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Abstract 

The reflection of harmonic waves, like sound or light, has diverse 

applications, including sonar for object location, understanding seismic waves 

in geophysics, and even in the human eye's ability to see. The reflection of 

plane waves with constant material properties is available in existing 

literature, but very little attention has been given to the temperature-

dependent modulus of elasticity. A novel model is proposed to study the 

propagation of harmonic plane waves through a nonlocal micropolar medium 

with temperature-dependent material properties. The influence of 

nonlocality, rotation effects, and the constant magnetic field is also taken into 

account.  The precise formulations of the field quantities are presented and 

examined using the normal mode approach. The phase lag (TPL) theory is 

applied to model and solve the governing equations. The effects of rotation, 

temperature-dependent constants, and the nonlocality parameter on the 

different physical quantities have been examined and displayed graphically. 

Energy ratios are also computed by using the amplitude ratios. It is concluded 

that in a nonlocal, rotating, micropolar medium, reflection of harmonic waves 

provides four coupled quasi-waves, namely, quasi-transverse, quasi-

longitudinal, quasi-micro rotational, and quasi-thermal, with different speeds, 

and the energy ratios and reflection coefficients are affected by nonlocal 

parameters, rotation, and micropolarity. 
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1. Introduction 

 The reflection of harmonic waves is very significant in seismology, earthquake engineering, etc. Many 

authors [1-3] have examined the reflection of plane waves with constant material properties. But little 

attention has been given to the temperature-dependent modulus of elasticity. Othman and Song [4] 
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deliberated the reflection of P and SV waves with temperature-dependent material properties. Sheoran et al. 

[5] discussed the propagation of thermo-viscoelastic waves whose material properties are dependent on 

temperature. Ma and He [6] studied the non-local effect and variable properties of the thermoelastic wave. 

Khan et al. [7] observed the effect of temperature-dependent material parameters on the reflection and 

transmission of thermoelastic waves. Abo-Dhahab et al. [8] considered the reflection of plane wave with 

temperature-dependent physical parameters. Ailawalia and Sharma [9] used the numerical and analytical 

approach to discuss the solution of plane wave with temperature-dependent physical parameters. 

 In classical continuum mechanics, the elasticity of the medium is based on linear stress-strain law, 

which is unable to explain the microstructural behavior of the medium. Eringen [10] proposed a theory that 

is based on microstructural motion. Micropolar theory is more suitable to explain the behavior of 

fibreglass, polycrystalline material, solid propellant, etc. Eringen and Edelen [11] proposed the nonlocal 

elasticity theories, featuring nonlocality residuals of fields like internal energy, mass, entropy, etc. These 

residuals were determined, together with the constitutive laws, using appropriate thermodynamic 

limitations. They contributed to the development of these nonlocal elasticity theories. These theories are 

concerned with materials whose action at any given point is affected by the state of all points within the 

body [12, 13]. Kakkal et al. [14] explored the reflection of plane waves in a rotating transversely isotropic 

with nonlocal fiber-reinforced. Vin and Tuan [15] discussed the harmonic wave in a micropolar medium.  

 The classical theory of thermos-elasticity makes use of the thermal wave's infinite velocity. Although this 

assumption is an inadequate approximation in practice, it may be helpful for many technical challenges. 

Some investigations show that the thermal waves have a finite speed; hence, generalized thermo-elastic 

theories involve hyperbolic-type governing equations that are used to eliminate this discrepancy [16, 17]. The 

LS and GL theories have been used to understand the interaction between mechanical and thermal properties 

of elastic materials. In 1995, Tzou [18] introduced a dual-phase lag (DPL) theory in which a macroscopic 

delay response between the heat flux vector and the temperature gradient is possible. This model proposes to 

replace the Fourier's law with an approximation of a modified law that has two distinct translations for the 

temperature gradient and the heat flux vector. Further, Chandrasekharaiah [19] gave a brief review on 

different hyperbolic thermoelastic models. Khan and Tanveer [20] discussed the reflection and transmission 

of SV waves under DPL theory. Few core studies on rotation, micropolar medium, and temperature 

dependent elasticity and MHD can be found in [21-37]. 

 Up until now, all of the studies have focused on the independent impacts of rotation, temperature-

dependent elastic material, or nonlocality, or on only one or two of these factors at a time, but in this article, 

we take the combined effects to extend the previous studies. The current study accounts for temperature-

dependent moduli implications on MHD nonlocal micropolar medium under the influence of TPL theory. 

The governing system of partial differential equations has been remodeled into ordinary differential 

equations by normal mode analysis. 

 

2. Mathematical Modelling 

 

Let us consider the Cartesian coordinate system  with -axis is pointing vertically downward. Consider 

the isotropic, homogeneous, nonlocal micropolar thermoelastic medium which is rotating with angular 

velocity . A constant magnetic field is applied in the  direction as 

shown in Fig. 1. 

The basic equations of nonlocal micropolar thermos-elasticity under three phase lag theory is as follows: 

                     (1) 

where  is the Lorentz force: 

,               (2) 

which is computed by using these as follow: 

                     (3) 

The component form of Eq. (2) is written as: 

           (4) 
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Fig. 1.  Geometry of the problem 

 

 

The couple stress equation of motion and the constitutive relations are given by: 

             (5) 

         (6) 

             (7) 

where  is the micro-rotation vector. 

The heat equation under three phase lag theory is as follows: 

         (8) 

where the thermal displacement gradient is .         

                                                                                            (9)     

                      (10) 

where  the specific entropy and  the heat flux vector. 

Using Eq. (8) through Eq. (10) one can get: 

        (11) 

where  

 the thermal conductivity,  the thermal expansion coefficient,  the material characteristic,  the 

specific heat,  are three phase-lag parameters. 

We assume that all material parameters are function of temperature as follows: 
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                               (12) 

where  

 is a non-dimensional function of temperature and is the empirical material constant.   When 

, the material properties are independent of temperature. 

The stress component can be represented by considering constitutive relations as: 

      (13) 

      (14) 

      (15) 

         (16) 

         (17) 

The component form of Eqs. (1), (5) and (11) are 

      (18) 

        (19) 

                                          (20)                                              

          (21) 

The following non dimensional variables are introduced as follow: 

  

 .        (22) 

The potential functions  and  are defined as: 

                                                                         (23)              

where  and  are scalar and vector potential functions to explain the dilatational and transverse part of the 

displacement vector. 

Using Eqs. (22) and (23) into Eqs. (13) to (21), we get the following set of coupled partial differential 

equations: 

                                                       (24)     

                                       (25)  

                                                                                            (26)   

                            (27)  

           (28)  

                                                                             (29)  



Journal of Computational Applied Mechanics 2025, 56(2): 331-344 335 

                                                                        (30) 

Where 

  

3. Solutions of the problem 

A harmonic wave is propagated in the  plane making an angle  with -axis. We consider the 

solution of Eqs. (27)-(30) as follows: 

                 (31) 

 

where  is the angular frequency, defined as ,  and  are the wave number and phase velocity 

respectively. 

 

Using Eq. (31) into Eqs. (27)-(30), we get system of four coupled homogeneous equations 

                                                                             (32) 

                                                              (33)  

                                                                                                     (34)  

                                                                                                           (35)  

where  

  

  

  

 

The nontrivial solution for the system of Eqs. (32)-(35) is 

                                                                                                  (36)      

where 
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Eq. (36) with complex coefficient is biquadratic in 2. The roots are complex in nature so the propagation 

velocity is  where in the subscript  and  represent the real and imaginary 

components respectively. 

4. Results and discussion 

This section consists of further three subsections namely to describe (i) Reflection phenomenon, (ii) 

energy partition and (iii) graphical illustrations. 

 

4.1 Reflection phenomenon 

In this section, we will examine the reflection phenomena that occurs when a longitudinal wave 

moving with velocity  making an angle  with normal. The incoming coupled longitudinal wave 

generates four reflected coupled plane waves with speeds V1, V2, V3 and V4 at angles , ,  and  

respectively, with the normal. 

The incident and reflected waves, may be expressed as: 

                                         (37)   

where corresponding to amplitude , the phase factor at angle  of the incident wave is 

                       (38)   

and with the amplitude , the phase factor at angle  of the reflected wave is 

                      (39)   

The coupling parameters  and  are given below 

                                   (40) 

          

The following are the boundary conditions defined at the free surface: 

Normal stress, tangential stress, coupled stress, and temperature is zero at free surface 

                                (41)  

If and only if , and Snell's law holds, then these boundary conditions are 

identically satisfied. 

 

                                                (42) 

It is also known as (modified Snell's law). 

                                                                                        (43)  

We observe from Snell's law (42) that , the additional reflection angles are dependent on phase 

velocities  and  

Using Eq. (37) into boundary conditions (38)- (41), we get the four nonhomogeneous system of equations. 

                                                                                                                         (44)  

Where  indicate reflection coefficients (ratio of the reflected wave's 

amplitude to the incident wave's amplitude). The expressions for  and  are as follows: 
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4.2 Energy partition 

The energy partitioning is used to verify the analytical expression of amplitude ratios. The energy flux is 

denoted by P can be calculated. The energy transmission is given by 

.                                                                                                 (45) 

The average energy transmission per unit surface area per unit time is symbolized by P, which stands for the 

time average of P over a period. The energy ratios  of the different reflected waves are determined by 

dividing the energy of the incident wave by the energy of the reflected coupled waves. 

For reflected waves, the energy ratios  are defined as below: 

                                                                                                               (46) 

Where 

                                                                                                              (47) 

 

 

 
 

4.3 Graphical illustrations  

For graphical simulation, the following numerical values of various physical constants as given in [38, 

39] are utilized.  

  

   

 

  

We have find the energy ratios and reflection coefficients corresponding to the angle of incidence. 

Fig. (2) analyze the effect of nonlocal material. The amplitude ratio of |Z2| to |Z4| shows decrement as 
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increasing the values  of while the amplitude ratio of |Z1| depicts increment. For  all values of , the 

reflection coefficients shows the regular pattern of fluctuation. Fig. (3) shows the behavior of angular 

velocity Ω. It demonstrates that |Z1| to |Z3| decreases as increasing the values of Ω, while |Z4| shows 

increment before  after  no noticeable change is observed. The pattern of fluctuation is 

apparent in all reflection    coefficients. Fig. (4) demonstrates the effect of micropolar parameter. The 

amplitude ratio of |Z1| shows increment as increasing the values of K while the amplitude ratio of |Z2| and |Z3| 

depicts decrement. No noticeable impact is seen on |Z4|. Fig. (5) demonstrates the behavior of temperature 

dependence . The profile of amplitude ratios Zi (i= 1, 2, 3, 4) are decreasing by increasing in the 

temperature dependence parameter . Fig. (6) demonstrates energy ratios  (n = 1, 2, 3, 4) of several waves 

and their sum at speed V1. I and II shows value of sum and , both are nearly equals to 1. The curve of 

energy ratios III, IV and V are shown in the Fig. (6) after multiplying by 105, 103 and 103 respectively. The 

amplitude ratio of |Z1|, |Z2| and |Z3| are very small, that's why the profile of energy ratios is also very small. 

Sum of all the energy ratios is equals to unity implies that no loss of energy takes place. 

  
 

Fig. 2: The influence of nonlocality |Zn| (n = 1, 2, 3, 4) 

with angle of incidence. 
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Fig. 3: The influence of rotation |Zn| (n = 1, 2, 3, 4) with angle of incidence. 
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Fig. 4: The influence of micropolar constant |Zn| (n = 1, 2, 3, 4) with angle of incidence. 

 

1. Conclusion 

Above examination concludes that the angular velocity decreases the amplitude ratios of |Z1|, |Z2| and |Z3| while 

increase the amplitude ratio of |Z4|. All amplitude ratios are significantly impacted by the micropolar constant. The 

temperature dependent constant decreases the amplitude ratios of |Z1|, |Z2| and |Z3| while increase the amplitude ratio of 

|Z4|. The majority of incident energy waves travel along the reflected wave with reflection coefficient |Z1|. 

According to the above analysis the fastest wave is couple longitudinal wave. Above investigation propose that there 

is no energy loss as the sum of all the energy ratios is equals to unity. This demonstrates that lack of energy dissipation at 

free surface during reflection phenomenon. Hence at each angle of incidence law of energy balance has been confirmed. 
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Fig. 5: The influence of temperature dependent constant |Zn| (n = 1, 2, 3, 4) with angle of incidence. 
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Fig. 6: Energy ratios profile against angle of incidence. 
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