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Abstract 

This study explores the analytical solutions for non-isothermal couple stress 

fluid flow in thin films over an inclined plane. The strongly nonlinear 

ordinary differential equations governing momentum and energy transport 

are derived and solved analytically using the Optimal Homotopy Asymptotic 

Method (OHAM) under appropriate boundary conditions. The study 

provides explicit expressions for temperature distribution, vorticity, shear 

stress, volume flow rate, and velocity profile. A comprehensive comparison 

of numerical and graphical results demonstrates good agreement, validating 

the accuracy of the proposed method. The findings contribute to a deeper 

understanding of heat transfer and fluid dynamics in industrial, biomedical, 

and engineering applications. Additionally, the influence of key parameters 

such as couple stress effects, heat transfer rates, and variations in thin-film 

thickness are analyzed in detail. The study's results can be applied to 

lubrication systems, microfluidics, and coating technologies, where non-

Newtonian fluid behavior plays a crucial role. The effectiveness of OHAM in 

addressing nonlinear problems is highlighted, showcasing its advantages 

over conventional numerical techniques. The study also emphasizes the 

significance of thermophysical properties in determining flow 

characteristics, offering valuable insights for researchers and engineers in 

applied fluid mechanics. 
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1. Introduction  

In recent years, people worldwide have shown a growing interest in studying non-Newtonian fluids from both 

theoretical and applied perspectives [1-3]. The study of non-Newtonian fluids is crucial because they are widely used 

in various industrial and technological applications. These fluids include, but are not limited to, paint, shampoo, 

mud, ketchup, polymer melts, blood, clay coatings, certain oils and greases, and other mixtures. A careful flow 

analysis is essential for these fluids, both in theory and in practice. In theory, the study of these flow behaviors is 
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fundamental to the field of fluid mechanics [4-7]. These flows are useful in many industrial manufacturing processes, 

in our opinion. Researchers conduct extensive investigations on non-Newtonian fluids, primarily by examining the 

differential equations that arise from these fluids. In practical domains such as atmospheric rheology and physics, 

fluid mechanics is studied through the measurement of material coefficients through an experimental setup. Non-

Newtonian fluids exhibit a vast variety of physical structures, making it challenging to offer a single constitutive 

equation that captures all of their properties. As a result, several fluid models that forecast the non-Newtonian 

behavior of various materials have been made available. [8] The one that has usual the extreme attention is the 

generalized second-grade fluid model.   

Recently, a number of specialists have been interested in thin film flows. Its widespread popularity in industrial 

manufacturing processes is the reason for this. The literature on thin-film flows for Newtonian fluids is abundant, 

but non-Newtonian fluids haven't gotten as much attention in this area [9]. Siddiqui et al. [10-13] and Hayat et al. [14, 

15] have hardly attempted to handle non-Newtonian fluid thin film flows. 

A large number of researchers must be interested in thin-film flow and heat transfer [16-18]. This is because of 

their many technical and industrial applications, which include the processing of food products, the creation of 

coatings for wire and fiber, the fluidization of reactors, the cooling of transpiration, the processing of polymers, heat 

pipes, gaseous diffusion, and the fluidic cells that are a part of many biochemical and organic finding classifications. 

Lavrik et al. [19] looked at the issue of places for organic and biotic micro cantilevers, like as fluidic cells. These 

were natural and live discovery systems. In most flow and heat transfer study problems, the non-Newtonian fluid is 

represented by the power-law fluid model. While several examples, like polymer processing, have shown the 

importance of this phenomena, studies that combine the effects of viscous dissipation have gotten very little 

attention. 

This paper is organized into multiple sections. Section 2 contains nomenclature. Section 3 depicted the basic 

equation. Section 4 contains the formulation of the problem. The solution to the problem and the basic phenomena 

of the technique (OHAM) are covered in Section 5. Section 6 provides the problem's shear stress, volumetric flow 

rate, average velocity and vorticity. While Sections 7 deal with the result and discussion. Section 8 provides the 

conclusion. 

2. Nomenclature 

u  Fluid velocity 

L   Gradient of V 

  Couple Stress Parameter 

  Temperature 

 rB  Brinkman number 

  Density 

f  Body force 

P  Pressure 

pC  Specific heat 

  Thermal conductivity 

 D

Dt
 Material time derivative 

*  Dimensionless temperature 
*u  Dimensionless velocity 

1A  First Rivilin–Erickson tensor 

3. Basic Equations 

The main idea equations guiding a pair stress liquids movement, taking into consideration thermal effects, are 

. 0, =u      (1) 
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4. ,
D

P
Dt

  = − − − 
u

f T u      (2) 

2 .p

D
C

Dt
 


=   −T L      (3) 

The fluid velocity is symbolizes by "u"  the couple stress parameter is denoted " " , the body force is signified 

by " " f , the fluid density is represents by " " , " "  stand for temperature, the specific heat is signified by 

" "pC , "  "P is the pressure, the material time derivative denoted 
 

"  "
D

Dt
 and  " "  stands for conductivity. These 

values are clear as 

. ,
D

Dt t

 
= +  

 
u  

where      
1( ),=T A  

1 .T= +A L L  

4. Problem Formulation 

Let us assume a couple stress liquid flowing on an inclined surface in the form of thin film. The film is assumed 

to be of uniform thickness  ,  and the only force moving it is gravity. The geometry of the problem can be seen in 

figure 1 below. The assumptions on flow are 

( ) ( ) ( ),0, 0            y ,    T T y .u y=  =  =  V     (4) 

 

 
Figure 1:   Couple Stress fluid flowing in a thin layer down an inclined plane. 

Equation (1) is now satisfied exactly when using equations (4). Additionally, Eq. (2) is reduced to 
4 2

4 2
sin 0.

d u d u
g

dy dy
   − − =      (5) 



Journal of Computational Applied Mechanics 2025, 56(2): 396-410 399 

The equation (3) becomes 

22

2
κ 0.

d du

dy dy

 

+ = 
 

     (6) 

The linked boundary conditions are 

At 

2

2
0 ,     ,     0  ,      0.

d u
y u U

dx
= = =  =     (7) 

At 

3

3
1,     0 ,     0,      0.

du d d
y

d

u

dy y dy


= = = =    (8) 

For the non-dimensionalization of the equations, the following non-dimensional parameters are presented. 

( )

2 4 2
* * * 20

1 0 1 0

 ,   ,   ,   ,   sin ,   .r

x u g U
y u k B

U U k

   
 

  

 −
= =  = = = =

 −  −
 

 

" "rB  Represent the Brinkman number. Presenting these values in equation (5 - 8), and removing the “*” one 

gets 

4 2
2

4 2
  ,

d u d u
k

dy dy
− =         (9) 

22

   2
,r

d du
B

dy dy

 
= −  

 
     (10) 

At 

2

2
0 ,    1 ,     0  ,      0.

d u
y u

dx
= = =  =     (11) 

At 

3

3
1,     0 ,     0,      0.

du d d
y

d

u

dy y dy


= = = =    (12) 

5. Solutions of the Problem 

5.1. Exact Solution 

The exact result of Eq. (9) is 

( )

2 2 2 2

2 4 2 2 2 2 2 2 2 4 2 4

2e 2e 2e 2e 2e1
e .

2 1 e 2e e e 2e 2e

y y y y

y

y y y y y

k k k k ky
u

ky ky ky

     



        



     

+

−

+ + +

  − + − +
=     + + − − + +  

     (13) 

Now, solve (10) with the appropriate boundary conditions to get the following answer.  
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( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

4 22 2 4 2 3 4

2
2 8

2 3 2 42 2 4 2 2 3

2 3 2 4 2 33 4 2

2 2 2

1
e 3e 51e 48e 3e 48e 48e

12 1 e

96e 48e 51e 24e 24e 24e 24e

24e 24e 24e 24e 24e 24e

24e

(
y yy y y y

y y yy y y y

y y y yy y

y

k

y y y y

y

     



       

     

 



   

     



+ +−

+ + ++ +

+ + + ++

+

 = − + − − − −
+

+ − + + − + +

− + − − − +

− +
( )

( ) ( ) ( )

( ) ( ) ( )

2 1 2 2 2 4 2 2 4 4 2 4

2 1 2 2 2 12 2 4 2 4 2 4 2 3 4 3 4

2 2 2 1 2 23 4 2 4 4 4 4 4 4

12e 4e 8e 4e

6e 12e 6e 4e 8e

4e e 2e e .)

y y y y

y y yy y

y y yy

r

y y y y

y y y y y

y y y y B

     

   

  

   

    

   

+ + +

+ + +

+ + +

+ + +

− − − + +

+ − − −

        (14) 

Now, the Optimal Homotopy Asymptotic method (OHAM) is used to determine the estimated answers of 

equations (9) and (10) subject to the boundary conditions. However, first we give the basics of the OHAM. 

 

5.2. Basics Phenomena of Optimal Homotopy Asymptotic Method (OHAM) 

Supposing that the differential equation is non-linear.  

( )( ) ( ) ( )( )τ τ τ 0,       , 0.
τ

d
L F N B

d

 
 + +  =  = 

 
    (15) 

The non-linear operator is represented by ( )( )τ ,N   the linear operator is denoted by ,L  the provided 

function is ( )τ ,F the unknown function is still ( )τ ,  and the boundary operator is .B  

The Optimal Homotopy Asymptotic Method (OHAM) was utilized to produce the following results. 

( ) ( )( ) ( )) ( ) ( )( ) ( ) ( )( ) ( )
( )τ,

1 τ, τ τ, τ τ, ],   τ, , 0.
τ

d r
r L r F H r L r F N r B r

d

 
−  + =  + +   =    

 
  (16) 

When    0r=  (i.e. ( )  0    0H = ), the secondary function ( ) ,H r  is definitely given. In the same way, for 0,r   

it is non-zero. We can express the embedding variable  0,1  r as follows: 

( ) ( ) ( ) ( )0τ,0 τ ,    τ,1 τ =   =  .    (17) 

The range of the solution ( )τ, r  is ( )0 τ and ( )τ ,  where r diverges from 0 to 1. By altering 0r =  in 

Eq. (15), we can derive ( )0 τ .  

( )( ) ( ) 0
0 τ τ 0 ,   , 0

τ

d
L F B

d

 
 + =  = 

 
    (18) 

The auxiliary function ( ) H r  has the following expression: 

( ) 2 3

1 2 3 H r rc r c r c= + + +     (19)  

Since it is necessary to determine the constants in this case, 1 2 3,  ,  ,c c c    Eq. (16) can be expressed as 

( ) ( ) ( )0

1

τ, , τ τ, ,    1,2,j

i j i

j

r c c r i


 =  +  =     (20) 
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We get the following system by analyzing comparable powers of r and replacing Eq. (20) to Eq. (16). 

( )( ) ( )( ) 1
1 1 0 0 1τ   τ  ,    , 0

τ

d
L c N B

d

 
 =   = 

 
    (21) 

 
( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )(

1

1 0 0 j k 0 1 j 1

1

1

( τ τ )   τ [ τ   τ , τ , τ) ,     

, 0 ,   1,2,
τ

j

j j j k j k

k

L c N c L N

d
B j

d

−

− − − −

=

 − =  +      

 
 = =  
 


                  (22)                                                                                                                  

   

In Eq. (22) the term ( ) ( ) ( )( )0 1 nτ ,   τ , , τmN      is the coefficient of 
mr  in the expansion of   

( )( ) ( )( ) ( ) ( ) ( )0 0 0 1 j

1

τ, , τ ( τ , τ , , τ)   ,         1,2,   j

k j

j

N r c N N r k


 =  +     =       (23)  

For ( )j τ ,   0,j   the result of Eq. (20) may be simply determined as follows: the convergence is solely 

dependent on the constants 1 2 3,  ,  ,c c c  ; if it is convergent at   1,r=  then from Eq. (20) we get 

( ) ( ) ( )0

1

τ, τ τ,k j i

j

c c


 =  +  .       (24) 

In common, the result of equation (15) is estimated by  

( ) ( ) ( )0

1

τ, τ τ, ,        1,2, , .
n

n

k j k

j

c c k n
=

 = +  =    (25) 

Eq. (18) is replaced into Eq. (25) and the residual is attained. 

( ) ( )( ) ( ) ( )( )τ, τ, τ τ, ,    1, 2, , .n n

k k kR c L c F N c k n=  + +  =    (26) 

We obtain the exact solution ( )τ,n

kc , when ( )τ, 0,kR c =  that is, the residual is zero; but, if 

( )τ, 0kR c  ,  that is, We can reduce in the following way if the residual is not zero. 

( ) ( )2 ,

b

l l

a

J c R c dx=  .     (27) 

The unknown constants 1 2 3   ,  ,  ,c c c , and so on, where a and b are constants based on the problem under 

discussion, can be calculated using the criteria.. 

0,     1, 2, , .
l

J
l n

c


= = 


     (28) 

Equation (18) can be used to get the approximated answer after we have the values of these constants. 

Furthermore, we use the collocation approach to determine the value of the unknown constant 1 2 3   ,  ,  ,c c c . 

5.3. Solution of the Problem by OHAM 

Using OHAM, the resulting component equations up to third order and their results are found. 

5.3.1. Zero Component Problems 

Zero component equations of velocity and temperature, along with the related boundary conditions, are 

4

0

4
0,

d u
k

dy
− =       (29) 
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2

0

2
0,

d

dy


=             (30) 

At 

2

0
0 02

0,           1 ,             0,               0,
d u

y u
dy

= = =  =    (31) 

At 

3

0 0 0

3
1 ,         0 ,          0 ,            0.

du d u d
y

dy dy dy


= = = =    (32) 

5.3.2. First Component Problems 

First component equations of velocity and temperature, along with the related boundary conditions, are 

4 4 24
20 0 01

1 1 14 4 4 2
0,

d u d u d ud u
C C k kC

dy dy dy dy


   
− − + + + =   

   
,  (33) 

2 22

0 0 01
3 32 2

0,r

du d dd
B C C

dy dy dy dy

    
− − − =   

   
,   (34) 

At 

2

1
1

12
0,           0 ,             0,               0,

d u
y u

dy
= = =  =    (35) 

At 1

3

11

3
1 ,         0 ,          0 ,            0.

du d u d
y

dy dy dy


= = = =    (36) 

5.3.3. Second Component Problems 

Second component equations of velocity and temperature, along with the related boundary conditions, are 

4 24 4 4 2
2 20 02 1 1 1

1 2 1 2 24 4 4 4 2 2
0,

d u d ud u d u d u d u
C C C C kC

dy dy dy dy dy dy
 

      
− − − + + +      

    
=

 
       (37) 

2 22 2 2

0 0 02 1 1 1
3 4 4 32 2 2 2

2 0,r r

du du dd du d d
B C B C C C

dy dy dy dy dy dy dy

          
+ − − − − =       

       
 (38) 

At 

2

2
2 2 20,           0 ,             0,               0,

d u
y u

dy
= = =  =    (38) 

At 2 2 2

3

3
1 ,         0 ,          0 ,            0.

du d u d
y

dy dy dy


= = = =    (40) 

5.3.4. Third Component Problems 

Third component equations of velocity and temperature, along with the related boundary conditions, are 

4 4 4 4 2 2
2 23 2 2 1 2 1

1 2 1 24 4 4 4 2 2
0,

d u d u d u d u d u d u
C C C C

dy dy dy dy dy dy
 

       
− − − + + =       

       
       (41) 
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22 2 2 2

3 0 2 1 1 2 2
3 3 4 32 2 2 2

0 1
4

2

2 0,

r r

r

d du du du d d d
B C B C C C

dy dy dy dy dy dy dy

du du
B C

dy dy

          
− − − − −       

        

  
− =  

  

     (42) 

At 

2

3
3 2 30,           0 ,             0,               0,

d u
y u

dy
= = =  =    (43) 

At 3 3 3

3

3
1 ,         0 ,          0 ,            0.

du d u d
y

dy dy dy


= = = =    (44) 

The solutions obtained for these equations by OHAM are cumbersome and we have tabulated these solutions in 

table 1 and 2. 

 

6. Shear Stress, Vorticity, Average Velocity, Volumetric Flow Rate 

6.1. Shear Stress on Inclined Surface 

On inclined surface the shear stress is obtained by 

 

0 0|        |xy y y

du
T

dy
= =

 
=  

 
     (45) 

 

 

Table 1: Residual of velocity  0.03 ,   0.0005,k = =   using OHAM technique. 

y  
OHAMu    OHAMResidual u  

0.

0.1

0.2

0.4

0.4

0.5

0.6

0.7

0.8

0.9

1.
 

1.

1.0000165794438058

1.0000326882031383

1.0000479014226578

1.000061844239002

1.0000741917774127

1.0000846691488114

1.0000930514473263

1.0000991637482664

1.0001028811065487

1.0001041285555734

 

21

22

22

21

20

20

20

20

0.

3.618087999306943 10

1.753622898612418 10

2.580803511165446 10

8.341289296984732 10

2.441837168256537 10

4.575301404153307 10

6.872216529090554 10

8.863405699628203 10

1.022494498789

−

−

−

−

−

−

−

−
















19

19

048 10

1.069379095908554 10

−

−
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Table 2: Residual of temperature for 1.5 ,    0.0007,    0.01,rk B = = =  using OHAM technique. 

y  
OHAMΨ    OHAMResidualΨ  

0.

0.1

0.2

0.4

0.4

0.5

0.6

0.7

0.8

0.9

1.

 

11

11

11

11

11

11

11

11

0.

2.00840010999138 10

3.570421770329235 10

4.72288942660287 10

5.520679842799398 10

6.030112255356151 10

6.322016366344039 10

6.465007880451779 10

6.519409020719452 10

6.53216464790693

−

−

−

−

−

−

−

−
















11

11

9 10

6.533022200484851 10

−

−




 

18

23

19

19

23

20

20

23

2.182174213833026 10

8.42690249038397 10

9.60632426661381 10

4.717322111474067 10

5.407693254565418 10

9.921457591023609 10

4.050920594582972 10

1.631096770378001 10

3.0803430529

−

−

−

−

−

−

−

−

− 

− 





− 

− 

− 

− 
21

24

65048 10

1.925779863600017 10

0.

−

−



− 

 

 

By replacing the value we have 

( )

( )

( )( )

2

2

2 4

8 2

0.055797971403916465 269.804588954112

5376 2176 0.9989145795294502
1

     0.
483840 391680 79360 179.934851194796153 3628800

8064 5.766159412607109 10 5376 2176

xy

k
T k



 
 

−

 − +  
  

+ −  
  = + +

+ + −  
  

  −  +
  







    (46) 

Table 3: Absolute difference for 0.03 ,  0.0005, k = = velocity profile and exact solution. 

y  
OHAMu  Exactu

  Absolute difference  

0.

0.1

0.2

0.4

0.4

0.5

0.6

0.7

0.8

0.9

1.

 

1.

1.00001657

1.00003268

1.000047901

1.000061844

1.000074191

1.000084669

1.000093051

1.000099163

1.000102881

1.000104128

 

1.

1.000016579

1.000032688

1.000047901

1.000061844

1.000074191

1.000084669

1.000093051

1.000099163

1.000102881

1.000104128

 

14

14

14

13

13

14

14

14

14

14

13

6.949996134 10

6.9603648338 10

7.5428216190 10

1.2981876316 10

1.1038620104 10

8.075479304 10

7.5187184494 10

2.9990048530 10

1.910770803 10

4.2930502902 10

1.5434349761 10

−

−

−

−

−

−

−

−

−

−

−
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Table 4: Absolute difference for 1.5 ,  0.0007 ,  0.01,rk B = = =  velocity profile and exact solution. 

y  
OHAMΨ  ExactΨ   Absolute difference  

0.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.
 

11

11

11

11

11

11

11

11

11

11

0.

2.008400 10

3.570421 10

4.7228894 10

5.5206798 10

6.030112 10

6.322016 10

6.465007 10

6.519409 10

6.5321646 10

6.533022 10

−

−

−

−

−

−

−

−

−

−




















 

25

12

11

11

11

11

11

11

11

11

11

1.30369379 10

6.479863761 10

1.14934354 10

1.517090474 10

1.770141199 10

1.93080387 10

2.02238833 10

2.0670554 10

2.0839909 10

2.0879525 10

2.08821857 10

−

−

−

−

−

−

−

−

−

−

−






















 

11

11

11

11

11

11

11

11

11

11

0.

1.36041373387 10

2.42107822144 10

3.20579895163 10

3.75053864344 10

4.09930838062 10

4.29962802776 10

4.39795239607 10

4.43541802851 10

4.4442120716 10

4.44480362761 10

−

−

−

−

−

−

−

−

−

−





















 

 

  
Figure 2: Velocity variation at different     keeping   0.2.k =  

  

Figure 3: Velocity variation at different k  keeping 0.2. =  
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Figure 4: Temperature variation at different rB  keeping 0.2, 0.3,  0.4.rB k = = =  

 
Figure 5: Temperature variation at different k  keeping   0.3, 0.4.rB = =  

 

Figure 6: Variation at different on temperature    keeping 0.3,  0.4.rB k= =  
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Figure 7: Variation of shear stress at different    keeping 0.2.k =  

 
Figure 8: Variation of shear stress at different k  keeping 0.7. =  

6.2. Vorticity 

The vorticity of the inclined is 

.ˆ
du

dy

 
=  = − 

 
ω V k      (47) 

By putting the value we have 

( )( ) ( )( )

( )

( ) ( )

( )

2 2

2 3 4

3 4 3 5 6 2

3 4 3 5

1 1 1
  ( 2 4 8 4

24 24 3628800

(0.0005812288687907965 80 24 5 269.804588954112

( 56 80 24 5 1792 448 48 7 ) 0.9989145795294502
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6.3. Volumetric Flow Rate 

Inclined volumetric flow rate is determined by 

1

0

   .Q udy=         (49) 

By putting the value we have 
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6.4. Average Velocity 

For an inclined problem, the average velocity in dimensional form is provided by 

.
Q

u


=  .      (51) 

The average velocity and flow rate coincide in non-dimensional form, thus 

( )
2 4

6

2
1 0.053968253967947744 0.02186948246473353

15

0.008853615192622738 .

OHAM

k
u k k

k

 



= + − +

−

                (52) 

7. Results and Discussion 

In the current work, we approximated the thin-film flow results using non-isothermal couple stress fluid thin-

film flow on an inclined plane. This problem develops differential equations and associated boundary conditions. 

One method for solving non-linear differential equations is the Optimal Homotopy Asymptotic Method (OHAM). 

The variation in temperature distribution and velocity profiles due to changed parameters like ,k and rB . Tables 1 

and 2 present the velocity profile and temperature distribution OHAM results along with the corresponding problem 
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residuals. The absolute difference between the OHAM solution and the exact solutions for velocity and temperature 

are displayed in Tables 3 and 4. Figures 2 and 3 show how the values of   and  k  affect the velocity profile. 

Figure 2 shows that the velocity profile and    have an inverse relationship, but Figure 3 shows that k  and 

velocity have a direct relationship. Figures 4, 5, and 6 show how the parameters ,rB k and   affect the temperature 

profiles. There is a direct relationship between 0u  and the temperature profile in Figures 4 and 5, and an 

opposite relationship between   and the temperature profile in Figure 6. Figures 7 and 8 show how variables 

 and  k  affect shear stress. Figure 7 shows that shear stress and   have an inverse relationship, but Figure 8 

shows that  k  and shear stress have a direct relationship. 

 

8. Conclusion 

This work has used OHAM to study the non-isothermal couple stress fluid thin-film flow on an inclined plane. 

An incredible arrangement is produced by calculating the OHAM findings both mathematically and graphically. The 

main findings are enumerated below. 

• It's crucial to remember that regular stresses don't support a stable couple stress fluid flow. 

• In the event that the average velocity, 0u  , there will be a net upward flow. Equations (52) provide it. 

• A comparable decrease in velocity is observed as parameter  increases. 

• The increases in parameter k  cause spikes in velocity. 

• With a surge in the Brinkman number rB  and k  the temperature rises 
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