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Abstract 

In this paper, a bi-directional thermoelastic analysis of a rotating thick 

cylindrical shells subjected to mechanical loading is presented. The 

formulation is based on the first-order shear deformation theory (FSDT), 

which accounts for transverse shear. The governing equations, derived using 

the minimum total potential energy principle, are solved using the multi-

layered method (MLM). Solving this set of equations, applying boundary 

conditions and continuity conditions between the layers, yields displacements 

and stresses. Finally, the displacements and stresses along the radius and 

length are plotted, and their distributions are compared with solutions 

obtained using the finite-element method (FEM). To the best of the 

researchers’ knowledge, in the literature, there is no study carried out bi-

directional thermoelastic analysis of clamped-clamped rotating thick shells 

under linear variable pressure in the longitudinal direction. 

Keywords: Thick cylindrical, bi-directional, thermoelastic, shell, rotating, first-order shear deformation 

theory (FSDT), multi-layers method (MLM); 

1. Introduction 

Cylindrical shells are indispensable components in various industries, owing to their ability to withstand high 

internal pressures. Their design and analysis demand meticulous attention to ensure structural integrity and safety. 

Advanced analytical and computational methods play a pivotal role in optimizing these shells' performance [Fatehi 

and Nejad [1]; Mazarei et al. [2]; Nejad et al. [3]; Farajpour and Rastgoo [4]; Ebrahimi et al. [5]; Nejad et al. [6]; 

Afshin et al. [7]; Kashkoli et al. [8]; Gharibi et al. [9]; Nejad et al [10]; Kashkoli et al. [11]; Jabbari and Nejad [12]; 

Dindarloo and Li [13]; Taghizadeh et al. [14]; Sofiyev and Fantuzzi [15]; Taghizadeh and Nejad [16]; Jabbari and 

Nejad [17]]. Thermal stress analysis is crucial for designing structures and components that can withstand thermal 

loads [kashkoli et al. [18]; Nejad et al. [19]; Kashkoli and Nejad [20]; Nejad and Fatehi [21]; Nejad and Kashkoli [22]; 

Dehghan et al. [23]; Kashkoli and Nejad [24]; Nejad et al.[25]; Farajpour et al. [26]; Li et al. [27]; Nejad et al. [28]; 

Ghannad and Nejad [29]; Zhang and She [30]; Ramezani and Nejad [31] ]. Panferov [32] presented the thermoelastic 

analysis on an elastic truncated conical with uniform thickness. Sundarasivarao and Ganesan [33] analysed the 

behavior of a conical shell under pressure using the finite element technique. Mirsky and Hermann [34] researched 

the analysis of thick cylindrical shells using the FSDT with uniform and isotropic materials. Witt [35] presented a 

thermal stress analysis for a conical shell under axis-symmetric temperature distributions. Jane and Wu [36] 

employed a generalized thermoelasticity problem using the curvilinear circular conical coordinate system. Eipakchi 

et al. [37] employed a mathematical approach to analyze the elasticity of a thick conical shell with varying thickness 
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using perturbation theory under non-uniform internal pressure. Nejad and Rahimi [38] investigated deformations and 

stresses in FGM pressurized thick hollow cylinder based on closed form solutions for one-dimensional steady-state 

thermal stresses. Ghannad et al. [39] studied the elastic analysis of thick truncated conical shells with uniform 

thickness. Jabbari et al. [40] presented a thermo-elastic analysis of a rotating truncated conical shell subjected to 

temperature, internal pressure, and external pressure by using the FSDT and MLM. They derived a solution for the 

problem by reducing it to a reverse thermo-elasticity problem. Ghannad and Nejad [41] studied elastic solution of 

pressurized clamped-clamped thick cylindrical shells made of FGMs based on the FSDT. Eipakchi [42] studied the 

determination of displacements and stresses in a homogeneous thick conical shell based on the third-order shear 

deformation theory under non-uniform internal pressure, using perturbation theory. Ghannad et al. [43] presented 

displacement and stress analyses for pressurized thick cylindrical shells using perturbation techniques. Nejad et al. 

[44] analyzed a mathematical solution that partially uses analysis and partially uses numerical methods to calculate 

the displacements and stresses in a cylindrical shell with varying thickness under a non-uniform pressure They 

systematically examined how the primary factors of the problem affect displacement and stress levels. Civalek [45] 

studied the free vibration analysis of isotropic laminated conical shells using the numerical solution of the governing 

differential equations of motion based on shear deformation theory. Nejad et al. [46] presented an analytical and 

numerical solution for truncated conical shells based on the First Shear Deformation Theory. Nejad et al. [47] 

studied a semi-analytical solution for a cylindrical shell with variable thickness based on the First Shear 

Deformation Theory under uniform pressure. Ghannad et al. [48] obtained a semi-analytical solution to determine 

displacements and stresses in a thick cylindrical shell using the First Shear Deformation Theory based on disk form 

multilayers under uniform pressure. Jabbari et al. [49] conducted a thermo-elastic analysis on a vessel made of 

Functionally Graded Material (FGM) subjected to temperature gradient and internal non-uniform pressure using a 

higher-order shear deformation theory. Nejad et al. [50] presented semi-analytically a rotating thick hollow cylinder 

made of Functionally Graded Material under arbitrarily non-uniform pressure using the FSDT. Jabbari et al. [51] 

conducted a thermoelastic analysis on a thick truncated conical shell under a temperature gradient and non-uniform 

internal pressure using disk-form multilayers based on the first shear deformation theory. Kashkoli [52] obtained a 

thermomechanical solution for creep analysis of FG thick cylindrical shells with variable thickness using the FSDT 

and MLM. Hamzah et al. [53] analyzed the vibration characteristics of cylindrical shells under varying ambient 

temperatures using Finite Element Method (FEM). Ghannad et al. [54] studied the analytical solution of pressurized 

thick cylindrical shells with variable thickness based on the FSDT and using the asymptotic method (MAM) of the 

perturbation theory. Aghaienezhad et al. [55] studied the behavior of spherical and cylindrical shells subjected to 

external pressure using the Generalized Differential Quadrature (GDQ) method. Nejad et al. [56] studied thermo-

elastic analysis in a FG thick shell of revolution with arbitrary curvature and variable thickness based on higher-

order shear deformation theory. Ifayefunmi and Ruan [57] presented the buckling analysis of stiffened Cone–

Cylinder Structures under axial compressive load using a computational finite element (FE) code. Gharooni et al. 

[58] investigated an analytical solution in axisymmetric clamped-clamped thick cylindrical shells made of FGM 

Using the third-order shear deformation theory. Ramezani et al. [59] presented a thermoelastic analysis of cylindrical 

pressure vessels under bi-directional temperature gradients based on FSDT. Nejad et al. [60] studied the semi-

analytical solution for FG thick truncated conical shells under non-uniform pressure loading, utilizing the FSDT and 

the MLM. Ramezani et al. [61] presented the thermoelastic analysis of pressurized thick cylindrical shell with 

nonlinear variable thickness based on FSDT. Mannani et al. [62] investigated mechanical stress and deformation 

analyses on a cylindrical shell under mechanical loads using a higher-order sinusoidal shear deformation theory and 

thickness stretching formulation. 

The current study investigates thermoelastic analysis for rotating clamped-clamped thick-walled cylinders under 

internal linear variable pressure and bi-directional thermal loading. For the semi-analytical investigation, FSDT and 

disk-form multilayer methods are utilized. The analytical results are compared with those obtained from the finite 

element method, demonstrating good agreement. 

2. Problem formulation 

First, the thermoelastic analysis of thick cylindrical shells with clamped-clamped conditions at the both ends, 

subjected to internal pressure ( )inP x , and rotating around its axis with a constant angular velocity (ω), is shown in 

Fig 1.  

where thickness (h) and length (L), and (R) represent the distance of middle surface from the axial direction. Also, z 

is the distance of typical point from the middle surface. 

r R z= +

 

(1) 
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R R= +
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where Ri  represent inner radius. with respect to Fig 1, x and z must be as follows: 

0
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x L

h h
z
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
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

 

(3) 

The general axisymmetric displacement field, ( ),x zU U , in the FSDT could be expressed on the basis of axial and 

radial displacements as follows: 
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Fig 1: cross section of the rotating thick cylindrical shells with clamped–clamped ends 

where 
0 ( )u x  and 

0 ( )w x are the displacement components of the middle surface. Also, 
1( )u x and 

1( )w x  are the 

functions used to determine the displacement field.  

    Due to the influence of ( ) 0  = , the temperature distribution function within the cylindrical shell can be 

expressed solely as a function of the radial coordinate ( r ) and the axial coordinate ( x ), therefore 

( ),T T x z=

 

(5) 

The temperature field for this cylindrical shell using the first-order temperature theory (FTT) is may expressed 

according to ( , )z x  as: 

( ) * 0 1 0 1, ( ) ( )x z T T x z x z = − = +  = +   (6) 

where 
*T  is the reference temperature. Also, 

0  and 
1  denote the temperature variations relative to a reference 

temperature. The strain–displacement relations in the cylindrical coordinates system are 
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(7) 

The thermal field-temperature change relations are 



Journal of Computational Applied Mechanics 2025, 56(2): 488-505 491 

1

0 1

( , )
( )

0

( , ) ( ) ( )

z

x

x z
e x

z

e

x z d x d x
e z

x dx dx



 
= − = −


=


   = − = − −

   

(8) 

In addition, the stress tensor and heat flux vector components can be written as 
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where 
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=
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(11) 

Here, 
i , 

i , 
iq and 

ie are the components of stress tensor, strain tensor, heat flux vector and, thermal field vector in 

the axial (x), circumferential (θ) and radial (z) directions (
xz  is the shear stress). Also, K is the thermal conduction 

coefficient. The stress resultants in terms of mechanical (index m) and thermal (index t) stress resultants are: 
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where k  represents a correction factor incorporated into the shear stress term. In the static state, this correction is 

applied for cylindrical shells k 5 / 6= [63]. 

According to the principle of virtual work, the changes in strain energy are equivalent to the changes in external 

work done, as expressed below: 
U W =  (13) 

where U is the total strain energy of the elastic body and W is the total work of external forces due to internal 

pressure and centrifugal force. By substituting strain energy and the work of external forces: 
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By substituting Eqs. (14)-(15) into Eq. (13) the governing equations are obtained as: 
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Also, the boundary conditions are: 
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Due to the irreversibility of  3A  and the necessity of its inverse for further calculations, it is essential to perform 

two variable changes in the solution process. 
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Implementing two variable changes necessitates integrating the equations associated with these variables within the 

system of differential equations. By substituting Eq. (12) into Eq. (16), the system of differential equations in Eq. 

(16) can be reformulated as follows: 
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where      1 2 36 6 6 6 6 6
, ,A A A
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 are the coefficients matrices, and F  is the force vector, as: 
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3. Semi-analytical solution 

Eqs. (16) and (17) consist of a set of non-homogeneous linear differential equations with variable coefficients. 

Obtaining an analytical solution for this set appears to be highly challenging, if not outright impossible. Therefore, 

this study introduces a semi-analytical method called the Multilayer Method to solve Eq. (16). In this approach, a 

cylinder under two-dimensional thermal analysis is segmented into homogeneous disk layers, each with a constant 

thickness  k
h  (see Fig 2). Consequently, the governing equations are converted into a non-homogeneous set of 

differential equations with constant coefficients. Here,  k
x  and  k

R  represent the length and radius at the midpoint 

of the disks, respectively. The variable k denotes the specific disk number, and 
dn  represents the total number of 

disks. 

The length of middle  k
x of kth disk (see Fig 2) is as follows 
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Based on the mentioned assumptions, the governing equations for each homogeneous disk are obtained as follows: 
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where, the coefficients matrices,  
 

6 6

k

iA


 and force vector,  
 

6 6

k
F


 are as follows: 
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Fig 2: division of cylindrical shell into homogenous disks with constant thickness 

 

4. Boundary and continuity conditions 

In this problem, the boundary conditions of the cylinder are clamped–clamped ends subjected to temperature are: 
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(33) 

 

At the boundary between the two layers in the cylinder, due to the overall homogeneity and continuity, forces, 

stresses, and displacements must be continuous. Given that the shear deformation theory applied is an 

approximation of one order and all equations related to stresses include the first derivatives of displacement, the 

specific continuity conditions are as follows: 
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and 
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According to the continuity conditions, 12 equations are derived. Generally, if the shell is segmented into n disk 

layers,1 ( )12 1n−  equations are obtained. By incorporating the boundary condition equations, the total becomes 12n 

equations. Solving these equations provides 12n unknown constants. 

5. Results and discussion 

In a case study, a clamped-clamped cylindrical shell with parameters 100 mm,
i

R =  120 mm,
o

R =  h 20 mm,=  

and 1000 mmL =  is analyzed. For both analytical and numerical results, the material properties 395 GPa,E =  
6 o

4.3 10  C,
−

=   3
19300 Kg m , =

o
175 W m cK =  and 0.3 =  are considered. 2

150 W m
i

H = and along x with 

an internal pressure applied at 0x =  and x L=  is 
1 160 MPaiP =  and 

2 60 MPaiP = , respectively. To achieve 

result convergence using the MLM, up to 70 layers were evaluated. It was found that increasing the number of 

layers beyond this point did not enhance the accuracy of the results. The MLM results were compared with those 

from the FEM in terms of displacement and stress. Fig 3 illustrates the radial displacement along the longitudinal 

direction within the intermediate layer, showing a comparison with FEM results. The radial displacement values 

indicate good agreement between the semi-analytical and numerical methods. Displacement is normalized by 

dividing to the internal radii. In order to normalize stresses, the mean internal pressure parameter is defined as 

follows: 

1 2

2

i iP P
P

+
=

 

(38) 

 

 
Fig 3: normalized radial displacement distribution ( 500rad s = ) 



Journal of Computational Applied Mechanics 2025, 56(2): 488-505 499 

Fig 4 presents the circumferential stress distribution along the length of the intermediate layer, measured at points 

distant from the boundary. The comparison between the results obtained from the FEM and another method 

demonstrates a good correlation. 

 
Fig 4: normalized circumferential stress distribution ( 500rad s = ) 

In Fig 5, the radial displacements across three layers along the thickness direction are shown at points distant 

from the boundaries. These displacements decrease along the length, with values reducing from the inner layer to 

the outer layer. 

 
Fig 5: normalized radial displacement distribution in different layers ( 500rad s = ) 

 

In Fig 6,  the graph illustrates circumferential stress values across three layers in the thickness direction, at 

locations far from the boundaries. The stress values diminish from the inner layer to the outer layer. The variations 

in stress values along the longitudinal direction are decreasing. The slope of these variations decreases from the 

inner layer towards the outer layer. 

In Fig 7, the distribution of shear stress along the length of the cylindrical shells is illustrated. As depicted, shear 

stress values can be neglected across all layers and at points away from the boundaries. 

In Fig 8, the distribution of dimensionless equivalent stress (von-Mises) across three layers along the thickness 

direction, away from the boundaries, is illustrated. The values exhibit a decreasing trend along the longitudinal 

direction. Moreover, the slope of this decrease diminishes from the inner layer to the outer layer. The stress values 

decrease from the inner layer to the outer layer. 

Figs 9-11 illustrate the changes in displacement values and stresses within the intermediate layer at different 

angular velocities. Fig 9 specifically focuses on the changes in dimensionless radial displacement along the 

longitudinal direction for various angular velocities. The radial displacement profiles exhibit a decreasing trend 

along the longitudinal direction. while the profile shape remains largely consistent across different angular 

velocities, the magnitude of displacement increases with increasing angular velocity. 
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Fig 6: normalized circumferential stress distribution in different layers ( 500rad s = ) 

 

 

 
Fig 7: Normalized shear stress distribution in different layers ( 500rad s = ) 

 

 

 
Fig 8: normalized equivalent stress distribution in different layers ( 500rad s = ) 
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Fig 9: normalized radial displacement distribution subjected to different angular velocity ( 0h = ) 

 

Fig 10 illustrates the variation of circumferential stress  within the intermediate layer at different angular 

velocities. These stress values exhibit nearly similar profiles, increasing with increasing angular velocities and 

exhibiting a steep decreasing trend along the longitudinal direction. 

 
Fig 10: normalized circumferential stress distribution subjected to different angular velocity ( 0h = ) 

 

Fig 11  presents shear stress values within the intermediate layer at various angular velocities. However, for 

further analysis, these values may be negligible and can be disregarded. 
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Fig 11: normalized shear stress distribution subjected to different angular velocity ( 0h = ) 

Fig 12  presents the variation of equivalent stress values within the intermediate layer at different angular 

velocities. These stress values exhibit nearly similar profiles, increasing with increasing angular velocities. Notably, 

the presented graph reveals a noticeable decreasing trend along the longitudinal direction. 

 
Fig 12: normalized equivalent stress distribution subjected to different angular velocity ( 0h = ) 

 

6. Conclusion 

This study provides a detailed examination of the stress and displacement distributions within cylindrical shells. 

The findings indicate that both circumferential and radial stresses and displacements exhibit decreasing trends from 

the inner layer to the outer layer and along the longitudinal direction. The FEM results show a good correlation with 

this method, validating the analysis. Additionally, shear stress values are negligible across all layers away from the 

boundaries, simplifying the overall stress profile. Furthermore, the impact of angular velocity on the intermediate 

layer is significant, with increased radial displacement and circumferential stress values at higher angular velocities. 

However, these stresses still follow a decreasing trend longitudinally. A comprehensive understanding of these 

stress and displacement behaviours is crucial for optimizing the design and ensuring the structural integrity of 

cylindrical shells under various operating conditions. 
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