + + =A A A φd 0                                                                                                                                (49) 

where the individual matrices are,  

 1 2,           1, 2,3          
TT

k k ML d k w w w


=  = =A w f w                                                                   (50) 

To avoid evaluation of complicated double integrals in (50), they may be reproduced by simple algebraic 

combination of pre-evaluated single integrals. To this end, the variable parameters including the stiffness 

coefficients, the mass moments of inertia and the foundation properties should be decomposed into combination of 

one-dimensional (1D) functions in the form of incomplete normalized monomials from the Pascal triangle, 
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T i

i D DD = f c ,          1 yx x x

T
mm m m

D         =
 

f                                               (51) 

where iD  is indicative of the targeted variable properties. The unknown vector 
i
Dc  is evaluated through point 

fitting of the above series with the targeted parameter over the entire nanoplate surface. Then it should be rearranged 

as,  

T i

i DD  = f C f ,          1 x
T

m

   =  f ,          1 y
T

m

   =
 

f                                                        (52) 

The entries of the middle matrix above are related to those in (51) as,  

 ( ) ( )
( )( ), 1 1x

i i

D Dp q q m p
C c

− + +
= ,       1,..., 1xp m= + ,    1,..., 1yq m= +                                                                        (53) 

The above matrix should be defined for the stiffness components ijD  shown by 
ij
DC , the density parameters 0m  

and 2m  shown by 0
mC  and 2

mC  respectively, the elastic foundation parameters wk  and sk  shown by s
kC  and w

kC  

respectively, and the additional terms due to consideration of the normal stress along z, namely 
x  and 

y , shown 

by 
x

C  and 
y

C  respectively. Now the required normalized single integrals may be evaluated as the entries of the 3D 

matrices below,  

( )

( )

2

2

1
( )

, , 1

1
( )

, , 1

( )
,

( )
,      {00,01,02,03,04,11,13,20,22}

l

k

ji p
W m

ij i jl m p

ji q
W n

ij i jk n q

T
A e d

T
B e d ij

 

 




 




 

+
− −

−

+
− −

−


=

 


= 

 





                                                (54) 

where the counters in the above relations vary as below,  

2 1( ) 1,..., ( )w wl k n n= ,     ( ) 0,..., ( )x ym n O O= ,      ( ) 0,..., ( )x yp q m m= ,                                                               (55) 

The values within parentheses are for y  direction, while those outside are for x  direction. Now the triple parts 

of (50) are composed in the following auxiliary matrices. [ ]ij lA ( [ ]ij kB ) is the 2D matrix extracted from the 3D 

matrix 
ijA (

ijB ) for the first index equal to ( )l k , meaning correspondence of the data to thl  column ( thk  row) of 

the weight grid,  

11 12

1 04 13 22 00 02 11 20 02

21 22

02 02 11 20 00 04 13 22

33

02 11 02 11

([ ] 2[ ] [ ] ) [ ] ([ ] 2[ ] [ ] ) [ ]

[ ] ([ ] 2[ ] [ ] ) [ ] ([ ] 2[ ] [ ] )
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h T T

l l l D k l l l D k

T T T T T T

l D k k k l D k k k
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l l D k k

= − + + − + +

− + + − + +

− + +
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04 00 00 04
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[ ] [ ] [ ] [ ] [ ] [ ]

2 ([ ] [ ] [ ] [ ] )

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] 2[

T

w T s T s T

l k k l k k l k k

s T T

l k l k

w T w T

l k k l k k

s T s T

l k k l k k





− + +

+ +

+ +

− − −

        A C B A C B A C B

        A C B A C B

        A C B A C B

           A C B A C B A02 02

04 0 00 02 0 02 00 0 04

] [ ]

2 ([ ] [ ] [ ] [ ] [ ] [ ] )

s T

l k k

s T T T

l k l k l k − − − 

C B

           A C B A C B A C B

                                          (56) 

2 02 0 00 00 0 02 01 0 01

04 0 00 02 0 02 03 0 01

02 0 02 00 0 04 01 0 03

[ ] [ ] [ ] [ ] 2 [ ] [ ]

[ ] [ ] [ ] [ ] 2 [ ] [ ]

[ ] [ ] [ ] [ ] 2 [ ] [ ]

h T T T

xx l k yy l k xy l k

T T T

xx l k yy l k xy l k

T T T

xx l k yy l k xy l k

  

   

  

= + +

− + +

+ + + 

A A C B A C B A C B

A C B A C B A C B

  A C B A C B A C B

                                                            (57) 
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                                     (58) 

C0 is the diagonal matrix below, 

 0 Diag 1,0,0,...,0=C                                                                                                                                          (59) 

Successive rows of h
iA  should be arranged next to each other to form one row of iA  in (49) corresponding to 

the weight point situated on thk  row and thl  column of the weight grid. Repeated for every weight point, the 

mentioned matrices are completed. Now the eigenvalue problems related to the buckling or free vibration may be 

constituted as below,  

1 2( )crN+ =A φ A φ d 0           Buckling problem 

2

1 3( )n+ =A φ A φ d 0             Free vibration problem                                                                                           (60) 

Solution of the above problems will give,  

2

2 1 3 1Eigenvalues ( ) ,     Eigenvalues ( )cr nN + +       A φ A φ A φ A φ                                                                  (61) 

The sign + above stands for the Moore-Penrose pseudo inversion. The unknown coefficients d form the 

eigenvectors in (60) for the mode shapes. One may also consider the interaction of the in-plane loads with the free 

vibration frequency through simultaneous consideration of the three terms above as,  

2

1 2 3( )nN + + =A φ A A φ d 0                                                                                                                                  (62) 

where N  is the applied in-plane load, less than the critical buckling load of the nanoplate, which affects the 

stiffness of the nanoplate and thus, alters the free vibration frequencies as, 

2

3 1 2Eigenvalues ( ) ( )n N +  + A φ A φ A φ                                                                                                           (63) 

4. Verification 

This section brings up several problems of buckling and free vibration of nanoplates from the well reputed 

literature, in order to verify the accuracy of the proposed formulation. The edge type sequences are addressed as in 

Fig 2. For instance, the edge configuration SCSF indicates simple edges 1 and 3, clamped edge 2 and free edge 4.  

 

 

Fig 2: Rectangular nanoplate and the order of edges. 
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Reports include the non-dimensional critical buckling load, and the fundamental free vibration frequency as,  

2 3

2 0 0 0 0

02

0 0

,     ,              
12(1 )

cr x

n

xy yx

t N a E t
a k D

D D




 
 = = =

−
                                                                                  (64) 

The parameters with zero subscripts refer to a specific situation, usually the left edge of the nanoplate, unless 

otherwise stated. The elastic foundation parameters are imported in the normalized forms below,  

2 4

0 0

,          s w

S W

k a k a
K K

D D
= =                                                                                                                                (65) 

The orthotropic bulk material properties are considered as [65],  

1765GPa    1588GPa    0.3    678.85GPax y xy xyE E G= = = =                                                                          (66) 

Moreover, the surface properties used in case are read from [43],  

7 25.43N m    0.9108N m    5.46 10 kg ms s s s sE     −= + = = =                                                               (67) 

In all examples of this section, the effect of normal stress zz  is ignored, in accordance with the selected 

references. For the solution method, the effective parameters are set unchangingly as below, and the rest of the 

parameters are defined based on then,  

20,       3,       160x y x y BO O m m n= = = = =                                                                                                        (68) 

4.1. Buckling examples 

The first example examines a simply supported square nanoplate with edge length 15nma b= =  and constant 

thickness 0.34nmh = , resting on elastic foundation with 0SK =  and variable 
WK , for various nonlocal values. The 

material is isotropic with 1.06TPaE =  and 0.25 = . Fig 3 compares the results for the following buckling load 

ratio by the present method with those in [51], in which excellent confirmation was achieved, 

Buckling load with nonlocal effect

Buckling load without nonlocal effect
 =                                                                                                          (69) 

K
W
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Fig 3. Buckling load ratio (69) of SSSS square nanoplate versus WK  for various nonlocal parameters - lines: present method, markers: 

[51] ( 0SK = , 15nma = , 0.34nmh = , 1xx yy = = ) 

The next example considers a square nanoplate with edge length 10nma b= = , constant thickness 2nmh =  

with surface effects but without elastic foundation. The bulk material is isotropic with 70GPaE =  and 0.3 = , 

while the surface properties are as in (67). The reported buckling load ratio as below,  
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Buckling load with nonlocal and surface effects

Buckling load with nonlocal but without surface effects
 =                                                                              (70) 

which is compared with [43] in Fig 4, reveals perfect application of the proposed formulation. Notable is that the 

nonlocal length in Fig 4 relates to the nonlocal parameter through 2g = . This example confirms applicability of 

the proposed formulation in case of the existence of surface effects with various boundary conditions.  

Nonlocal parameter, g(nm)
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Fig 4. Buckling load ratio (70) of square nanoplate versus nonlocal parameter g =  without elastic foundation - lines: present, 

markers: [43] ( 10nma = , 2nmh = , 1xx yy = = ) 

The final example of this section considers biaxial buckling of SSSS square nanoplate of edge 10nm  and 

minimum thickness 
0 0.34nmh = , with linearly variable thickness as,  

0

2
1

x a
h h

a


 +  
= +  

  
                                                                                                                                       (71) 

The orthotropic material properties are as in (66). Results presented in Fig 5 without surface effects or elastic 

foundation, compared with [60], reveal perfect confirmation of the present formulation, and its application for 

problems with variable thickness. 
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Fig 5. Non-dimensional buckling load of SSSS square nanoplate with linear thickness for various nonlocal parameters without surface 

effects or elastic foundation - markers: present, lines: [60] ( 15nma = , 1xx yy = = ) 

4.2. Free vibration examples 

In this section, a number of sample problems are revisited to examine the applicability and performance of the 

method in free vibration problems. First, to show the effect of elastic foundation on free vibration frequencies, a 

square plate of side length 10m and thickness 15cm is considered, without any non-local effects. The material 
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properties are 25GPaE = , 0.15 =  and 32250kg m = . For fully clamped or simply supported edges, the 

normalized free vibration frequencies 
ij , with i  and j  being the number of half-waves along each direction, are 

compared with those reported in [66], for various values of Winkler-Pasternak foundation parameters. Results are 

normalized as in (64). The agreement of results is an evidence for proper performance of the proposed method in 

this case.  

Table 2. Non-dimensional free vibration frequencies of square plate without non-local effects resting on elastic foundation.  

 3 (kN m )wk   (MPa)sk  11  21  

Present [66] Present [66] 

CCCC 

100000 0 51.807 51.902 82.278 83.222 

200000 0 63.824 63.759 90.324 91.276 

100000 120 80.689 80.314 126.793 127.294 

SSSS 

100000 0 42.181 42.282 61.822 62.417 

200000 0 56.293 56.376 72.186 72.707 

100000 120 71.211 71.365 109.758 110.963 

 

Next, to see the performance with non-local effects, a square plate of side length 10nm and thickness 0.34nm, 

having material properties 1.06TPaE = , 0.25 =  and 32250kg m = , is considered resting on Winkler-

Pasternak elastic foundation. Table 3 compares the results for the following frequency ratio by the present method, 

with those presented in [67],  

Frequency with nonlocal effect

Frequency without nonlocal effect
 =                              (72) 

It should be noted that the mentioned reference has considered visco-elastic foundation properties, which has 

affected its results. However, proper confirmation is visible between the results from the two sources, which shows 

applicability of the method in this case as well.  

Table 3. Frequency ratios as (72) of square nanoplate with non-local effects resting on elastic foundation.  

  
WK  

SK  11  21  

Present [67] Present [67] 

0 

50 10 0.5346 0.5419 0.8850 0.8971 

100 20 0.7299 0.7399 1.1507 1.1665 

200 30 0.9108 0.9233 1.3838 1.4027 

1 

50 10 0.5286 0.5358 0.8386 0.8500 

100 20 0.7255 0.7354 1.1154 1.1307 

200 30 0.9073 0.9197 1.3545 1.3731 

2 

50 10 0.5242 0.5314 0.8142 0.8253 

100 20 0.7223 0.7322 1.0972 1.1122 

200 30 0.9047 0.9171 1.3396 1.3579 

3 

50 10 0.5209 0.5280 0.7991 0.8101 

100 20 0.7199 0.7298 1.0861 1.1009 

200 30 0.9028 0.9152 1.3305 1.3487 

 

Next, performance of the method is examined for existence of surface effects. This example also shows the 

ability of the method to accurately extract the free vibration frequencies in the presence of in-plane normal or shear 

loads , ,x y xyN N N , which are imported in normalized form as 
2k N a D= , for various values of the nonlocal 

parameter µ or the in-plane load, in Tables 4 and 5. The selected square nanoplate has edge length 10nm and 

thickness 2nm . The reported values are the ratio of the principal frequency value while considering the nonlocal 

and the surface effects, to the case with nonlocal but without surface effects. As seen, the results are in excellent 

agreement with those by analytical approach from [43].  

Table 4. Frequency ratios of square nanoplate with surface effects, in-plane loads and various non-local parameters.  

In-plane load 

type 
Edges 

0 =  1 =  1.44 =  

Present [43] Present [43] Present [43] 

Biaxial 

( 10k = ) 

CCCC 1.146 1.147 1.189 1.190 1.210 1.210 

SCSC 1.198 1.200 1.259 1.260 1.288 1.288 

SSSS 1.327 1.330 1.4291 1.430 1.494 1.495 

Shear 

( 10k = ) 

CCCC 1.124 1.125 1.1439 1.145 1.153 1.154 

SCSC 1.146 1.147 1.165 1.166 1.173 1.174 

SSSS 1.176 1.178 1.196 1.197 1.199 1.206 



520 Nima Noormohammadi et al. 

 

Table 5. Frequency ratios of square nanoplate with surface effects and variable in-plane load (
21nm = ).  

In-plane load type Edges 

Dimensionless in-plane load value ( k ) 

0 6 14 

Present [43] Present [43] Present [43] 

Biaxial 

CCCC 1.142 1.143 1.168 1.169 1.232 1.233 

SSCC 1.162 1.163 1.200 1.209 1.350 1.351 

SSSS 1.193 1.194 1.285 1.286 1.943 1.944 

Shear 

CCCC 1.141 1.142 1.142 1.143 1.147 1.148 

SSCC 1.161 1.162 1.162 1.163 1.170 1.171 

SSSS 1.190 1.191 1.193 1.194 1.199 1.203 

 

To extend the range of validation, a square nanoplate of edge 50nm with various thickness values is selected. 

The nonlocal parameter is fixed at 21nm = , and the biaxial or shear in-plane load is also adjusted as 10k = . Table 

6 shows great performance of the present method for various thickness values. 

Table 6. Frequency ratios of square plate with surface effects and variable thickness (
21nm = , 10k = ). 

In-plane load type Edges 

Plate thickness (nm) 

1 1.5 2 

Present [43] Present [43] Present [43] 

Biaxial 

CCCC 4.098 4.103 2.450 2.454 1.775 1.776 

SSCC 5.639 5.645 3.258 3.259 3.279 2.280 

SSSS 8.743 8.748 4.858 4.859 3.268 3.269 

Shear 

CCCC 3.706 3.711 2.230 2.231 1.682 1.683 

SSCC 4.365 4.371 2.748 2.750 1.979 1.981 

SSSS 6.159 6.163 3.479 3.481 2.393 2.394 

 

Although the previous results confirm the method for clamped and simple boundary conditions, the results in 

Table 7 are also brought to show its performance with free edges. The considered nanoplate is a square of edge 

10nm  and thickness 0.34nm , with the orthotropic material properties as in (66), and 32300kg m = . As seen, 

perfect agreement is achieved with the analytical results from [68], which is a firm evidence of methods’ 

applicability for nanoplates with free edges.  

Table 7. Non-dimensional higher mode frequencies of square nanoplate. 

Edges type   Source 
Mode number 

1 2 3 4 

SSFF 

0 
Present 9.16 15.88 36.57 37.00 

Xu et al. [68] 9.16 15.88 36.57 37.00 

1 
Present 8.80 15.16 31.69 32.85 

Xu et al. [68] 8.80 15.16 31.69 32.85 

2 
Present 7.92 13.45 23.58 26.12 

Xu et al. [68] 7.92 13.45 23.58 26.12 

4 
Present 5.96 9.86 14.12 16.64 

Xu et al. [68] 5.96 9.86 14.12 16.64 

SSCF 

0 
Present 12.34 32.86 39.87 61.62 

Xu et al. [68] 12.34 32.86 39.87 61.62 

1 
Present 11.82 29.61 33.98 49.77 

Xu et al. [68] 11.82 29.61 33.98 49.77 

2 
Present 10.57 23.62 21.13 34.78 

Xu et al. [68] 10.57 23.62 21.12 34.78 

4 
Present 7.87 14.96 15.00 19.91 

Xu et al. [68] 7.87 14.96 15.00 19.91 

 

Finally, to show that the method is also applicable for free vibration analysis of plates with variable thickness, 

the last table of this section gives the non-dimensional frequencies of the first two modes for a square plate without 

nonlocal effects. The thickness varies linearly as in (71), and the material is isotropic. Results compared with the 

exact solutions from [69] in Table 8 reveal perfect accuracy, another sign that the proposed method is applicable for 

plates with variable thickness.  
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Table 8: Non-dimensional free vibration frequencies of square plate with linear varying thickness, without nonlocal effects. 

Edges   

 
Present Exact [69] 

Mode 1 Mode 2 Mode 1 Mode 2 

CCCC 
0.2 39.52 80.53 39.51 80.52 

0.4 42.90 87.29 42.91 87.29 

SSSS 
0.2 21.69 54.16 21.69 54.16 

0.4 23.61 58.77 23.61 58.78 

SSCC 
0.2 29.72 66.11 29.73 66.12 

0.4 32.33 71.36 32.34 71.37 

 

Now that the method has been verified, to see its convergence progress and stability, Table 9 presents the biaxial 

buckling load and the first four free vibration frequencies, normalized as in (64), for square simply supported and 

clamped nanoplates with surface effects, with respect to the effective parameter of approximation order 
x yO O= . 

The number of boundary points follows the rule in (33) for every case. As seen, the response converges to the final 

value very fast, and remains unchanged up to much higher orders. This is a confirmation of proper convergence and 

stability of the proposed method.  

Table 9: Non-dimensional free vibration frequencies of square plate with linear varying thickness, without nonlocal effects. 

 Edge types Mode number 
x yO O=  

5 7 10 15 20 

Free vibration 

SSSS 

1 20.7350 19.3853 19.3973 19.3973 19.3973 

2, 3 36.0703 37.1612 37.4749 37.4676 37.4676 

4 48.1574 49.5505 49.8900 49.8825 49.8825 

CCCC 

1 37.1508 32.1091 32.3129 32.3143 32.3143 

2, 3 50.4834 49.3851 50.9480 50.9325 50.9325 

4 62.1540 60.7045 62.2271 62.2259 62.2259 

Buckling 
SSSS 1 2.1359 2.0568 2.0585 2.0585 2.0585 

CCCC 1 4.3322 3.4224 3.4530 3.4530 3.4530 

 

After validation, the next section will present the numerical results gained by the proposed method for various 

cases of interest. 

5. Results and discussion 

This section presents several simulations of buckling and free vibration of nanoplates with various properties 

regarding nonlocal and geometric parameters, surface effects or elastic foundation. Numerous parameters are 

effective in the structural response of the nanplate, including geometric parameters, nonlocal effects, surface effects 

and elastic foundation. The thickness may be variable according to, 

0

2
1

n
x a

h h
a


 + 

= +     

                                                                                                                                     (73) 

0h  is the thickness at the left edge of the nanoplate. n  is equal to 0, 1 or 2 for constant, linear or quadratic 

thickness variation.   defines the thickness difference of the left and right edges for the cases with variable 

thickness; for instance 1 =  gives the right edge thickness twice that at the left edge. The following diagrams depict 

effect of various parameters on the buckling load or fundamental frequency of the nanoplate. Whenever not stated 

otherwise, the following parameters have been considered,  

215nm,    1,     1nm,     1nm ,     200,     0W Sa b a h K K= = = = = =                                                                  (74) 

The orthotropic bulk material properties are the same as (66). Also, the surface effects are considered as [41]:  

7 25.263N m,   2.256N m,   0.9108N m,    5.46 10 kg ms s s s    −= = = =                                                (75) 

Selection of the nonlocal elasticity parameters in (66) and (75) for nanoplate of variable thickness may be 

rationalize from the probability that multiple graphene sheets of unequal area could be laid over each other in a 

layered structure. Ignoring the van der Waals effects among the successive layers, leads to an equivalent single-

layered nanoplate with variable thickness. Now, the effect of surface energy may be applied as in a single layered 

graphene sheet, but with consideration of variable thickness, which alters the torque arm between the upper and 

lower surfaces over the surface of the nanoplate. The principal method properties for the solution of the related 

problems are the following values, and the others will be defined correspondingly, 
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20,     6,     160x y x y BO O m m N= = = = =                                                                                                           (76) 

5.1. Buckling analysis 

This subsection gives the results for buckling of nanoplates under various circumstances. To give a 

comprehensive insight, the following buckling load ratio will be reported for comparison of different cases,  

Critical buckling load with size effect, surface effect or elastic foundation

Critical buckling load without size effect, surface effect and elastic foundation
 =                                          (77)  

m
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Fig 6. Biaxial buckling load ratio of SSSS square nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus 

nonlocal parameter – continuous: with surface effects, dashed: without surface effects.  

Fig 6 depicts the load ratio (77) for a simply supported square nanoplate versus the nonlocal parameter μ, with 

and without surface effects, for various slopes of thickness variation. The ratio is larger for constant thickness, lower 

for linear and the lowest for quadratic thickness. Besides, the difference between the results with and without 

surface effects decreases as the order of the thickness variation increases from constant to quadratic. It is also 

observed that the slope of variation with respect to the increase of the nonlocal parameter is the same for all cases.  

Fig 7 depicts variation of the buckling load ratio versus nonlocal parameter μ for CCCC square nanoplate. Some 

dedications from the previous case with SSSS edges are concurrent here as well. The difference between 

consideration and not consideration of the surface effects decreases with increase of the thickness variation order, 

but remains rather unchanged for various values of  . Unlike the SSSS nanoplate in which the relation between   

and   is nearly linear, the CCCC nanoplate has steeper decrease in   for lower values of  .  
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Fig 7. Biaxial buckling load ratio of CCCC square nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus 

nonlocal parameter – continuous: with surface effects, dashed: without surface effects.  
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Fig 8. Biaxial buckling load ratio of CCSS square nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus 

nonlocal parameter – continuous: with surface effects, dashed: without surface effects.  

Fig 8 depicts variation of the buckling load ratio versus nonlocal parameter μ for CCSS square nanoplate. 

Compared to Figs  6 and 7, one may find that the behavior is nearer to CCCC boundary conditions, which indicates 

that the clamped edges dominate the structural behavior rather than the simple edges.  

Figs 9-11 show variation of the buckling load ratio versus elastic foundation parameter 
WK  for CCCC, SSSS 

and CCSS square nanoplates. In all of them, the relationship between   and 
WK  is almost linear, whose slope is 

steeper for lower values of n  and simple edges. Again, it is seen that   differs less with surface effects for 

quadratic thickness than the linear or constant thickness. Moreover, as the difference between the thickness at the 

left and right edges increases, the ratio decreases for all cases. Besides, the CCSS case is nearer to the CCCC case, 

reflecting dominance of the clamped edges over simple edges in structural behavior. It is clearly seen that there is an 

almost direct relationship between increase of the elastic foundation stiffness and the load ratio in all cases. 

Existence of surface effects has definitely increased the load ratio as well, but the increasing range is slightly more 

when the foundation parameter is equal to zero. For non-zero 
WK , the effect of surface layer remains rather 

unchanged.  

KW

0 100 200 300 400

l

0.8

1.0

1.2

1.4

1.6

1.8

2.0 g=0.0

g=0.5

g=1.0

 

Fig 9. Biaxial buckling load ratio of SSSS square nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus 

elastic foundation parameter WK  – continuous: with surface effects, dashed: without surface effects.  

Figs 12-14 display variation of the load ratio versus the aspect ratio of the rectangular nanoplate. It is seen that 

the load ratio increases with increase of the aspect ratio, steeper at first but slower for higher aspect ratios, especially 

for clamped edges. Moreover, the difference between the cases with and without surface effects increases as the 

aspect ratio raises. 
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Fig 10. Biaxial buckling load ratio of CCCC square nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus 

elastic foundation parameter 
WK  – continuous: with surface effects, dashed: without surface effects.  
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Fig 11. Biaxial buckling load ratio of CCSS square nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus 

elastic foundation parameter 
WK  – continuous: with surface effects, dashed: without surface effects.  
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Fig 12. Biaxial buckling load ratio of SSSS nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus the aspect 

ratio – continuous: with surface effects, dashed: without surface effects.  
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Fig 13. Biaxial buckling load ratio of CCCC nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus the 

aspect ratio – continuous: with surface effects, dashed: without surface effects.  
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Fig 14. Biaxial buckling load ratio of CCSS nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus the aspect 

ratio – continuous: with surface effects, dashed: without surface effects.  

While nanoplates with simple and clamped edges have been vastly discussed in the literature, those having free 

or guided edges were much less visited. The remainder of this section will present some detailed results on the 

behavior of such nanoplates to make comparisons with the former cases. The same configuration and material 

properties as the previous models is considered here. The elastic foundation is also imported by 200WK =  and 

0SK = . Fig 15 shows variation of the load ratio for SSFF nanoplate versus the nonlocal parameter, in various cases 

of thickness variation with and without surface effects. Compared with more rigid edges such as simple and 

clamped, higher ratios are visible here, which are only slightly affected by increase of the nonlocal parameter. A 

rather similar behavior is visible in Fig 16 for SSGG nanoplate, albeit the ratios are globally less than those of SSFF 

for constant thickness, and their difference decays with increase of the thickness variation order. This shows that the 

edges without shear constraints as free and guided types, are more sensitive to the effect of elastic foundations, but 

less sensitive to nonlocal effects. By inclusion of a more rigid edge, i.e. SSCF configuration in Fig 17, the structural 

behavior clearly tends to that of previous figures, i.e. overall decrease of the load ratio, and more affection by the 

nonlocal parameter.  
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Fig 15. Biaxial buckling load ratio of SSFF nanoplate with constant (green) and linear (red) thickness versus the nonlocal parameter – 

continuous: with surface effects, dashed: without surface effects. 
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Fig 16. Biaxial buckling load ratio of SSGG nanoplate with constant (green) and linear (red) thickness versus the nonlocal parameter – 

continuous: with surface effects, dashed: without surface effects. 
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Fig 17. Biaxial buckling load ratio of SSCF nanoplate with constant (green) and linear (red) thickness versus the nonlocal parameter – 

continuous: with surface effects, dashed: without surface effects.  

5.2. Free vibration analysis 

In this section, we elaborate on the effect of various parameters, as the ones in previous section, on free vibration 

behavior of the nanoplates with elastic foundation, surface effects and variable thickness. The bulk and surface 

material properties, as well as geometric configuration, is similar to those in the previous section. The oncoming 
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diagrams report the following fundamental frequency ratio,  

Fundamental frequency with size effect, surface effect or elastic foundation

Fundamental frequency without size effect, surface effect and elastic foundation
 =                                      (78) 

 

Fig 18. Fundamental frequency ratio of CCCC square nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus 

nonlocal parameter – continuous: with surface effects, dashed: without surface effects.  

 

Fig 19. Fundamental frequency ratio of SSSS square nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus 

nonlocal parameter – continuous: with surface effects, dashed: without surface effects.  

Figs 18-20 depict the above frequency ratio for CCCC, SSSS and CCSS edges, respectively. By increasing the 

rigidity of the edges, the ratio decreases meaningfully. Besides, as the order of the thickness variation function 

increases from zero (constant thickness) to two (quadratic thickness variation), the ratio decreases considerably. The 

nonlocal parameter has an adverse effect on rigidity of the nanoplates, and reduces the ratio significantly.  

Figs 21-23 show the effect of elastic foundation parameter 
WK  on the frequency ratio, while keeping 

SK  zero, 

for fully clamped, simply supported and mixed (CCSS) edges, respectively. As seen, by reducing the rigidity of the 

edges, the variation range of the ratio increases. Besides, increasing the difference between the thickness at the left 

and right sides of the nanoplate decreases the variation of the frequency ratio with respect to 
WK . Moreover, the 

surface effects are more critical for the cases with constant thickness than the linear, and more for linear than the 

quadratic thickness variation. 
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Fig 20. Fundamental frequency ratio of CCSS square nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus 

nonlocal parameter – continuous: with surface effects, dashed: without surface effects.  

It is observed in Figs 21-23 that the stiffness of the elastic foundation has an almost direct relationship with the 

frequency ratio. On the other hands, both increasing the foundation stiffness as well as considering surface effects 

increases the frequency ratio, but the variation is slightly more for smaller values of 
WK . The behavior is rather 

similar to what happened for buckling analysis in the previous section.  

 

Fig 21. Fundamental frequency ratio of CCCC square nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus 

elastic foundation parameter 
WK  – continuous: with surface effects, dashed: without surface effects.  

 

Fig 22. Fundamental frequency ratio of SSSS square nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus 

elastic foundation parameter WK  – continuous: with surface effects, dashed: without surface effects.  
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Fig 23. Fundamental frequency ratio of CCSS square nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus 

elastic foundation parameter 
WK  – continuous: with surface effects, dashed: without surface effects.  

Figs 24-26 show the effect of varying the aspect ratio of the nanoplate on the frequency ratio for CCCC, SSSS 

and CCSS boundary conditions, respectively. As seen, for less rigid edges, the variation range has widened. 

Moreover, the surface effect is better seen for constant thickness than the two others.  

 

Fig 24. Fundamental frequency ratio of CCCC nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus the 

aspect ratio – continuous: with surface effects, dashed: without surface effects.  

 

Fig 25. Fundamental frequency ratio of SSSS nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus the 

aspect ratio – continuous: with surface effects, dashed: without surface effects.  
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Fig 26. Fundamental frequency ratio of CCSS nanoplate with constant (green), linear (blue) and quadratic (red) thickness versus the 

aspect ratio – continuous: with surface effects, dashed: without surface effects.  

Finally, to make a comparison with less before seen boundary conditions of free and guided, Figs 27-29 present 

the nonlocal effect on the frequency ratio for SSFF, SSGG and SSCF nanoplates, respectively. The nonlocal effect 

on these cases is only slightly felt in the mentioned figures, with a linear correlation. Besides, the SSFF and SSGG 

nanoplates are much closer to each other than they used to be for buckling tests. Again, the nanoplate with constant 

thickness has the highest ratio then is the linear and the least ratio is for quadratic thickness. Introduction of clamped 

edge in Fig. 29 has decreased the overall ratios, but still shows the linear correlation between   and  .  

 

Fig 27. Fundamental frequency ratio of SSFF nanoplate with constant (green) and linear (red) thickness versus the nonlocal parameter – 

continuous: with surface effects, dashed: without surface effects.  

As an overall conclusion, heterogeneity due to variable thickness, causes some parts of the nanoplate be less 

flexible than some other parts of it, unlike homogeneous nanoplates that have the same rigidity all over the domain. 

The difference in rigidity at various parts of the domain causes the waves by the mode shapes in buckling or free 

vibration to form in more flexible areas. This increases the effect of the edge support nearer to the flexible parts in 

the overall behavior. For free vibration problems in nanoplates with variable thickness, since the distribution of the 

mass per area and the rigidity follows rather similar rules, the frequency characteristics will tend to those of a 

homogeneous nanoplate with its constant thickness equal to the average of the variable thickness. For buckling 

problems, on the other hand, since the in-plane load is the same all over the area, a local instability may occur in 

more flexible parts of the nanoplate and thus, the critical load is lower than that of the homogeneous nanoplate 

having its average thickness. As also seen in the given results, the value of the nonlocal parameter does not change 

the intensity of thickness variation effectiveness, with and without surface effects, but the overall ratio is altered 

similarly throughout the range.  
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Fig 28. Fundamental frequency ratio of SSGG nanoplate with constant (green) and linear (red) thickness versus the nonlocal parameter 

– continuous: with surface effects, dashed: without surface effects.  

 

Fig 29. Fundamental frequency ratio of SSCF nanoplate with constant (green) and linear (red) thickness versus the nonlocal parameter – 

continuous: with surface effects, dashed: without surface effects.  

6. Conclusions 

We developed a simple and versatile framework for buckling and free vibration analysis of rectangular 

nanoplates based on nonlocal theory, with the possibility of in-plane variable properties, elastic foundation and 

surface effects. The solution method was formulated based on equilibrated basis functions. The PDE is 

approximately satisfied through a weighted residual approach, while the boundary conditions are strongly applied in 

a collocation style. The use of global basis functions brings complete continuity to the displacement function over 

the nanoplate surface. The 2D integrals are evaluated by linear combination of pre-evaluated single integrals, 

therefore removing the numerical quadrature step. Verification of the proposed formulation showed quite accurate 

and effective for various problems. While the method has shown very good accuracy and convergence for 

rectangular nano plates, its applicability to concave domains or internally perforated plates may have difficulties due 

to the so called pollution error, which will be widespread in global domain methods such as the one here. This may 

be resolved by a localized formulation of the method, such as the one in [70].  

The method was then used to analyse the buckling and free vibration of sample nanoplates with variable 

thickness, leading to in-plane variable mass-per-area and stiffness, for various combinations of boundary conditions. 

For unification, the buckling load ratio or fundamental frequency ratio with respect to the completely classic 

configuration was reported. It was deduced that the effect of nonlocal parameter on the ratio decreases by the 

increase of the variation order of the thickness from constant to quadratic. Also, the surface effects are more 

affecting for constant than linear, and for linear than the quadratic thickness variation. Investigation of various 

boundary conditions showed that free or guided edges result higher ratios than clamped or simple edges, and their 

diagrams versus the nonlocal parameter tend to linear style, with slight change of the load/frequency ratio versus 
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nonlocal parameter. Meanwhile, the effect of free edges in the overall behavior of the diagrams showed dominant 

over simple or clamped edges, and the clamped edge showed also dominant over simple edge, in terms of affecting 

the behavior of the related diagrams. The new results may also be of interest for the researchers on similar fields.  
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