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Abstract 

This paper presents an efficient higher-order theory for analyzing the 

dynamic behavior of two types of sandwich plates: functionally graded 

sandwich plates (FGSPs) and four-parameter functionally graded plates 

(FPFGPs). The FGSP consists of two functionally graded (FG) face sheets 

and a ceramic core. For FGSPs, the variation follows a power-law 

distribution, while for FPFGPs; it adheres to Tornabene's model. To ensure 

that transverse shear stresses vanish at the top and bottom surfaces of the 

FGSP, a trigonometric shear deformation theory is employed. This theory 

incorporates four displacement field variables with indeterminate integral 

terms. The governing equations are derived using Hamilton's principle and 

solved using the Navier solution method for simply supported boundary 

conditions. Validation results demonstrate excellent agreement between the 

proposed theory and existing literature. Additionally, a detailed parametric 

study highlights the influence of key geometric and mechanical parameters, 

including the power-law index, side-to-thickness ratio, and aspect ratio, on 

the dynamic behavior of the plates. 

 

Keywords: Dynamic analysis, functionally graded materials, sandwich plates, 

four-parameter model, higher-order theory; 

 

1. Introduction 

Free vibration analysis is an essential area of study in structural mechanics.  It involves investigating structures' 

natural frequencies and mode shapes when subjected to initial disturbances and allowing them to vibrate freely 

without external excitation.  Understanding the behavior of structures under free vibration is crucial for designing 

and analysing various engineering systems.  Different mathematical models and solution techniques have been 

employed to accurately predict the natural frequencies and mode shapes of FGM structures' free vibration analysis.  

Researchers have proposed various approaches, including variable kinematics models, unified solution methods, 
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shell theories, wavelet methods, and finite element methods [1-5]. 

Researchers conducted various investigations to assess the dynamic behaviors of FGMs shells by investigating 

the influence of multiple parameters, such as material gradation, boundary conditions, geometrical properties, and 

power law exponents, on FGM structures' natural frequencies and mode shapes. Neves et al.[6]analyzed the free 

vibration of FG shells using the Carrera unified formula merged with the radial basis function collocation method.  

Their results indicated that the fundamental frequency decreases with increased radii of curvature and power law 

exponent. [7] analyzed the buckling behavior of FG sandwich plate under the effect of porosity and foam 

distribution resting in Winkler–Pasternak elastic medium.  Furthermore, [8] used different mathematical models to 

analyze the free vibration of FGM doubly curved shells.  They reported that increasing the number of higher-order 

theories does not necessarily yield accurate results for natural frequencies. [9] employed the Haar Wavelet method to 

examine the free vibration of FGM shells and plates.  They observed that the frequencies of FGM shells and plates 

have an inverse relation with the material exponent, length-to-radius ratio, and semi-vertex angle. [10] choose the 

transverse shear parabolic correction to fulfil the correct transverse shear strain energy.  With a parabolic shear 

strain distribution imposed in the compatible strain part, the investigation of shell structure behavior has been 

performed based on enhanced solid-shell elements. 

The free vibration analysis of FGM beams has also received significant attention. [11] study the dynamic 

behavior of FG porous beams embedded in Winkler–Pasternak elastic medium subjected to thermal shock using a 

novel numerical approach and consider the material properties to be temperature- and position-dependent. [12] have 

introduced a novel finite beam element for examining the free vibration characteristics of porous beams that exhibit 

a gradual variation in mechanical properties. The governing equations are derived using a mixed variational 

formulation and incorporate a new parabolic distribution of transverse shear strains. [13] studied the natural 

frequency of a non-uniform beam with lengthwise material distribution laying on a Winkler-Pasternak foundation 

model. The equations of motion for the beam have been obtained using the Euler-Bernoulli beam theory (EBBT), 

the Rayleigh-Ritz method, and the principle of Hamilton. 

In analyzing the free vibration of functionally graded plates, several studies have been conducted to investigate 

the effects of various parameters on the natural frequencies.  

[14] presented a comprehensive study of the free vibration characteristics of FGM plates partially submerged in a 

fluid. Four gradient types of continuously varying material properties are studied: power law, exponential, 

sinusoidal, and cosine, and based on the variational principle, the governing equations of the fluid-plate interaction 

system are derived. To solve the problem, the differential quadrature (DQ) method has been used.[15] used a new 

hybrid theory to analyze functionally graded plates' equilibrium, fundamental frequency, and stability. The 

equations of motion are derived using the Hamilton principle and solved using the Navier-type solution for the case 

of simply supported boundary conditions. In 2023, [16] investigated the equilibrium, the dynamic, and the stability 

of two-layer functionally graded material (FGM) plates, including shear connectors and resting on elastic 

foundations, by using the combination of Navier's solution based on nth-order shear deformation plate theory and 

finite element method. 

The main objective of this study is to use a new displacement field containing fewer unknowns compared to 

other quasi-3D shear deformation theories. This model simplifies the problem and considers the effect of transverse 

stretching, which is not considered in the case of 2D-shear deformation theories.  

Moreover, a more comprehensive study examined the result of many parameters on natural frequencies, 

including the side-to-thickness ratio, thickness ratio, aspect ratio, volume fraction index, and material properties. 

Finally, numerical results are verified by comparisons with other plates' theories' solutions found in the literature to 

ensure the accuracy and effectiveness of the current approaches. The present findings contribute to understanding 

the behavior of functionally graded plates under free vibration conditions and provide valuable insights for design 

and optimization purposes. 

2. Mathematical modeling  

2.1. Kinematics Structural Definition 

In the current studies, we consider single layer plate [FP-FGM] with uniform thickness (h), length (a), and width 

(b) and multilayer plate [P-FGSP] composed of three layers. The middle layer is pure ceramic and their face sheets 

are FGM. The (x, y) coordinates are the in-plane directions and z according to thickness direction, see Fig. 1.  

The material proprieties of the FGM plate are stated as: 

 

( ) ( )( ) = + −m c mP z P P P V z  (01) 
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a) FP-FGM  b) P-FGSP 

 

Figure 1: Coordinate system and geometry of FGM plate. 

 

The volume fraction is given by:  

Functionally graded sandwich plate [PFGSP]: 
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Four-parameter model [FPM] given as[17]: 

 

1 1
( ) 1

2 2

    
= − − + −         

k
c

z z
V z a b

h h
   (03) 

 

Where k is the volume fraction index ( 0 k ) which indicates the material variation profile through the FGSP 

structure. 

The next figures represent the variations of Young’s modulus through the thickness for different values of the three 

parameters a, b, c and the power-law index “k”: 
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a) P-FGSP  b) FPM-FGM (a=1/b=1/c=3) 
Figure 2: The variation of Young modulus E(z) across the thickness versus the material index “k”. 
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2.2. Kinematic and constitutive relations 

 

The displacement field retained in the present work can be described as: 
'
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'
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The shape function ( )f z  is proposed as: 
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The strain relations according to the displacement field are given as: 
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Where:  

,
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m n
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2.3. Constitutive relations 

  

For the nth layer, the linear constitutive relations of FGSP are given as: 

 

     =  i ij jC  (08a) 
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2.4.   Equations of motion 

Hamilton’s rule is used herein to derive the equations of motion and can be stated in analytical form as: 

0

(  ) 0 + =
T

U V dt  (09) 

Where: δU is the variation of strain energy and δK is the variation of kinetic energy. 

The variation of strain energy of the plate is calculated by: 
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Where A is the surface; and stress resultants N, M, and Q are defined by 
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The variation of kinetic energy of the plate can be written as: 
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Where dot-superscript convention indicates the differentiation with respect to the time variable t; and (I0, 

I1,J1,I2,J2,K2,K2s) are mass inertias defined as: 
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Substituting the expressions of δU and δK from Eqs (10) and (12) into Eq. (19), and by simple mathematical 

technics, the following equations are obtained: 
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By substituting Eq.(6) into Eq.(7), the resulting equation into Eq.(14). The equations of motion in terms of 

unknown’s (δu0, δv0, δw0, δθ) are given by: 
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Where: 
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3. Solution procedure  

The boundary conditions taken in the present work concerns those of simply supported edges and imposed like: 

0 0 , 0

at =0,

  = = = = = = = =b s

y x x xv w N M M

x a
 

(20a) 

0 0 , 0

at =0,

  = = = = = = = =b s

x y y yu w N M M

y b
 (20b) 

Based on the Navier type techniques, the following form for u0, v0, w0, and θ that satisfies the boundary conditions 

given in Eq. (20): 
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X e x y

e x y

 (21) 

 

mnU , 
mnV , mnW , 

mnX and mn
are arbitrary parameters and ,  are definite as: 

/ =m a  And / = n b  (22) 

 

Substituting Eq. (21) into Eq. (15), the analytical solutions can be gotten form: 

   ( ) 

 

2

0

− 

=

mn mn mn mn mna m U V W X
 (23) 

 

 is the is the fundamental frequency In witch: 
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2 2

11 11 66( ) = − +a A A , ( )12 12 66   = − +a A A , 

 
2 2

13 11 12 66( ( 2 ) )  = + +a B B B  

( )

2 2

14 11 1 12 2

2

66 1 2

( ' '
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2 2 2 2
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2 2
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(24) 

And 

11 22 0= = −m m I , 
13 1=m I , 14 1=m J ,  

23 1=m I , 24 1=m J 35 45 1= = − sm m J  

2 2

33 0 2[ ( )] = − + +m I I ,  

2 2

34 0 2[ ( )] = − + +m I J ,  

2 2

44 0 2[ ( )] = − + +m I K
 

55 2= − sm K
 

(25) 

Non-dimensional parameters: 
2 2   = a h D , 

( )( )3 212 1 = −D Eh ,  

  = m mh E
 

(26) 
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4. Numerical results 

4.1. Comparative study 

The first section presents two numerical examples of a simply supported FG plate under free vibration. The 

presented model has been first validated through the comparison with the existing data available. Two types of 

FGMs plates are considered: Al/Al2O3 and Al/ZrO2. The material properties of the FG plates are stated in Table 1. 

Table 1: Material proprieties used in the FG plates 

Propri

eties 

Metal Ceramic 

(Al) (Al)* (Al2O3) (ZrO2) (ZrO2)
* 

E 

(Gpa) 
70 68.9 380 200 211 

ν 0.3 0.33 0.3 0.3 0.33 

Ρ 

(kg/m3) 

270

2 
2700 3800 5700 4500 

 

For the validation of the current model, a comparison study of the non-dimensional fundamental frequency is 

realized for an FG rectangular plate. As an initial example, a square (Al/Al2O3) plate with a thickness ratio of 5 to 

20 and a power-law index of 0 to 10 is performed using various plate theories. The non-dimensional fundamental 

frequencies predicted by Sekkal et al. [18] and Abualnour et al. [19]  and the current theory are compared in Table 2. 

It can be concluded that the results attained from the present model are closer to those of the proposed models. 

 

Table 2: Non-dimensional fundamental frequency ω ̅ of (Al / Al2O3) square plates. Material proprieties used in the FG plates a) P-FGSP, 

b) FP-FGM. 

a/h 

Mode 

(m,n) 
Method 

Power law index (k) 

0 0.5  1 4 10 

1(1,1) 

Sekkal et al.[18] 

 
0.2130  0.1834 0.1665 0.1411 0.1321 

Abualnour et al.[19] 

 
0.2126 0.1829 0.1663 0.1411 0.1320 

Present  0.2124 0.1828 0.1661 0.1411 0.1321 

2(1,2) 

Sekkal et al. [18] 

 
0.4682  0.4064 0.3692 0.3052 0.2818 

Abualnour et al. [19] 

 
0.4674 0.4052 0.3687 0.3052 0.2817 

Present  0.4661 0.4044 0.3677 0.3051 0.2814 

1(1,1) 

Sekkal et al. [18] 

 
0.0578  0.0492 0.0443 0.0381 0.0364 

Abualnour et al. [19] 

 
0.0579 0.0495 0.0450 0.0390 0.0369 

Present  0.0579 0.0495 0.0450 0.0390 0.0369 

2(1,2) 

Sekkal et al. [18] 

 
0.1381  0.1180 0.1063 0.0905 0.0859 

Abualnour et al. [19] 

 
0.1383 0.1186 0.1078 0.0924 0.0868 

Present  0.1383 0.1186 0.1078 0.0924 0.0869 

 

4.2. Benchmark results 

Next, parametric studies have been performed, and typical results are shown in Figures 3-6. Figure. 3a and 

3b depict the variation of the non-dimensional fundamental frequency of the FG sandwich plate and four parameters 
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model plate. In Figure. 3a, the frequencies changes versus the aspect ratios. Although rapid decreasing of the 

frequencies when a/b increased and then they had relative values before a/b=3, Figure. 3b shows the variation of 

non-dimensional fundamental frequency versus index k, so with the increase of the power law index k, the 

frequencies are decreasing, which means the stiffness of the plate reduced when the metal is including. The 

sandwich configuration 1-2-1 is closer to the other configurations' four-parameter model. 

 Four-parameter model

 1-2-1

 1-1-1

 2-1-2

0 1 2 3 4 5 6

0.05

0.10

0.15

0.20

0.25



a/b  

 Four-parameter model

 1-2-1

 1-1-1

 2-1-2

0 1 2 3 4 5 6
35

40

45

50

55

60

65

70



k  
a) b) 

Figure 3: Non-dimensional fundamental frequency for FG sandwich and four parameters model plate versus (a): k=2, a/h=10 and (b): 

a/b=2, a/h=5m a) P-FGSP, b) FP-FGM. 

 

Figure 4a and 4b shows the variation of the non-dimensional fundamental frequency of FG sandwich plate and 

plate with four parameters model versus the material index “k,” which the Al/Al2O3 is used in (a) and Al/ZrO2 used 

in (b). It can be seen that with increasing index k, the fundamental frequency is rapidly decreased in the case of Fig. 

4a. In contrast, the fundamental frequency decreased slower in the case of Fig. 4a. The four parameters model 

always have the maximum values of the fundamental frequency. So, the variation of index k influence on the 

stiffness of the plate. The increase in the index k reduced the stiffness of the plate. 

 Sandwich
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Figure 4: Non-dimensional fundamental frequency   of square FG sandwich (1-2-1) and four parameters model with two type of FG 

materials (a): Al/Al2O3 and (b): Al/ZrO2 with a/h= 10a) P-FGSP, b) FP-FGM. 

 

Figure. 5 depicts the variation of non-dimensional fundamental frequency for three modes of FG sandwich and four 

parameters model subjected on simply supported boundaries for (k=1 and a/h=10). The non-dimensional 

fundamental natural frequency decreases with the increasing side ratios to thickness (a/h). The four parameters 

model has the highest value with every single mode. 

The non-dimensional fundamental frequency variation of the supported FG sandwich and four parameters model 

square plate are presented in Figure. 6a, and 6b versus the side ratios to thickness (a/h) for various values of 

material index k are considered. With the increasing of ratios, a/h, the fundamental frequency increased, and then 

take values approach before a/h=20, the natural frequency end to keep a more constant shape. The ceramic material 

takes the maximum frequency values, as shown in both figures. In other words, the frequencies decrease as the 

power law index k increases. 
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Figure 5: Comparison between non-dimensional fundamental frequency for three modes of FG sandwich and four parameters model 

(k=1 and a/h=10). 
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Figure 6: Non-dimensional fundamental frequency for FG square sandwich plate in (a) and plate with four parameters model in (b) 

versus side to thickness a/h with various values of index k 

5. Conclusions 

The present article studies and analyzes the free vibration response of simply supported FG plates with 

four-parameter power law distribution and multi-layered plates using a novel warping function. The formulation 

used in this work is based on a quasi-3D shear deformation model accounting for integral terms and including the 

stretching effect. The equations of motion have been derived via Hamilton’s principle. The fundamental frequencies 

were obtained after solving the problem by Navier solution. Effects of volume fraction index k, geometric 

parameters, and anisotropic ratio on the response of FG sandwich and single layered plate with a four-parameter 

model are discussed in detail. 

According to the results of the study, the following can be drawn: 

− The four parameters model always has the high frequencies  

− The power law index k influences the variation of frequencies. The stiffness of the plate is reduced when 

the index k increases.  

− The quasi-3D theory is essential for thick, moderately thick FG plates and should be considered in future 

studies. 

− The numerical results have shown the effect of the power-law exponent, the power-law distribution choice, 

and the choice of the four parameters on the dynamic response of the FG plate considered. 
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