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Abstract 

      Damped coupled harmonic nonlinear oscillators are essential to model 

several physical systems, including electrical circuits, mechanical structures, 

and definite biological systems. Therefore, the current work aims to examine 

the honest non-perturbative approach (NPA) to get periodic solutions for 

damped and conservative coupled mass-spring systems with linear and 

nonlinear stiffness that exhibit nonlinear free vibrations. The NPA is mainly 

based on the He’s frequency formula (HFF). Four practical models of two-

degree-of-freedom (TDOF) oscillation systems are demonstrated to display 

the accuracy, effectiveness, and applicability of the proposed approach. 

Furthermore, the study intends to achieve approximate solutions for small 

amplitude parametric factors, without observing the restrictions imposed by 

traditional perturbation approaches. The method is also extended to reveal 

ideal solutions for systems of nonlinear coupled oscillators. The iterative 

approximations of the solutions of parametric nonlinear fluctuations 

necessitate a quick estimation of the frequency-amplitude relationship. The 

produced parametric equation is validated using the Mathematica Software 

(MS), and it exhibits excellent agreement with the numerical solution (NS) of 

the original system.  The achieved responses of the examined models, besides 

the solutions of two limited cases, are graphically represented. These graphs 

show the temporal behaviors of these models and reveal a good impact of the 

acted parameters. The time histories of these solutions show consistent decay 

behavior, implying the stability of the results. Moreover, the related phase 

plane curves are displayed in various plots that have spiral curves directed 

inward at one single point. The behavior of the limited cases has periodicity 

forms with the variation of several acted parameters. Therefore, the 

corresponding curves of the phase plane have the forms of symmetric closed 

curves, i.e., limit cycles are produced. The present methodology seems to be 

straightforward, promising, powerful, and attractive. It can be  employed in 

several kinds of multi degrees of freedom in dynamical systems. 

Keywords: Coupled nonlinear oscillators; Nonlinear stiffness; Damping nonlinear harmonic oscillator; Non 

perturbative approach; He’s frequency formulation. 
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1. Introduction 

 

       The nonlinear ordinary differential equations (ODEs) are a compensated subject in engineering, physics, 

structures, mathematics, and other related fields. Consequently, researchers have widely employed a variety of 

analytical and numerical methods to examine these issues. Analytical approaches are particularly appealing due to 

their efficacy in providing a timely and approximate calculation of the frequency of parameters. The process of 

obtaining exact analytical solutions for nonlinear oscillator problems is often challenging and, in some cases, may 

prove impossible. There is an increasing emphasis on researching the motion of the TDOF nonlinear oscillation 

system. The generalized Galerkin's approach is formulated for the holonomic systems with several degrees of 

freedom. Two autonomous nonlinear TDOF oscillators were used as examples to demonstrate the use of the 

technology[1]. The nonlinear free vibration of a conservative, coupled mass-spring system with cubic nonlinearity 

can be solved using two effective analytical approaches: He's Max-Min approach and HFF[2]. The study 

investigated the analysis of a system comprising two masses with TDOF[3]. The system's behavior was 

characterized by a set of consistent, highly nonlinear ODEs. It was shown that a limited number of iterations yielded 

very precise responses that could be applied to a wide range of vibration amplitudes. The equation of motion (EOM) 

of a two-mass system connected with a cubic nonlinear stiffness can be described analytically using a system of two 

coupled ODEs with strong cubic nonlinearities[4]. The analytical solutions for this specific category of ODEs were 

easily accessible. The movement of the masses exhibited a distinct blend of translational and oscillatory motion. The 

TDOF systems were essential in modeling a range of real physics and engineering vibration modeling systems, 

including elastic beams complemented by two springs and milling equipment vibration[5]. These systems comprise 

two second-order nonlinear ODEs. The EOM for a system with multiple DOF can be converted into the equations of 

the Duffing oscillator (DO) as mentioned earlier[6]. 

 

       The growing attraction with the DO, a key issue in the nonlinear oscillations, is primarily motivated by its 

considerable utilization in many physical processes. These examples encompass the pendulum, magneto-elastic 

mechanical systems, and the process of extracting periodic orbits, and the nonlinear dynamics of materials with 

minor elasticity. The work utilized the homotopy perturbation method (HPM) and modified the Lindstedt-Poincare 

approach to examine the nonlinear free vibrations of beams that are simply supported and double-clamped and are 

subjected to axial loads[7]. The Galerkin decomposition method was employed to convert the EOM, which was 

dimensionless, into a collection of nonlinear ODEs. The results derived from the instances of the cubic-quintic DO 

and Duffing-harmonic equation showcased the approach's exceptional precision, straightforwardness, and 

effectiveness[8]. The methodology can easily be extended to include other nonlinear oscillators. The main goal of 

several research attempts is to attain more accurate solutions for ODEs by employing either analytical or numerical 

methods. Accordingly, many works have concentrated on creating rough analytical methods to discover rough 

solutions for nonlinear ODEs, such as the HPM[9]. To examine the impact of vibrational amplitude on the dynamic 

pull-in instability of double-sided-actuated nano-torsional switches, research was performed that identified a 

nonlinear relationship between frequency and amplitude[10]. The HPM was employed to analyze the impact of 

fundamental parameters on the pull-in instability and natural frequency. The study examined the oscillation of 

nonlinear nano-electromechanical resonators using a unique analytical approximate technique known as the global 

residue harmonic balancing approach[11]. The proposed methodology was successfully implemented and evaluated 

using quantitative measures. An illustrative example demonstrated the validity and feasibility of the technique, 

which will be expanded upon in more detail. A fundamental summary of the principles underlying the vibrational 

iteration method was provided[12]. The early exposition of the vibrational iteration approach centered on essential 

concepts such as the general Lagrange multiplier, restricted variation, and correction function, which are presented 

in a heuristic manner. The study made a conscious attempt to offer a lucid and instinctive comprehension of the 

technique. A unique method was proposed to tackle nonlinear problems by integrating the HPM with a traditional 

perturbation technique[13]. In contrast to conventional perturbation approaches, the proposed technique does not 

require a small parameter to be present in the equation. The proposed method can effectively influence the 

advantages of traditional perturbation methodologies. The results indicated that the innovative method was 

extremely effective and straightforward. The authors presented a novel analytical perturbation methodology to get 

accurate and well-organized analytical solutions for nonlinear ODEs with high-order nonlinearity[14]. The obtained 

results were compared to numerical and previously published data, which confirmed the usefulness and correctness 

of the existing technique. The strategy was found to produce more accurate and computationally efficient results in 

comparison to other established methods. The study recorded the changing behavior of a novel auto-parametric 

TDOF system as it encountered exterior torque and force[15]. The many scales technique was employed to obtain 

the analytical approximation solutions for the equations in this system. 
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       The application of the nonlinear instability concept played a pivotal role in comprehending and predicting 

complicated atmospheric phenomena, such as hurricanes, tornadoes, and other turbulent weather events. The 

nonlinear vibrations have a crucial role in disciplines including physics, electrical engineering, and modern 

manufacturing. They serve as the essential basis for comprehending different nonlinear phenomena. The DO played 

a pivotal role in this particular case. Their responses depicted a diverse array of natural processes, physical notions, 

and engineering occurrences. Several suggestions were given about the theoretical aspects of the DO issue. In 

contrast to the theoretical frameworks of the DO, the method of dampening the DO was highly precise and nearly 

certain[16]. Therefore, many researchers have attempted to determine the solution. The damped ODE with higher-

order nonlinearities was solved utilizing both computational and conceptual methods[17]. The relationship between 

the frequency and amplitude in this particular scenario can be evaluated by employing the HFF. A study was 

undertaken to compare HFF and its modifications in terms of residual computation[18]. Effective techniques of 

residual computation were presented, which can be utilized to accurately establish the frequency of a nonlinear 

oscillator. The understanding of HFF was essential for the analysis of the other aspects of the prediction results[19]. 

Although an accurate response could be obtained, there was still an area for additional advancement. The inclusion 

of considerable nonlinearity of ODEs was designed to showcase the precision of the solution approach. The 

frequency accuracy was considered exceptional, therefore establishing it as the most direct approach for nonlinear 

oscillators[20]. The un-damped degree of oscillation was significantly enhanced by the high-frequency force 

field[21]. The study investigated the precise and thorough determination of the frequency-amplitude ratio for intense 

or distinct nonlinear oscillations. The NPA has recently been employed in the dynamic system. The NPA has been 

used in both the disciplines of dynamical systems and EHD stability to conduct stability investigations[22-34]. 

Because of the challenges in evaluating the DO, this topic has been acknowledged as a critical field of research that 

requires further investigation to produce more accurate responses. Consequently, in the current study, the utilization 

of this NPA approach is considered to be adequate. The HFF was employed to investigate nonlinear vibrations in 

mechanical systems, a crucial basis in the development of robust and dependable mechanical structures and 

components. The utilization of HFF was applied in the analysis and generation of oscillatory patterns in electrical 

circuits, particularly those that include nonlinear elements such as semiconductors. It should be noted that the 

Chinese mathematician Prof. He is known for his expertise in solving nonlinear oscillators. The author introduced a 

straightforward yet efficient method called HFF[35]. The HFF was employed by numerous writers with remarkable 

efficacy. 

 

       Coupled dynamic systems, which involve the reciprocal influence of multiple interacting organizations, 

have widespread applications in various fields. Through the analysis of machinery interactions, it enhances both the 

design and maintenance processes. The design of autos, robotics, and technology is of utmost importance. By 

modeling the relationships between the ground and the buildings, it improves the structural flexibility of buildings in 

order to withstand earthquakes. It ensures safety by analyzing the interactions between mechanisms under dynamic 

stresses. Through the simulation of the interactions between different apparatuses of aircraft and spacecraft, it 

enhances stability and control. By analyzing the interconnected components of the engine and transmission, it 

improves efficiency. It simplifies the process of designing medical devices by representing the interactions they 

have with different regions of the body. Considering the huge importance of the above factors, the current study is 

conducted. It is widely recognized that technology has the ability to analyze and control oscillations in constructions 

such as buildings and bridges. Ensuring the stability and comfort of structures is crucial, especially in situations such 

as earthquakes or heavy traffic. The TDOF system is capable of simulating and controlling the movement of robotic 

limbs, which often exhibit complex nonlinear dynamics due to their flexible joints and actuators. The method can be 

utilized to produce devices that convert ambient vibrations into electrical energy. The utilization of the NPA's 

nonlinear dynamics and stability analysis has the potential to optimize the efficiency of energy gathering equipment. 

The concepts can be employed to create systems that efficiently isolate buildings or other structures from ground 

vibrations during seismic events. Through understanding and controlling the complex patterns of motion, it is 

feasible to create seismic isolation techniques that are more effective. The TDOF systems can analyze and mitigate 

the dynamic response of platforms and ships when subjected to waves and wind forces, hence enhancing stability 

and safety. By utilizing the NPA and accurately replicating the nonlinear behavior of systems, engineers, and 

scientists can develop structures and technologies that are more efficient, stable, and reliable in several domains. To 

clarify the explanation of the problem, the rest of the paper is structured as follows: A concise explanation of the 

NPA concerning the interconnected dynamical system is introduced in § 2. Four applications of the connected DO 

systems and two limited cases of these applications is presented in § 3. Additionally, graphical representations of the 

obtained results for these systems and their special cases reveal their temporal behaviors and the beneficial impact of 

the parameters used. The results of time histories show consistent decay behavior, and indicating stability. The 

associated phase plane curves are shown in several plots. In the limited scenarios, the behavior show periodicity 
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with variations in several applied parameters. So, the phase plane curves appear as symmetric closed loops, 

indicating the presence of limit cycles with isolated closed curves. In § 4, the achieved results of this work are 

summarized. 

 

2. Brief Explanation of NPA in Coupled ODEs 

 

      This Section concentrates on extending the previous approach of the NPA of a single nonlinear ODE as 

previously given[22-34]. To accomplish this, we assume a general system of coupled nonlinear ODEs. This system 

can be articulated in its most fundamental form as follows: 

                           ),,,,,(),,,,,(),,,,,( 321 yyyxxxfyyyxxxfyyyxxxfx  =++ ,                                  (1) 

and                     ),,,,,(),,,,,(),,,,,( 321 xxxyyyhxxxyyyhxxxyyyhy  =++ .                                            (2) 

In this context, 1f  
as well as 1h

 
signify the odd functions that related with the damping forces, 2f

 
and 2h

 
represent other odd functions that familiarize extra secular terms. Additionally, 3f  and 3h  are correspond to even 

functions that do not generate secular relations[35]. Furthermore, x and y  point out the coupled dependent-functions 

of the system. Apart from the damping and restoring forces, the functions 2f  and 2h  indicate even functions. 

According to the perturbation approaches[35], the odd functions generate secular terms. In contrast, the even 

functions do not yield any secular relations. For ease of use, the given approach is not significantly distinct from the 

case of a single linear ODE. As formerly revealed, the objective is to convert the coupled nonlinear as given in Eqs. 

(1) and (2) into other equivalent linear ones, producing the modest harmonic motion. With respect to the guessing 

solutions of the given nonlinear ODEs, one reaches 

                                            tcosA)t(u 1= , and tBtv 2cos)( = ,                                                  (3) 

where A  and B  
are the initial amplitudes of the equivalent outcomes. Simultaneously, 1 and 2 are the total 

frequencies which will be determined later.  

Eqs. (3) follow the following initial conditions (ICs): 

                                         0)0(and,)0(,0)0(,)0( ==== vBvuAu  .                                               (4) 

The objective now is to derive the corresponding linear ODEs. To achieve this, we follow the approach outlined 

in the former studies [22-34] for the single nonlinear ODE. The equivalent damping terms are provided as follows: 
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It is significance to highlight that the functions 21 and, gg
 
include all the factors that are originate the 

functions 
1

f  
and 

1
h  

of the unidentified frequencies. 

Conversely, the corresponding frequencies can be determined as follows: 
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The functions 43 and, gg  summarize all the parameters that execute the functions 
2

f  
and

2
h , and the 

undetermined natural frequencies contained within it. 

 

        Regarding the quadratic functions 3f  and 3h
 
the corresponding terms signify the non-homogeneous 

portion. As formerly shown, for a single equation[22-34], these non-homogeneous parts can be established through 

the following direct substitutions: 

Replace:                
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The non-homogeneous parts of the linear ODEs may be established as follows: 
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Eventually, the related linear ODEs to Eqs. (1) and (2) may be indicated as follows: 

                                                   1
2

11 =++ uuu eqveqv   ,                                                                (8) 

In accordance with the conventional normal form, the middle term in Eq. (8) may be eliminated via the 

following transformation: 

                                               
1 1( ) ( ) ( / 2)eqvu t G t Exp t= − ,                                                                        (9) 

where )(1 tG is an arbitrary function. 

It will be evaluated via the linear ODE as provided in Eq. (8) as follows: 

                                                 
2

1 1 1 1 1( / 2)eqvG G Exp + =  ,                                                         (10) 

where                                               
2 2 2

1 1 1

1

4
eqv eqv  = − ,                                                                    (11) 

which denotes the square of the total frequency of the first linear ODE. 

Supplementary, the stability criteria are assessed through the following: 

                                                       0and,0 1
2
1  eqv .                                                              (12) 

Applying the same reasoning formerly outlined, the second linear ODE can be stated as: 

                                                       
2

2 2 2eqv eqvv v v + + =  .                                                          (13) 

As formerly expounded the parameters 2eqv  and 2
2eqv

 
are evaluated as outlined in Eqs. (5) and (6).  

The integration is performed over the specified interval 2/20 →  .  

Once again, the middle term in Eq. (13) can be disregarded by applying the following normal form: 

                                                           
2 2( ) ( ) ( / 2)eqvv t G t Exp t= − .                                               (14) 

The unknown function )(2 tG is calculated as: 

                                                       
2

2 2 2 2 2( / 2)eqvG G Exp t+ =  ,                                              (15) 

where                                                 
2 2 2

2 2 2

1

4
eqv eqv  = − ,                                                              (16) 

which denotes the square of the total frequency of the second linear ODE. 

Additionally, the stability restrictions are assessed utilizing the following: 

                                                        
2

2 20, and 0eqv   .                                                             (17) 

In this context, it's significant to note that the total frequencies 21 and  are determined employing the MS 

during the execution of the FindRoot command for the coupled Eqs. (11) and (16). 

 

3. Applications 

         

      Two practical of TDOF oscillation systems are provided in this section to demonstrate the applicability, 

precision, and efficacy of the suggested methodology. 

 

3.1 Example (1): Damped Coupled Harmonic Oscillators 

 

      A damped coupled harmonic oscillator is a physical system with two or more masses linked by springs and 

subjected to damping forces that waste energy. Coupled ODEs that considered the interactions between the masses, 

the restoring forces from the springs, and the damping forces may be used to describe this system. Damped coupled 

harmonic oscillators are utilized to model several physical systems, counting electrical circuits, mechanical 

structures, and definite biological systems. Understanding the dynamics of these systems is essential for scheming 

stable and efficient structures for devices. Consider a two equal masses system model as explored in Fig. 1, where 

x and y
 
represent the motion’s directions of two equal masses m . Furthermore, b  is the damped coefficient, 1k  
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and 
2k

 
are the stiffness of the spring. 

 

 
Fig. 1: Two masses connected by linear and nonlinear damped stiffness. 

  

The GOM of the above-described damped coupled harmonic oscillator can be derived by means of the Newton’s 

second law and taking the forces acting on each mass into consideration as follows[2]:             
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Eqs. (18) could be written as: 
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The suggested ICs of Eq. (19) are usually written as:  

                                              (0) , (0) , (0) 0,and (0) 0x A y B x y= = = = .                                  (20) 

 

Eqs. (19) could be re-written as: 
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                                                (22) 

The trial solutions of the system are assumed in the following form: 

                                                    
1 2cos , cosu A t v B t=  =  ,                                                      (23) 

where A  and B  
characterize the initial amplitudes of the equivalent solutions, whereas 

1  
and 

2
 
are the total 

frequencies to be determined later. 

 

The functions u  and v  satisfy the equivalent system: 
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1 1

2

2 2

0

0.

u u u

v v v

 

 

 + + =


+ + =
                                                             (24) 

Through the examination of this system, one can predict that the solutions’ behaviors for their equations have 
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decaying manners during the investigated time interval. The parameters 
1 2, 

 
and 

1 2,   are known by equivalent 

frequencies and equivalent damping, (see Appendix). 

 

(i) The Equivalent Frequencies 

To calculate the equivalent frequency, the HFF method can be used with the odd terms 
2 ( , )F x y  and 

4 ( , )F x y  

as:  
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(ii) The Equivalent Damping  

The HFF allows for the calculation of the equivalent frequency by applying the odd terms 
1( , )F y x  and 

3( , )F x y  with  
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To this end, it should be mentioned that the equivalent frequencies 1 and 2  as well as the equivalent damping 

coefficients 1 and 2  are evaluated via the MS, and due to their complicated formulae, to follow the paper easy, 

these forms are moved to the Appendix.  

Assume the following standard normal forms: 

                                                  1( ) ( ) ( / 2)u t U t Exp t= − .                                                           (29) 

                                                  2( ) ( ) ( / 2)v t V t Exp t= − .                                                            (30) 

Consequently, substituting Eqs. (29) and (30) into Eqs. (24), one gets: 

                                                  
2

1( ) ( ) 0U t U t+ = ,                                                                        (31) 

and 

                                                   
2

2( ) ( ) 0V t V t+ = ,                                                                       (32)   

where  

                                                   
2 2 2

1 1 1 / 4.  = −                                                                             (33) 

                                                   
2 2 2

2 2 2 / 4  = − .                                                                            (34) 

      We would like to emphasize that the nonlinear ODEs described in Eqs. (19) are expressed as alternating 

linear equations in Eqs. (24). For the purpose of comparing these two systems, the MS is employed alongside the 

(NDSolve) command; an example of the included factors is shown below.   

3 4 1 1 1
0.5, 0.5, 0.3, 5, 0.1,k k b m A= = = = =  and 

1
0.1B = −  

Consequently, Figs. 2 and 3 are provided to depict the solutions for the primary system (19) and the outcomes of 

the equivalent system outlined in Eq. (24).  The solution of the original system (19) is displayed by the solid blue 

curve, and the dotted red curve represents the NPA solution of the ODEs outlined in Eq. (24). These figures are 

presented to compare the two solutions mentioned above over 50-time. It is confirmed that the two curves are 

approximately identical. Infinitesimal absolute errors between the original and the NPA solutions are attained, 

whereas for the x  oscillator the absolute error is 0.00239212 and for the y  oscillator, the absolute error is 

0.0016253. The same convergence is achieved also through the tables 1 and 2. 
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Fig. 2: Illustrates the agreement between the solutions of the nonlinear dynamical system (19) and those of the 

NPA system (24) for the x  oscillator. 

 

Table 1: Verifies the convergence of the real and NPA solutions for the x  oscillator. 

t Real x  oscillator Approximate oscillator Absolute error 

0 0.1 0.1 0.0 

5 -0.0385328 -0.0387693 0.000236582 

10 -0.0200931 -0.0188779 0.00121517 

15 0.0395859 0.0388298 0.000756089 

20 -0.0245173 -0.0257191 0.00120175 

25 0.000188522 0.00258065 0.00239212 

30 0.0133053 0.0117232 0.00158217 

35 -0.0119756 -0.0123112 0.000335515 

40 0.00337248 0.00500392 0.00163145 

45 0.00356784 0.00210947 0.00145837 

50 -0.00503036 -0.00470779 0.000322569 

 

 
Fig. 3: Shows the agreement between the solutions of the nonlinear dynamical system (19) and those of the NPA 

system (24) for the y  oscillator. 

In the comparison of curves generated from linear and nonlinear ODEs, the term consistency generally pertains 

to the degree to which the behavior or solutions of the nonlinear system correspond with those of the linear system 

under specific conditions. Linear ODE typically characterizes system where the interaction between variables is 

directly proportional, yielding predictable, smooth trajectories. Conversely, nonlinear ODE can provide more 

intricate and unpredictable behavior, including bifurcations or chaotic patterns. In certain instances (e.g., minor 

disturbances near equilibrium points), the nonlinear curve may closely match or exhibit behavior comparable to the 
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linear curve, demonstrating local consistency. The disparity between the curves amplifies as nonlinear factors gain 

prominence. 

 

Table 2: Verifies the convergence of the real and NPA solutions for the y  oscillator. 

t Real y  

oscillator 

Approximate oscillator Absolute 

error 

0 -0.1 -0.1 0.0 

5 0.0385328 0.03829 0.000242752 

10 0.0200931 0.0195873 0.000505719 

15 -0.0395859 -0.0390481 0.000537756 

20 0.0245173 0.0252238 0.00070652 

25 -0.000188522 -0.00181382 0.0016253 

30 -0.0133053 -0.0121666 0.00113876 

35 0.0119756 0.0122023 0.000226612 

40 -0.00337248 -0.00456572 0.00119324 

45 -0.00356784 -0.00248824 0.00107959 

50 0.00503036 0.00479674 0.00023362 

 

 

The solutions of the system of Eqs. (24) using the NPA are graphically represented in Figs. 4-9, when the 

considered values of the parameters are used. These graphs are calculated when the parameters have various values, 

i.e., ( 0.1,0.3,0.6),A = ( 0.1,0.2,0.7),B = −  ( 0.3,0.6,1),b =  
1
( 0.5,1,2),k =  

2
( 0.5,1.5,2.5),k =  and ( 1,3,5)m = , 

respectively. It must be mentioned that portions (a) and (b) represent the time-dependent solutions u  and v  for the 

system of Eqs. (24), where parts (c) and (d) reveal the related phase plane plots of these solutions. By closely 

examining the time history curves in parts (a) and (b), it becomes evident that these curves decay throughout the 

time interval, as anticipated. This behavior is due to the presence of damping terms in the system. Additionally, it is 

observed that the rate of decay of the plotted curves changes according to the influencing parameter, as seen in parts 

(a) and (b). However, this rate becomes faster for the curves in part (b) than the drown ones in part (a). Meanwhile, 

the phase plane curves take on spiral forms that converge to a fixed point, as seen in parts (c) and (d). These forms 

vary according to the influencing parameters. 

 

The decaying curves generally refer to the observation that the amplitude of the oscillations or the values of the 

variables in the system decreases over time. This decay typically indicates the presence of the damping terms 
1
u  

and 
2
v  in the system that given in Eqs. (24), which gradually cause the system's energy to dissipate over time, 

leading to a decrease in amplitude. These curves often suggest that the system is stable and will eventually settle into 

a steady state or equilibrium position. The analysis of the phase plane plots in portions (c) and (d) shows that 

decaying trajectories typically spiral inward towards a fixed point, indicating that the system is moving towards a 

stable equilibrium. 
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Fig. 4: Displays the behavior of the obtained solutions of system (24) using the NPA and the corresponding 

phase plane plots at ( 0.1,0.3,0.6)A = .  

  

 
 

 
Fig. (5): Illustrates the time variation of  u  and v  of system (24) using the NPA and the related phase plane 

plots at ( 0.1, 0.2, 0.4)B = − − − .  
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Fig. 6: Displays the solutions’ time dependent of system (24) applying the NPA and their related phase plane 

plots at ( 0.3,0.6,1)b = .  

  

  

 
Fig. 7: Displays the temporal behaviors of the functions u  and v  for the system (24) utilizing the NPA and the 

related phase plane plots at 
1( 0.5,1,2)k = . 
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Fig. 8: Displays the behavior of ( )u t  and ( )v t  for the system (24) and the related phase plane plots when the 

NPA is used at 
2
( 0.5,1.5,2.5)k = . 

  

  

 
Fig. 9: Displays the waves ( )u t  and ( )v t  for the system (24) and their related phase plane curves when the NPA 

is applied at ( 1,3,5)m = . 

 

3.2 Example (2): Non-Damped Coupled Harmonic Oscillator 

 

      Examining the conservative state of the coupled system as given in Eqs. (19), when the damping forces' 

influences vanish ( 0b = ). The coupled harmonic oscillator (19) without damping is expressed as follows [2]: 

                                             

31 2

31 2

( ) ( ) 0

( ) ( ) 0.

k k
x x y x y

m m

k k
y y x y x

m m


+ − + − =


 + − + − =


                                                 (35) 

Eqs. (35) could be re-written as: 
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2

4

( , ) 0

( , ) 0

x F x y

y F x y

+ =


+ =
 ,                                                           (36) 

where 
2 ( , )F x y and 

4 ( , )F x y are the same functions that were defined before through Eqs. (22).                                                                        

The trial solutions of the system as given in Eqs. (35) are assumed in the following form: 

                                                  
1 1 1 1 1 2cos , cosu A t v B t = = ,                                                      (37) 

where 
1A  and 

1B  
 signify the amplitudes of the equivalent solutions, whereas 

1  
and 

2  
are the total 

frequencies in this case and they will be determined later. 

The functions 1u  and 1v  satisfy the equivalent system: 

                                                                 

2

1 1 1

2

1 2 1

0

0

u u

v v





 + =


+ =
,                                                               (38) 

where the equivalent frequencies which are considered as the total frequencies in this case can be calculated 

utilizing the HFF and by using the odd terms
2 ( , )F x y  and 

4 ( , )F x y as: 

                                          

1 12 / 2 /

2 2

1 1 2 1

0 0

( , ) /u F u v dt u dt

   

 =   .                                                       (39) 

                    

2 22 / 2 /

2 2

2 1 4 1

0 0

( , ) /v F u v dt v dt

   

 =   .                                                         (40) 

These integrals are calculated by MS and their values are equal to their correspondence 1 and 2  in the 

previous case which are defined in the Appendix. 

Following the same previous procedure when b vanishes and by plotting the solutions of the nonlinear and the 

equivalent linear equations a very convergence is found between the two solutions. Using the 

data
1 2 1 10.5, 0.5, 0, 5, 0.1, 0.1k k b m A B= = = = = = − , the absolute error equals 0.000844 for the x  oscillator 

and equals 0.00667 for the y  oscillator, as seen in Figs. 10 and 11, respectively. 

 

 
Fig. 10: Demonstrates how the solutions of the nonlinear dynamical system (35) match with those of the NPA 

linear system for the x  oscillator 

 



Journal of Computational Applied Mechanics 2025, 56(2): 424-456 437 

 
Fig. 11: Depicts how the solutions of the nonlinear dynamical system (35) match with those of the NPA linear 

system for the y  oscillator. 

 

In comparing curves produced by linear and nonlinear ODEs, the term consistency typically refers to the extent 

to which the behavior or solutions of the nonlinear system align with those of the linear system under particular 

conditions. Linear ODE often characterizes systems where the interaction between variables is exactly proportional; 

resulting in predictable, smooth paths. In contrast, nonlinear ODE can exhibit more complex and unpredictable 

behavior, including bifurcations or chaotic patterns. In specific cases (e.g., modest perturbations around equilibrium 

points), the nonlinear curve may closely resemble or display behavior akin to the linear curve, indicating local 

consistency. The divergence between the curves increases as nonlinear components become more significant. 

 

The NPA of the system of Eq. (35) can be easily obtained in view of the analysis of section 3.1, in which they 

are graphed in Figs. 12,13,14,15, and 16 when the parameters 
1 1 2
, , ,A k k  and m

 
have the aforementioned values. 

These graphs demonstrate that the time-dependent behaviors of the solutions are detailed in portions (a) and (b) of 

these figures, and the corresponding phase plane diagrams are provided in parts (c) and (d). Inspecting the time 

history waves, it becomes evident that these waves possess periodic forms throughout the whole duration. The 

graphs show that the oscillation numbers for both solutions 
1

u  and 
1

v
 
differ depending on the parameters in effect. 

Specifically, the wavelengths and amplitudes of the waves in Fig. 12a diminish as the amplitude parameter 
1

A  

increases for the solution
1

u . Conversely, the amplitudes of the waves for the solution 
1

v  remain stable, while the 

number of vibrations increases moderately with higher 
1

A  values, as depicted in Fig. 12b. Based on this analysis, 

one can say that a good understanding of periodic solutions helps in designing and controlling systems. For 

example, in mechanical systems, engineers can exploit periodic behavior to improve system performance or to 

design systems that operate efficiently at desired frequencies. In the 
1 1

u u  and 
1 1

v v  planes, the related plots depict the 

relationship between the solutions and their first derivatives, excluding the time parameter. These plots have 

symmetric closed curves around their vertical or horizontal axes, providing insight into the stability or steady-state 

behaviors of the solutions, as illustrated in Figs. 12c and 12d. It must be stated that when the trajectory repeatedly 

follows a closed curve, it suggests that the system returns to the same state after each period, demonstrating stability. 

Curves of Figs. 13a and 13b show the time history variation of the solutions 
1

u  and
1

v , respectively, 

when
1
( 0.1,0.1,0.4)B = − . The graphed curves have periodic forms for any value of

1
B . The curves of the phase plane 

of these solutions have been explored in Figs. 13c and 13d. 

 

The curves in Figs. 14a and 14b illustrate how the time-dependent functions 
1

u  and 
1

v
 
vary as the parameter 

1
k  

changes. Although the amplitudes of these curves remain constant, the number of fluctuations increases with higher 

1
k  values, indicating a reduction in wavelength. Consequently, symmetric closed curves are plotted in Figs. 14c and 

14d, each showing three closed curves that may represent one limit cycle per 
1

k  value. This demonstrates that the 
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solutions are stable and devoid of chaotic behavior with changes in
1

k . The variation of the time-dependent functions 

for the same solutions with changing 
2

k  is shown in the curves of Figs. 15a and 15b. The amplitudes of these curves 

and the number of fluctuations do not vary, with the increase in 
2

k values. This can be attributed to the fact that these 

curves have closer configurations. By excluding time t
 
from the solutions and their first derivatives, closed curves 

are depicted in Figs. 15c and 15d.  

 

Figs. 16a and 16b display how the functions 
1
( )u t  and 

1
( )v t

 
vary with mass values of 1,3,  and 5 . The data 

clearly indicate that changes in mass parameters significantly affect the periodic wave behavior, confirming that the 

number of oscillations decreases as mass increases. Thus, as the mass m  increases, the wavelengths of the plotted 

waves grow, while the amplitudes remain constant. The phase plane plots in Figs. 16c and 16d, which illustrate three 

distinct closed curves for varying mass values, demonstrate that the motion of the examined system remains stable 

throughout the entire time interval. 

 

Overall, periodic solutions mean that the system behavior is predictable over time. If a system exhibits periodic 

behavior, you can anticipate its future states based on its current state, which is valuable for both theoretical analysis 

and practical applications. Moreover, closed symmetric curves in phase plane plots provide a clear and valuable 

picture of a system’s periodic behavior, stability, and energy characteristics, aiding both theoretical analysis and 

practical applications. 

  

 
 

 
Fig. 12: Displays the behavior of the time-dependent solutions 

1
( )u t  and 

1
( )v t  for the system (35) and the plots 

of phase plane when the NPA is applied at 
1
( 0.1,0.3,0.6)A = . 
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Fig. 13: Shows the time-dependent variation of 

1
u  and 

1
v  for the system (35) and the plots of phase plane when 

the NPA is applied at 
1
( 0.1,0.1,0.4)B = − . 

  

  

 
Fig. 14: Displays the change in the solutions 

1
( )u t  and 

1
( )v t for the system (35) and the plots of phase plane 

when the NPA is applied at 
1
( 0.5,1,2)k = . 
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Fig. 15: Displays the variation of the solutions 

1
( )u t  and 

1
( )v t  for the system (35) and their phase plane plots 

when the NPA is applied at )5.2,5.1,5.0(k2 = . 

  

  

 
Fig. 16: Displays the plotted curves of the functions 

1
( )u t  and 

1
( )v t  for the system (35) and their phase plane 

plots when the NPA is applied at ( 1,3,5)m = . 

 

3.3 Example (3): Damped Coupled Harmonic Oscillator Fixed at the Two Ends 

 

      A damped coupled harmonic oscillator fixed at two ends is made up of many masses joined together by springs, 

with the end masses fastened to stationary supports. This configuration adds more complexity than the free-end 

situation and is typical in mechanical systems when the ICs are fixed. Damped coupled harmonic oscillators fixed at 

both ends are used to model various physical systems, such as: 

• Electrical Circuits: Resonant circuits with coupled inductors and capacitors. 

• Mechanical Systems: Vibrations in buildings, bridges, and mechanical connections. 

• Biological Systems: Coupled oscillations in biological tissues or organs. 

Here, let us consider a two-equal masses system model fixed at the two ends as shown in Fig. 17, where X and 
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Y  signify the directions of motion of the two masses. Furthermore, 1 1 3
, , ,m b k  and 

4
k  represent the mass of the two 

bodies, the damped coefficient, and the spring constants, respectively in the current example. 

 

 
Fig. 17: Displays two masses connected by linear and nonlinear damped stiffness and fixed at the two ends. 

 

The EOM of a damped coupled harmonic oscillator which is fixed from its ends are[2]:             

                               

3

1 1 3 3 4

3

1 1 3 3 4

( ) ( ) ( )

( ) ( ) ( )

m X b X Y k X k X Y k X Y

mY b Y X k Y k Y X k Y X

 = − − − − − − −


= − − − − − − −
                              (41) 

Eqs. (41) could be written as: 

                                     

331 4

1 1 1

331 4

1 1 1

( ) (2 ) ( )

( ) (2 ) ( )

kb k
X X Y X Y X Y

m m m

kb k
Y Y X Y X Y X

m m m


= − − − − − −



 = − − − − − −


                               (42) 

where 1m  is the mass of the two bodies, 1b  is the damped coefficient, 
1

k  and 
2

k  are the spring constants. 

Again the suggested ICs of Eqs. (42) are usually considered as:  

                                     (0) , (0) , (0) 0,and (0) 0X C Y D X Y= = = = .                                        (43) 

Eqs. (42) could be re-written as: 

                                                            
5 6

7 8

( , ) ( , ) 0

( , ) ( , ) 0

X F Y X F X Y

Y F Y X F X Y

 + + =


+ + =
                                       (44) 

where                                 

                                          

5

31 2
6

7

31 2
8

( , ) ( )

( , ) (2 ) ( )

( , ) ( )

( , ) (2 ) ( )

b
F Y X X Y

m

k k
F X Y X Y X Y

m m

b
F Y X Y X

m

k k
F X Y Y X Y X

m m


= −


 = − + −


 = −


 = − + −


.                                        (45) 

The trial solutions of the system (42) are assumed as: 

                                                 tDhtCw 43 cosand,cos == ,                                                (46) 

where C  and D  
 represent the amplitudes of the equivalent solutions A  and B , whereas 

3
 and 

4
  are the 

total frequencies to be determined later. 

The functions w  and h  satisfy the equivalent system: 

                                                     






=++

=++

0hhh

0www

2
44

2
33








.                                                               (47) 

i. The Equivalent Frequencies: 

The equivalent frequency can be calculated using the HFF by using the odd terms )Y,X(F6  and )Y,X(F8 as: 
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                   =

3 3/2

0

/2

0

2
6

2
3 dtw/dt)h,w(wF

 

 ,                                                        (48) 

                    =

4 4/2

0

/2

0

2
8

2
4 dth/dt)h,w(hF

 

 .                                                         (49) 

ii. The Equivalent Damping:  

The equivalent damping term can be calculated utilizing the odd secular terms )Y,X(F5  and )Y,X(F7 by 

using the HFF as: 

                                   

3 32 / 2 /

2

3 5

0 0

( , ) /w F w h dt w dt

 



 

=   .                                             (50) 

                                   

4 42 / 2 /

2

4 7

0 0

( , ) /h F w h dt h dt

 



 

=   .                                              (51) 

Now, it should be stated that the equivalent frequencies 3 and 4  as well as the equivalent damping 

coefficients 3 and 4  are evaluated via the MS and due to their long formulae, these forms are defined through the 

Appendix.  

Assume the following standard normal forms: 

                                                     
3

4

( ) ( ) ( / 2),

( ) ( ) ( / 2).

w t W t Exp t

h t H t Exp t





= −


= −
                                                  (52) 

Consequently, substituting by Eqs. (52) into Eqs. (47), one gets: 

                                                      
2

3( ) ( ) 0W t W t+ = ,                                                              (53) 

and 

                                                      
2

4( ) ( ) 0H t H t+ = ,                                                              (54) 

    

where  

                                                 
2 2 2

3 3 3 / 4  = − ,                                                                        (55) 

                                                 
2 2 2

4 4 4 / 4  = − .                                                                        (56) 

 
Fig. 18: Displays the matching between the two solutions of the non-linear dynamical system (42) and the NPA 

linear system (47) for the X  oscillator. 

It is important to note that the nonlinear ODEs specified in Eqs. (37) are represented by alternating linear 

equations in Eqs. (42). For comparing these systems, the MS is employed together with the (NDSolve) command; an 

example of the contained factors is illustrated below. 
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3 4 1 1 1
0.5, 0.5, 0.3, 5, 0.1,k k b m A= = = = =  and 

1
0.1B = −  

Figs. 18 and 19 are presented to show the solutions of the primary system (42) and the results of the equivalent 

system described in Eq. (47). The solid blue curve represents the solution of the original system (42), while the 

dotted red curve illustrates the NPA solution of the ODEs specified in Eq. (47). These figures are used to compare 

the two solutions over up to 50-time. It is found that the two curves are approximately congruent. Infinitesimal 

absolute errors between the original and the NPA solutions are attained, where the absolute error is 0.0019918 for 

the X - oscillator and equals 0.001341 for the Y - oscillator. Such convergence is attained also through Tables 3 and 

4. 

 

Table 3: Confirms the convergence of the real and NPA solutions for the X  oscillator. 

t Real X  

oscillator 

Approximate 

oscillator 

Absolute error 

0 0.1 0.1 0. 

5 -0.0652812 -0.0653662 0.0000850652 

10 0.0337988 0.0345977 0.000798902 

15 -0.00991056 -0.0114844 0.00157382 

20 -0.00520232 -0.00326987 0.00193245 

25 0.0125261 0.0107818 0.00174437 

30 -0.0141185 -0.0129668 0.00115167 

35 0.0122398 0.0118345 0.000405243 

40 -0.00881761 -0.00908469 0.000267082 

45 0.00521551 0.00594133 0.000725823 

50 -0.00221849 -0.00314719 0.000928701 

 

 
Fig. 19: Depicts the matching between the two solutions of the non-linear dynamical system (42) and the NPA 

linear system (47) for the Y -oscillator. 

 

The strong concordance between the two curves, derived from a linear ODE and a nonlinear one,  respectively, 

indicates that the nonlinear effects in the system are either minimal or exhibit behavior that closely resembles 

linearity under specific conditions. This may happen when the nonlinear variables exert limited influence on the 

overall system dynamics or when the system functions in a regime where the nonlinearities effectively "average out" 

or become linearized. In such instances, the solutions of the nonlinear system may closely mirror those of the linear 

system, resulting in practically indistinguishable curves. This phenomenon frequently arises in instances of weak 

nonlinearity, minor disturbances, or in conditions close to equilibrium points. 

 

Table 4: Confirms the convergence of the real and NPA solutions for the Y  oscillator. 

t Real Y -oscillator Approximate 

oscillator 

Absolute 

error 

0 -0.1 -0.1 0. 

5 0.0652812 0.0651253 0.000155861 
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10 -0.0337988 -0.034057 0.000258168 

15 0.00991056 0.0107704 0.000859879 

20 0.00520232 0.00397935 0.00122297 

25 -0.0125261 -0.0113425 0.00118363 

30 0.0141185 0.0133037 0.000814776 

35 -0.0122398 -0.0119417 0.000298029 

40 0.00881761 0.00900613 0.000188525 

45 -0.00521551 -0.0057451 0.000529596 

50 0.00221849 0.00290311 0.000684624 

 

 

The graphical representations in Figs. 20-26 display the solutions of the system of Eqs. (47) obtained via the 

NPA for several parameter configurations, i.e. when 

( 0.1,0.5,0.9),C =
1
( 0.3,0.8,1.3)b = ,

3
( 0.5,1,2)k = ,

4
( 0.5,1.5,2.5)k = , and 

1
( 0.5,2.5,5)m = . It must be highlighted 

that portions (a) and (b) show the time-dependent solutions w  and h  for the system of Eqs. (47), whereas parts (c) 

and (d) present the related phase plane plots. By closely examining the time history curves in parts (a) and (b), it 

becomes evident that these curves decay over time, which is anticipated due to the damping terms in the system. 

Furthermore, the rate of decay of the plotted curves changes depending on the influencing parameter, as observed in 

parts (a) and (b). The decay rate is more rapid for the curves in part (b) than those in part (a). Meanwhile, the phase 

plane curves in parts (c) and (d) exhibit spiral forms that converge to a fixed point and these forms differ based on 

the influencing parameters.  

 

Decaying curves refer to the phenomenon where the amplitude of oscillations or the values of variables in the 

system decreases over time. This usually indicates the presence of damping terms  
3
w  and 

4
h

 
in the system (47), 

which gradually dissipate the system's energy, causing a reduction in amplitude. These curves often indicate that the 

system is stable and will eventually reach a steady state or equilibrium position. Analysis of the phase plane plots in 

portions (c) and (d) shows that decaying trajectories typically spiral inward towards a fixed point, suggesting the 

system is moving towards a stable equilibrium. 

  

 
 

 
Fig. 20: Depicts the variation of the achieved solutions of system (47) using the NPA and their phase plane plots 

at ( 0.1,0.5,0.9)C = .  
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Fig. 21: Depicts the variation of the achieved solutions of system (47) using the NPA and their phase plane plots 

at ( 0.1,0.2,0.5)D = − .  

  

  

 
Fig. 22: The observed change for the solutions of system (47) according to the NPA and their phase plane plots 

at 
1
( 0.3,0.8,1.3)b = .  
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Fig. 23: The time-variation of the functions w  and h  , and their projections in the planes ww and hh
 
at 

3
( 0.5,1,2)k = .  

  

  

 
Fig. 24: The sketches of ( )w t  and ( )h t  , and their projections in the planes ww  and hh

 
at 

4
( 0.5,1.5,2.5)k = .  
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Fig. 25: The time-behaviors of w  and h  , and their related phase plane plots

 
at 

1
( 0.5,2.5,5)m = .  

  

  

 
Fig. 26: The behavior of ( )w t  and ( )h t  , and the related phase plane curves at ( 0.1,0.2,0.5)D = − .  

 

3.4 Example (4): Non-Damped Coupled Harmonic Oscillator Fixed at the Two Ends 

 

      Inspecting the conservative state of the coupled system as given in Eqs. (42), when the damping forces' 

influences vanish (
1

0b = ). The coupled harmonic oscillator (42) without damping can be expressed as follows [2]: 

                                               

33 4

1 1

33 4

1 1

(2 ) ( )

(2 ) ( ) .

k k
X X Y X Y

m m

k k
Y Y X Y X

m m


= − − − −



 = − − − −


                                            (57) 

Eqs. (52) might be re-written as: 

                                                      
6

8

( , ) 0

( , ) 0

X F X Y

Y F X Y

 + =


+ =
 ,                                                                 (58) 

where )Y,X(F6 and )Y,X(F8 are the same functions that were defined before through Eqs. (45)                                                                        

The trial solutions of the system (57) are assumed, in the following form: 
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                                                  tcosDh,tcosCw 411311  == ,                                                        (59) 

where 
1

C  and 
1

D
  

 represent the amplitudes of the equivalent solutions 
1

w  and 
1

h
 
, while 

3
  

and 
4

  
are the total 

frequencies in this case and they will be determined later. 

The functions 
1

w  and 
1

h
  

satisfy the equivalent system: 

                                                              

2

1 3 1

2

1 4 1

0

0

w w

h h





 + =


+ =
                                                                  (60) 

where the equivalent frequencies can be calculated by means of the HFF and by using the odd terms )Y,X(F6  

and )Y,X(F8 as: 

                                         
3 32 / 2 /

2 2

3 1 6 1 1 1

0 0

( , ) /w F w h dt w dt
   

 =   .                                                    (61) 

                      
4 42 / 2 /

2 2

4 1 8 1 1 1

0 0

( , ) /h F w h dt h dt
   

 =   .                                                  (62) 

These integrals are evaluated by MS and their values are equal to their correspondence 3 and 4  in the 

preceding case which are obtained in the Appendix. 

 

Following the same previous procedure when b vanishes and by plotting the solutions of the nonlinear and the 

equivalent linear equations, a very convergence is found between the two solutions. Using the data 

3 4 1 1 1
0.5, 0.5, 0, 5, 0.1,k k b m C= = = = =  and 

1
0.1D = − , it is found that the absolute error equals 0.000522 for the 

x  oscillator and 0.00598 for the y  oscillator, as graphed in Figs. 27 and 28, respectively. 

The significant agreement between the two curves, originating from a linear ODE and a nonlinear one, 

respectively, suggests that the nonlinear effects in the system are either negligible or demonstrate behavior that 

nearly approximates linearity under certain conditions. This may occur when the nonlinear variables exert minimal 

influence on the overall system dynamics or when the system operates in a regime where the nonlinearities 

effectively "average out" or become linearized. In such cases, the solutions of the nonlinear system may strongly 

resemble those of the linear system, yielding virtually indistinguishable curves. This phenomenon often occurs in 

situations of modest nonlinearity, slight shocks, or near equilibrium points. 

  

 

 
Fig. 27: Illustrates the matching between the two solutions of the non-damped dynamical system (57) and the 

NPA linear system for the X  oscillator. 
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Fig. 28: Depicts the matching between the two solutions of the non-damped dynamical system (57) and the NPA 

linear system for the Y  oscillator. 

 

In light of the analysis in section 3.3, the obtained non-perturbative solutions of equations of system (57) can be 

easily derived. These solutions are displayed in Figs. 29, 30, 31, 32, 33, and 34 using the previously specified values 

for parameters 
1 1

( 0.1,0.5,0.9)C D= = , 
1
( 0.3,0.8,1.3)b = ,

3
( 0.5,1,2)k = , 

4
( 0.5,1.5,2.5)k = , and 

1
( 0.5,2.5,5)m = . 

The time-dependent behaviors of the solutions are illustrated in portions (a) and (b) of these figures, with the 

corresponding phase plane diagrams shown in parts (c) and (d). Inspection of the time history waves indicates that 

these waves exhibit periodic forms throughout the entire duration. The graphs indicate that the oscillation numbers 

for both solutions 
1

w  and 
1

h
  

change based on the parameters in effect. For the solution 
1

w , the wavelengths and 

amplitudes of the waves in Fig. 29a decrease as the amplitude’s parameter 
1

C  increases. In contrast, the amplitudes 

of the waves for the solution 
1

h  remain constant, while the number of vibrations moderately increases with higher 

1
D  values, as shown in Fig. 29b. The related plots in the 

1 1
w w  and 

1 1
h h

  
planes show the relationship between the 

solutions and their first derivatives, excluding the time parameter. These plots display symmetric closed curves 

around their vertical or horizontal axes, offering insight into the stability or steady-state behaviors of the solutions, 

as depicted in Figs. 29c and 29d. It should be mentioned that when the trajectory follows a closed curve repeatedly, 

it indicates that the system returns to the same state after each period, demonstrating stability. The inspection of the 

plotted curves in Fig. 30 shows the time-dependent variations of the solutions 
1

w  and 
1

h
  

when 
1
( 0.1,0.2,0.5)D = −

 
, 

as seen in parts (a) and (b). Periodic waves are produced with different amplitudes according to the values of 
1

D . 

Furthermore, symmetric closed curves that express the stability of 
1

w  and 
1

h
 
are presented in parts (c) and (d) for 

these solutions.  

 

Figs. 31a and 31b depict how the time-dependent functions 
1

w  and 
1

h
  

change as the parameter 
3

k  varies. 

Despite constant amplitudes, the number of fluctuations increases with higher values of the same parameter, 

indicating a decrease in wavelength. These results are portrayed in Figs. 31c and 31d in the forms of symmetric 

closed curves, each featuring three closed curves that may represent one limit cycle per 
3

k value, showing that the 

solutions are stable and free from chaotic behavior as 
3

k
 
changes. The time-dependent functions for the same 

solutions with the varying of 
4

k  are shown in Figs. 32a and 32b. The amplitudes and number of fluctuations remain 

constant with increasing 
4

k
 
values, indicating similar curve configurations. Figs. 32c and 32d present closed curves 

obtained by excluding time t  from the solutions and their first derivatives. 

 

The variation of functions 
1

w  and 
1

h
 
with mass variation 

1
( 0.5,2.5,5)m =

 
is depicted in Figs. 33a and 33b. The 

data clearly demonstrate that changes in mass parameters significantly influence periodic wave behavior, with the 
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number of oscillations decreasing as the mass increases. Therefore, as the mass mmm increases, the wavelengths of 

the plotted waves expand, while the amplitudes remain unchanged. The phase plane plots in Figs. 33c and 33d, 

which show three distinct closed curves for varying mass values, illustrate that the system's motion remains stable 

throughout the entire time interval. 

 

The inspection of the curves displayed in Figs. 34 shows that the temporal histories of the solutions of system 

(57), i.e., for the absence of the damping parameters, when 
1

D  varies as seen in parts (a) and (b). The behaviors of 

the presented waves have periodic forms, in which the oscillation numbers increase with the increase of 
1

D  values 

while their amplitudes remain stationary, as in part (a). On the other hand, the oscillations number decreases with 

the increase in 
1

D  values, whereas their amplitudes increase. The related phase plane plots of these solutions are 

portrayed in portions (c) and (d), which have the forms of closed symmetric curves about the horizontal and vertical 

axes.  

 

Based on this analysis, one can conclude that periodic solutions suggest that the system's behavior can be 

predicted over time. If a system demonstrates periodic behavior, future states can be anticipated based on its present 

state, which is useful for both theoretical studies and practical applications. Moreover, the closed symmetric curves 

observed in phase plane plots offer a valuable and clear depiction of the system’s periodic behavior, stability, and 

energy characteristics, enhancing both theoretical and practical analysis. 

 
 

 

 

 
Fig. 29: Variation of the solutions of system (52) using the NPA and their phase plane plots at 

1
0b =

 
and

1
( 0.1,0.5,0.9)C = . 



Journal of Computational Applied Mechanics 2025, 56(2): 424-456 451 

  

 
 

 
Fig. 30: Variation of the solutions of system (52) using the NPA and their phase plane plots at 

1
0b =

 
and

1
( 0.1,0.2,0.5)D = − . 

  

  

 
Fig. 31: The temporal behavior for the solutions of system (52) using the NPA and their phase plane plots at 

1
0b =

 
and

3
( 0.5,1,2)k = .  
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Fig. 32: The time history of the solutions of system (52) using the NPA and the related phase plane diagrams at 

1
0b =

 
and

4
( 0.5,1.5,2.5)k = .  

  

  

 
Fig. 33: The time-behaviors of w  and h  , and their related phase plane plots

 
at 

1
0b = and 

1
( 0.5,2.5,5)m = .  
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Fig. 34: The time history of the functions 

1
w  and 

1
h , and the related phase plane curves at 

1
0b =

 
and 

1
( 0.1,0.2,0.5)D = − .  

 

4. Conclusions 

         

       Concentrated coupled harmonic nonlinear oscillators are crucial of representing various physical systems, 

including electrical circuits, mechanical structures, and certain biological systems. The objective of this study was to 

analyze the honest NPA in order to obtain alternating periodic solutions for damped and conservative coupled mass-

spring systems. These systems have both linear and nonlinear stiffness and demonstrate nonlinear free vibrations. 

The NPA mostly relies on the HFF. The proposed approach was presented through two practical examples of TDOF 

oscillation systems to showcase its accuracy, efficacy, and applicability. The objective of this study is to provide 

approximate solutions for small amplitude parametric components, without any constraints, by deviating from 

typical perturbation methods. In addition, the method was expanded to discover optimal solutions for the nonlinear 

coupled oscillators. The iterative calculations of the solutions to the parametric nonlinear fluctuation require a rapid 

estimation of the frequency-amplitude correlation. The obtained solutions for the examined models and two special 

cases are shown graphically. The keys of the present calculations may be summarized as follows:  

i. The parametric equation generated was verified using the MS, it demonstrates exceptional concurrence 

with the NS of the original system.  

ii. The graphs reveal the temporal behaviors of the models and the favorable impact of the applied parameters.  

iii. Consistent decay behavior in the time histories of these solutions implies stability.  

iv. Furthermore, the phase plane curves, displayed in multiple plots, exhibit inward spirals converging at a 

single point.  

v. Periodic behaviors were observed in limited cases as several parameters vary. Therefore, the phase plane 

curves took the form of symmetric closed loops, producing limit cycles with isolated closed curves.  

vi. The current methodology appears to be direct, appealing, promising, potent, and captivating. It can be used 

for several types of interconnected dynamical systems.  

 

Appendix  

 

The integrals (25) – (28) as evaluated by MS are given as: 
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The integrals (48) – (51) as evaluated by MS are given as: 
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