Journal of Computational Applied Mechanics 2025, 56(2): 396-410

DOI: 10.22059/jcamech.2025.390180.1359
RESEARCH PAPER

Analytical Solutions for Heat Transfer and Flow of Thin Film on
an Inclined Wall Using the Optimal Homotopy Asymptotic Method

Muhammad Farooq 2, Faridoon Shahid 2, Sapna Ayaz 2, Yusif S. Gasimov °, Ibrahim Alraddadi ¢,
Hijaz Ahmad &% & "

2 Department of Mathematics, Abdul Wali Khan University, Mardan, KP, 23200, Pakistan
® Department of Mathematics and Informatics, Azerbaijan University, Baku, Azerbaijan
¢ Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
d Operational Research Center in Healthcare, Near East University, Nicosia, 99138, Turkey
¢ Department of Mathematics, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841,
South Korea

Abstract

This study explores the analytical solutions for non-isothermal couple stress
fluid flow in thin films over an inclined plane. The strongly nonlinear
ordinary differential equations governing momentum and energy transport
are derived and solved analytically using the Optimal Homotopy Asymptotic
Method (OHAM) under appropriate boundary conditions. The study
provides explicit expressions for temperature distribution, vorticity, shear
stress, volume flow rate, and velocity profile. A comprehensive comparison
of numerical and graphical results demonstrates good agreement, validating
the accuracy of the proposed method. The findings contribute to a deeper
understanding of heat transfer and fluid dynamics in industrial, biomedical,
and engineering applications. Additionally, the influence of key parameters
such as couple stress effects, heat transfer rates, and variations in thin-film
thickness are analyzed in detail. The study's results can be applied to
lubrication systems, microfluidics, and coating technologies, where non-
Newtonian fluid behavior plays a crucial role. The effectiveness of OHAM in
addressing nonlinear problems is highlighted, showcasing its advantages
over conventional numerical techniques. The study also emphasizes the
significance of thermophysical properties in determining flow
characteristics, offering valuable insights for researchers and engineers in
applied fluid mechanics.
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1. Introduction

In recent years, people worldwide have shown a growing interest in studying non-Newtonian fluids from both
theoretical and applied perspectives [1-3]. The study of non-Newtonian fluids is crucial because they are widely used
in various industrial and technological applications. These fluids include, but are not limited to, paint, shampoo,
mud, ketchup, polymer melts, blood, clay coatings, certain oils and greases, and other mixtures. A careful flow
analysis is essential for these fluids, both in theory and in practice. In theory, the study of these flow behaviors is
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fundamental to the field of fluid mechanics [4-7]. These flows are useful in many industrial manufacturing processes,
in our opinion. Researchers conduct extensive investigations on non-Newtonian fluids, primarily by examining the
differential equations that arise from these fluids. In practical domains such as atmospheric rheology and physics,
fluid mechanics is studied through the measurement of material coefficients through an experimental setup. Non-
Newtonian fluids exhibit a vast variety of physical structures, making it challenging to offer a single constitutive
equation that captures all of their properties. As a result, several fluid models that forecast the non-Newtonian
behavior of various materials have been made available. [8] The one that has usual the extreme attention is the
generalized second-grade fluid model.

Recently, a number of specialists have been interested in thin film flows. Its widespread popularity in industrial
manufacturing processes is the reason for this. The literature on thin-film flows for Newtonian fluids is abundant,
but non-Newtonian fluids haven't gotten as much attention in this area [9]. Siddiqui et al. [10-13] and Hayat et al. [14,
15] have hardly attempted to handle non-Newtonian fluid thin film flows.

A large number of researchers must be interested in thin-film flow and heat transfer [16-18]. This is because of
their many technical and industrial applications, which include the processing of food products, the creation of
coatings for wire and fiber, the fluidization of reactors, the cooling of transpiration, the processing of polymers, heat
pipes, gaseous diffusion, and the fluidic cells that are a part of many biochemical and organic finding classifications.
Lavrik et al. [19] looked at the issue of places for organic and biotic micro cantilevers, like as fluidic cells. These
were natural and live discovery systems. In most flow and heat transfer study problems, the non-Newtonian fluid is
represented by the power-law fluid model. While several examples, like polymer processing, have shown the
importance of this phenomena, studies that combine the effects of viscous dissipation have gotten very little
attention.

This paper is organized into multiple sections. Section 2 contains nomenclature. Section 3 depicted the basic
equation. Section 4 contains the formulation of the problem. The solution to the problem and the basic phenomena
of the technique (OHAM) are covered in Section 5. Section 6 provides the problem's shear stress, volumetric flow
rate, average velocity and vorticity. While Sections 7 deal with the result and discussion. Section 8 provides the
conclusion.

2. Nomenclature

Fluid velocity

Gradient of V
Couple Stress Parameter

Temperature
Brinkman number
Density

Body force

Pressure
Specific heat

Thermal conductivity

Material time derivative

* —+

Dimensionless temperature
Dimensionless velocity
First Rivilin—Erickson tensor

> S.€Q(on 0T ~v eI c

3. Basic Equations

The main idea equations guiding a pair stress liquids movement, taking into consideration thermal effects, are

V.u=0, 1)
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The fluid velocity is symbolizes by "*U"" the couple stress parameter is denoted 77", the body force is signified

by™ ", the fluid density is represents by " p™, "W" stand for temperature, the specific heat is signified by

n " n mn- H = = H n D 1 [1] n .-
Cp , ""P "is the pressure, the material time derivative denoted Ft and "k stands for conductivity. These

values are clear as

b = (2 +u VJ,
D ot
where T =u(A),
A=L+U

4, Problem Formulation

Let us assume a couple stress liquid flowing on an inclined surface in the form of thin film. The film is assumed
to be of uniform thickness ¢, and the only force moving it is gravity. The geometry of the problem can be seen in

figure 1 below. The assumptions on flow are

V=[u(y),00] W=W¥(y), T=T(y). 4)

Stationary air
Ty =0aty=4§

Thin film

gsin®i

Figure 1: Couple Stress fluid flowing in a thin layer down an inclined plane.

Equation (1) is now satisfied exactly when using equations (4). Additionally, Eq. (2) is reduced to

du  d°u .

— —H———pgsind =0. (5)
dy

n dy?
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The equation (3) becomes

2 2
K (jjy\f + y(i—;j =0. (6)
The linked boundary conditions are

2
At y=0,u=U, 372:0, ¥ =0. (7)

3
A y=1 Moo dU_o d¥_g ®)

dy dy dy

For the non-dimensionalization of the equations, the following non-dimensional parameters are presented.

_ 2 4 2
5 * u *= ‘IJ \PO ’a2= ;Ll5 ’ kng5 Sine, Br= ILIU .
o U Y, -Y, n nJ k(¥,-¥,)

"B, " Represent the Brinkman number. Presenting these values in equation (5 - 8), and removing the “*” one

gets
4 2
d_‘j_azd_‘j:k, 9)
dy dy
2 2
dy dy
2
At y=0,u=1, L¥_0, w-o (11)
X
3
A y=1 M g d—‘j:o, ¥ _y (12)
d y dy

5. Solutions of the Problem

5.1. Exact Solution

The exact result of Eq. (9) is

1 ( —ya (Zezak —2eY¥ok 4 202k —2g2atVa| 4 2eyaky0{2 J]
i . (13)
Jor

U=——-—-—
2(1+e2a +2€2a+yakya2 _eyakyZaZ _eZa+yaky2a2 + Zeyaa4 + 2e2a+yaa4

Now, solve (10) with the appropriate boundary conditions to get the following answer.
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Now, the Optimal Homotopy Asymptotic method (OHAM) is used to determine the estimated answers of
equations (9) and (10) subject to the boundary conditions. However, first we give the basics of the OHAM.

5.2. Basics Phenomena of Optimal Homotopy Asymptotic Method (OHAM)

Supposing that the differential equation is non-linear.

L(¥ (1)) + F () + N ((x)) =0, B(‘I’ ‘L—‘Pj:o. 1)

T

The non-linear operator is represented by N (‘P(r)), the linear operator is denoted by L, the provided

function is F (r), the unknown function is still ‘P(r), and the boundary operator is B.

The Optimal Homotopy Asymptotic Method (OHAM) was utilized to produce the following results.
d‘P(r, I’)
(1- r)[L(\P(r,r))+ F (r))]= H(r)[ L(¥(x.r))+F(t)+N(¥(zr))l, B ‘P(r,r),d— =0. (16)
T
When r=0 (i.e. H (0)=O), the secondary function H (I’) is definitely given. In the same way, for r =0,

it is non-zero. We can express the embedding variable I' € [0,1] as follows:

¥ (1,0)=¥,(1), ¥(t.1)=Y¥(1). 17)
The range of the solution ¥ (1:, I’) is ¥, (’E) and ¥ (r), where r diverges from 0 to 1. By altering r =0 in
Eqg. (15), we can derive ‘¥, (r)

dv
L(‘Po(r))+F(t)=O,B( 5 °j=o (18)
T
The auxiliary function H (r) has the following expression:
H(r)=rc,+r’c,+rc, +... (19)
Since it is necessary to determine the constants in this case, C,,C,,C;,... Eq. (16) can be expressed as
¥Y(t,r.c)= )+ D (o), i=12,... (20)

j=1
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We get the following system by analyzing comparable powers of r and replacing Eq. (20) to Eq. (16).
dv
L(W,(1))=¢,Ny (¥, (7)) B(‘I’l,d—rljzo (21)
j-1
L(¥, (1)-¥ 4 (1) =¢; NO(‘PO(T))+;CK[L(‘PH< (DN (Wo (1), ¥, (7). W14 (D) ]

(22)
B(qf d_‘l’j=o, =12,
dt
In Eq. (22) the term N (‘P (1:), ‘Pl(r) L, (’E)) is the coefficient of '™ in the expansion of
N(¥(z.r.c))= N,y (¥, (1))+ ZN (Yo (1), ¥, (7),... W, (D)r),  k=12,.. (23)

For ‘I’j (r), J >0, the result of Eq. (20) may be simply determined as follows: the convergence is solely
dependent on the constants C;,C,,C;,...; ifitis convergent at r=1, then from Eq. (20) we get
‘P(t Ck Z‘P T, C (24)

21
In common, the result of equation (15) is estimated by

¥ (1, )= Z‘P 1,¢ ), k=12,...n (25)

Eqg. (18) is replaced into Eq. (25) and the residual is attamed.
R(t.c)=L(¥"(r.c,))+F(1)+N(¥"(r.c,)), k=12,..n. (26)
We obtain the exact sqution‘P"(r,Ck), when R(T,Ck)zo, that is, the residual is zero; but, if

R (r, C, ) # 0, that is, We can reduce in the following way if the residual is not zero.

b

J (cl):IRz(w,c,)dx. (27)

a
The unknown constants C,,C,,C,,..., and so on, where a and b are constants based on the problem under
discussion, can be calculated using the criteria..

oJ —=0, 1=12,...,n. (28)
aoc,

Equation (18) can be used to get the approximated answer after we have the values of these constants.
Furthermore, we use the collocation approach to determine the value of the unknown constant C,,C,,Cs,....

5.3. Solution of the Problem by OHAM

Using OHAM, the resulting component equations up to third order and their results are found.

5.3.1. Zero Component Problems

Zero component equations of velocity and temperature, along with the related boundary conditions, are

du
dy*

-k =0, (29)
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dz‘Po:O’
dy?
du
At y=0, u, =1, dy2°=0, ¥, =0,
3
At y=1, %=O, du3020’ d‘{’oz
dy dy dy

5.3.2. First Component Problems

First component equations of velocity and temperature, along with the related boundary conditions, are

4 4 4 2
U [ ) dY | oc (9% )y ke, =0,
dy dy dy dy

2 2 2
d ‘Pl_BrC{duoj d ‘{’O_C{d‘l’oj:O“

dy? dy dy? dy
2
At y=0, U =0, v _, ¥, =0,
dy
3
At y:]_, %:O’ dl’llz()’ dl}ll:
dy dy dy

5.3.3. Second Component Problems

Second component equations of velocity and temperature, along with the related boundary conditions, are

4 4 4 4 2 2
d liz -G d_lil _d_lil_cz ‘ Li C 4 azc av
dy dy dy dy dy dy?

4, op e [dU )04 g duy ) o (47, _d*W,
dy? dy Ndy ) "l dy 1 ody? dy?
2
At y=0, u,=0, ddy‘izzo, ¥, =0,
3
ay=1, Mg dU_, ¥,
dy dy dy

5.3.4. Third Component Problems

Third component equations of velocity and temperature, along with the related boundary conditions, are

4 4 4
d %f _¢, d li d“u, _c, d g» C, d? Li «C, d?y,
dy dy dy* dy dy dy?

(30)

(31

(32)

(33)

(34)

(35)

(36)

j+kC =0, (37)

d*w,
-C 0, (38
3[: dy? j (38)
(38)
(40)
j—Q (41)
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d \}213—28ng % % -BC, % -C, d—\}zl1 _d ‘12’2_C3 d_‘Iz’z
dy dy )\ dy dy dy dy dy (42)

e[ 5[)

d®u,
At y=0, u,=0, ay’ =0, Y, =0, (43)
3
A y=1, Mo, dW_, A%, (44)
dy dy dy

The solutions obtained for these equations by OHAM are cumbersome and we have tabulated these solutions in
table 1 and 2.

6. Shear Stress, Vorticity, Average Velocity, Volumetric Flow Rate

6.1. Shear Stress on Inclined Surface

On inclined surface the shear stress is obtained by

du
Txy |y=0 :u (d_yj |y=0 (45)

Table 1: Residual of velocity ¢ =0.03, k =0.0005, using OHAM technique.
y Uoram Residual Uy, an
0. 1. 0.
0.1 1.0000165794438058 3.618087999306943x10 %
0.2 1.0000326882031383 1.753622898612418 x10 %
0.4 1.0000479014226578 2.580803511165446x10%
0.4 1.000061844239002 8.341289296984732 x107*
0.5 1.0000741917774127 2.441837168256537 x10%°
0.6 1.0000846691488114 4.575301404153307 x107%°
0.7 1.0000930514473263 6.872216529090554 x10~%°
0.8 1.0000991637482664 8.863405699628203x10 %
0.9 1.0001028811065487 1.022494498789048 x107**
1. 1.0001041285555734 1.069379095908554 x10 "
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Table 2: Residual of temperature for  =1.5, k=0.0007, B, =0.01, using OHAM technique.

y Y oiam Residual ¥,

0. 0. —2.182174213833026x10*
0.1 2.00840010999138x10™ —8.42690249038397 x10*
0.2 3.570421770329235x10 ™ 9.60632426661381x107"°
0.4 4.72288942660287 x10 ™ 4.717322111474067 x107"°
0.4 5.520679842799398x10™"  _5.407693254565418x10 %
0.5 6.030112255356151x10™"  _9.921457591023609x10 2
0.6 6.322016366344039x10™"  _4.050920594582972 x10 %
0.7 6.465007880451779x10™"  _1.631096770378001x10 %
0.8 6.519409020719452 10 3.080343052965048x10%
0.9 6.532164647906939x10™"  _1.925779863600017 x10 %

1. 6.533022200484851x10 ™" 0.

By replacing the value we have

T, =u

Table 3: Absolute difference for oz =0.03 ,k = 0.0005, velocity profile and exact solution.

0+5+
3

a
3628800

—0.055797971403916465 + 269.804588954112
(5376 +2176a° ) —0.9989145795294502

(483840 +3916800* +79360a* ) ~179.93485119479615
(8064 ~5.766159412607109x10°° (5376 + 21760 ))

y Uopian Exact,, Absolute difference
0. 1. 1. 6.949996134x10™*
0.1 1.00001657 1.000016579 6.9603648338x10 "
0.2 1.00003268 1.000032688 7.5428216190x10*
0.4 1.000047901 1.000047901 1.2981876316x107"
0.4 1.000061844 1.000061844 1.1038620104x107*
0.5 1.000074191 1.000074191 8.075479304x10™*
0.6 1.000084669 1.000084669 7.5187184494 %10
0.7 1.000093051 1.000093051 2.9990048530x10*
0.8 1.000099163 1.000099163 1.910770803x107*
0.9 1.000102881 1.000102881 4.2930502902x107*
1. 1.000104128 1.000104128 1.5434349761x10°"

(46)
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Table 4: Absolute difference for o =1.5 ,k =0.0007 ,B, =0.01, velocity profile and exact solution.

y [ N Exact,, Absolute difference
0. 0. 1.30369379x10% 0.

0.1 2.008400x107* 6.479863761x10?  1.36041373387x107*

0.2 3.570421x10™" 1.14934354 %10 2.42107822144x10™"

0.3 4.7228894x10™ 1.517090474x10™  3.20579895163x107**

0.4 5.5206798x10™ 1.770141199x107%  3.75053864344x107*

0.5 6.030112x10™* 1.93080387 x1071* 4.09930838062 x10™

0.6 6.322016x10™* 2.02238833x10°1 4.29962802776x10™

0.7 6.465007 x10™* 2 0670554 x 1071 4.39795239607 x10™*
0.8 6.519409x10* 2 0839909 %1071 4.43541802851x107*
0.9 6.5321646x10™* 2 0879525x10"1 4.4442120716x10™

1. 6.533022x107" 2.08821857 x10 4.44480362761x10"

0.0 0.2 0.4 0.6 0.8 1.0
v

Figure 2: Velocity variation at different o keeping kK =0.2.

k=0.2
k=0.4
k=0.6

1151

0.0 0.2 0.4 0.6 0.8 1.0

v

Figure 3: Velocity variation at different K keeping o =0.2.
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Figure 6: Variation at different on temperature ¢ keeping B, = 0.3,k =0.4.
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Figure 7: Variation of shear stress at different o keeping k =0.2.
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y
Figure 8: Variation of shear stress at different kK keeping oz = 0.7.
6.2. Vorticity
The vorticity of the inclined is
_ du ) -
w:VxV:—(— 47)

By putting the value we have

1 1 —
_z—k —k 2 _4 ’ _k 8 _4 2
0=k ky(2(Ary)y+y? )+ k(8 (Y)Y ) o

kyer” (0.0005812288687907965(80y — 24y° +5y* ) + 260.804588954112

(-56(80y —24y° +5y* ) +(-1792y + 448y° - 48y° + 7y° ) &) — 0.9989145795294502

—5040(80y —24y° +5y* ) +180( 1792y + 448y° — 48y° + 7" ) o’
—(65280y —16128y° +1440y° 80y’ +9y" ) o*
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~84(80y — 24y’ +5y*) - 5.766159412607109x 10 °

—179.93485119479615
(—56(80y - 24y3 + 5y4 ) + (_1792y + 448y3 _ 48y5 " 7y6 ) o )

)

1
3628800

+ ker* (0.0005812288687907965( ~96 + 40y” — 6y* +y° )

» 4 o\ [2176-896y ,
+269.804588954112( —56(-96+ 40y —6y* +y° )+ a 48)
+112y* —8y° +y’

2176 —896Y°

—~5040(-96 + 40y” —6y" + y* ) +180 y o
~0.9989145795294502 +112y" -8y° +y’

—(~79360+32640y" — 4032y" +240y° ~10y° + y* ) '
~179.93485119479615(-84(—96 + 40y° —6y* + y° ) -5.766159412607109 x10"°
(-56(-96-+40y ~6y +y*) +(2176-896y" +112y* ~8y" +y")a")).

6.3. Volumetric Flow Rate

Inclined volumetric flow rate is determined by

1
Q= judy. (49)
0
By putting the value we have

Q =1+ & —0.053968253967947744kr® + 0.02186948246473353k o
(OHAM) 15 (50)

—0.008853615192622738kx°.
6.4. Average Velocity

For an inclined problem, the average velocity in dimensional form is provided by

U=

> O

L (51)

The average velocity and flow rate coincide in non-dimensional form, thus

Uoram) = 1+ i—ls( —0.053968253967947744kar” +0.02186948246473353k o

el

(52)
—0.008853615192622738kr°.

7. Results and Discussion

In the current work, we approximated the thin-film flow results using non-isothermal couple stress fluid thin-
film flow on an inclined plane. This problem develops differential equations and associated boundary conditions.
One method for solving non-linear differential equations is the Optimal Homotopy Asymptotic Method (OHAM).

The variation in temperature distribution and velocity profiles due to changed parameters like &,k and B, . Tables 1
and 2 present the velocity profile and temperature distribution OHAM results along with the corresponding problem
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residuals. The absolute difference between the OHAM solution and the exact solutions for velocity and temperature
are displayed in Tables 3 and 4. Figures 2 and 3 show how the values of ¢ and K affect the velocity profile.
Figure 2 shows that the velocity profile and « have an inverse relationship, but Figure 3 shows that K and
velocity have a direct relationship. Figures 4, 5, and 6 show how the parameters Br ,kand o affect the temperature
profiles. There is a direct relationship between U >0 and the temperature profile in Figures 4 and 5, and an
opposite relationship between ¢ and the temperature profile in Figure 6. Figures 7 and 8 show how variables
aand K affect shear stress. Figure 7 shows that shear stress and ¢ have an inverse relationship, but Figure 8
shows that K and shear stress have a direct relationship.

8. Conclusion

This work has used OHAM to study the non-isothermal couple stress fluid thin-film flow on an inclined plane.
An incredible arrangement is produced by calculating the OHAM findings both mathematically and graphically. The
main findings are enumerated below.

) It's crucial to remember that regular stresses don't support a stable couple stress fluid flow.

o In the event that the average velocity, T > O, there will be a net upward flow. Equations (52) provide it.

) A comparable decrease in velocity is observed as parameter ¢ increases.

) The increases in parameter K cause spikes in velocity.

o With a surge in the Brinkman number B, and K the temperature rises
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