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Abstract 

This paper presents the bending analysis of two-dimensionally functionally 

graded (2D FG) nano-beams using a physics-informed neural network 

(PINN) approach. The material properties of the nanobeams vary along 

their length and thickness directions, governed by a power-law function. 

Hamilton's principle, combined with the nonlocal strain gradient theory 

(NSGT) and Euler-Bernoulli beam theory, is employed to derive the 

governing equation for the bending analysis of 2D FG nanobeams. Due to 

the incorporation of size dependency and the variation of material properties 

in two dimensions, the governing equation becomes a high-order variable-

coefficient differential equation, which is challenging, if not impossible, to 

solve analytically. In this study, the applicability of PINN for solving such 

high-order complex differential equations is investigated, with potential 

applications in nanomechanical engineering. In the PINN approach, a deep 

feedforward neural network is utilized to predict the mechanical response of 

the beam. Spatial coordinates serve as inputs, and a loss function is 

formulated based on the governing equation and boundary conditions of the 

problem. This loss function is minimized through the training process of the 

neural network. The accuracy of the PINN results is validated by comparing 

them with available reference solutions. Additionally, the effects of material 

distribution, power-law index (in both length and thickness directions), 

nonlocal strain gradient parameters, and material length scale parameters 

are investigated. This study demonstrates the versatility of the PINN 

approach as a robust tool for solving high-order differential equations in 

structural mechanics. 

Keywords: Physics informed neural networks; Two-dimensional FG nano-beams; Bending analysis; 

Nonlocal strain gradient theory. 

 

1. Introduction  

Heterogeneous materials and their applications in various engineering aspects have a relatively long history. 
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Mechanical response of these materials in practice can be determined based on their governing partial differential 

equations. Functionally graded materials (FGMs) constitute a novel category of heterogeneous materials 

characterized by their mechanical properties continuously varying across the domain. The micro-structures of the 

FG materials gradually shift from one material to another incorporating a specific gradient that serves to mitigate 

stress and strain concentration [1]. The impact of size-dependency on mechanical behavior in micro/nano systems is 

notable, as it requires that the stress field at a specific point is affected by both local and global strains. Micro-scaled 

functionally graded materials are commonly applied in NEMS and MEMS, highlighting the significance of 

understanding the static and dynamic behaviors of small-scale structures. Some of mechanical behaviors of nano 

nano FGM structures literature is reviewed:  Arabzadeh-Ziari et al. [2] studied the investigate deflection, buckling 

and vibration for a five-layer sandwich nanocomposite beam, with reinforcements of graphene platelets (GPLs) and 

shape memory alloys (SMAs), and a foam core using third order shear deformation beam theory and resulted that by 

increasing the volume fraction of GPL from 0 to 0.03, the deflection of the beam decreases by 44%. Monajemi et al. 

[3] analyses the dynamic response of spinning nanocomposite sandwich cylindrical shells with a magnetorheological 

elastomer (MRE) core, reinforced by functionally graded polymeric laminates (FG GPLs). It considers the effects of 

thermomechanical loading, residual stress, spinning speed, and material properties on the shell's behavior using 

DQM methodology. Shirdelan et al. [4] employs the fourth-order shear deformation theory to model the control 

vibration of a micro-composite sandwich shell. The results demonstrate that the honeycomb core effectively reduces 

vibrations, and the distribution of graphene has a significant effect on the natural frequencies. 

Mohammadimehr [5] examines the vibration behaviour of Timoshenko sandwich beams with porous cores and 

functionally graded facesheets. Combining nonlocal stress and strain elasticity concepts, the analysis explores their 

effects at micro/nano scales. The findings demonstrate that natural frequency decreases with higher nonlocal stress 

parameters and increases with higher nonlocal strain parameters, impacting beam stiffness. 

 

There are two prominent theories in the literature to consider size-dependency in structures; i.e. nonlocal 

elasticity and strain gradient models [6]. For instance, Nejad et al. [7] examined the buckling behavior of a two-

directional FG Euler–Bernoulli nano-beam by nonlocal elasticity theory. Their findings underscored the substantial 

impact of nonlocality on the mechanical properties of micro-FG beams. Similarly, Reddy et al. [8] explored bending, 

buckling, vibration and related issues in FG Euler–Bernoulli and Timoshenko beams, employing the modified 

version of couple stress theory. Nonlocal strain gradient (NSG) models have been utilized to explore the size-

dependent effects on various phenomena such as bending, buckling, wave propagation, vibration and behaviors 

observed in small-scale structures [9-11]. Based on this theorem, stress in small scaled materials is affected by both 

the nonlocal stress field and the strain gradient stress field [12]. Li et al. [13, 14] studied bending, buckling and free 

vibration behavior of structures made of FG materials (variation through thickness) and investigated the size-

dependent effects on their behavior. Most of the available research is focused on FG beams with properties varying 

through-thickness [11]. However, FG structures with material properties varying in two or three dimensions perform 

more effectively than conventional one-directional FG structures. This is because their material properties can be 

tailored in multiple directions to achieve specific goals. In such cases, the coefficients of the governing differential 

equations are no longer constant; they depend on spatial coordinates, making the equations more complex. Finding 

an analytical solution for this type of differential equation is challenging, if not impossible. Therefore, employing an 

appropriate numerical technique such as Generalized Differential Quadrature (GDQ), finite element, or finite 

difference (FDM) methods is crucial. However, these well-known numerical methods have inherent limitations. For 

example, while FDM [15] is effective for solving strong-form differential equations, it may be constrained by 

complex geometries, or GDQ, though robust, can encounter stability issues when dealing with intricate geometries 

[16]. 

In recent years, a variety of data-driven, deep learning and neural networks methodologies have been utilized to 

address governing differential equations across diverse domains including engineering, sociology, speech 

recognition and image processing. A notable data-driven and mesh-free technique known as PINN [17, 18], is a 

specialized subset of deep learning algorithms designed specifically for solving ordinary differential equations 

(ODEs) and partial differential equations (PDEs). By minimizing a loss function within a PINN, solutions to ODEs 

and PDEs are approximated through the utilization of neural networks (NN). PINNs have been successfully used for 

solving Burger's equation, Navier–Stokes equation [19], Cahn–Hilliard and Allen–Cahn equation [20] and the results 

were quite satisfying. For example, Haghighat et al. [21] figured out that PINN is compatible with FEM using results 

of a two-dimensional linear elasticity problems. Wu et al. [22] studied elastoplasticity issues using PINN within a 

heterogeneous medium exposed to random fatigue cyclic loadings. However, there are a few studies in literature that 

used PINN for structural analysis. For instance, Fallah et al. [1] used PINN to solve bending, free vibration of a 3D 

FGM porous beam resting on elastic foundation and the network hyper-parameters are tuned by a systematic 

optimization procedure by using Taguchi design of experiments combined with grey relational analysis. Bazmara et 
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al. [23] also utilized PINN to investigate nonlinear bending of 3D functionally graded beams and resulted that PINN 

is 71 times faster than GDQM. Zhuang and colleagues [24] employed the PINN in the energy method to analyze 

various characteristics of Kirchhoff plates in which a novel activation function ensures continuity and stability. 

Implemented in PyTorch with transfer learning, DAEM demonstrates efficient and accurate performance across 

various geometries, loads, and boundary conditions. Kianian et al. [25] investigated the linear bending of nano-beam 

on nonlinear elastic foundation combining Euler–Bernoulli beam theory and Eringen’s nonlocal continuum theory, 

Results validate the accuracy and efficiency of PINNs through comparisons with existing literature. Recently, Es-

haghi et. al [26] introduced a framework, named DeepNetBeam (DNB), based on different form of PINN for the 

analysis of functionally graded (FG) porous beams. The findings suggest that PINN is suitable for solving 

differential equations in structural engineering and nano mechanics and its predictions align closely with FE results.  

 

In this study, the bending behavior of a 2D FG nanobeam is analyzed using the PINN method. The material 

properties are assumed to vary bidirectionally, along with both the length and thickness of the beam. Size 

dependency, a key characteristic observed in nanostructures, is incorporated into the model using the nonlocal strain 

gradient theory. The governing equation for the bending of size-dependent 2D FG beams is derived using 

Hamilton's principle in conjunction with the Euler-Bernoulli beam theory. The inclusion of size dependency and 

bidirectional material variation results in a high-order differential equation with variable coefficients, which is 

generally challenging, if not impossible, to solve analytically. In such cases, numerical techniques become 

indispensable. 

PINN has recently demonstrated significant potential in solving various types of differential equations across 

diverse applications. In this study, the applicability of PINN for solving the high-order variable-coefficient 

differential equations encountered in structural nano-mechanics is explored. In the PINN framework, a neural 

network is employed to predict the beam’s deflection, with its parameters optimized through the minimization of a 

loss function. The physics of the problem, represented by the governing equation and corresponding boundary 

conditions, is embedded into this loss function.  

The accuracy of PINN predictions is validated through comparisons with analytical and numerical reference 

solutions. The results reveal that PINN can accurately predict the bending behavior of 2D FG beams under various 

loading scenarios and boundary conditions. The study also investigates the effects of material variability, different 

loading conditions, length scale parameters, and nonlocal effects. These findings have significant implications for 

the design and analysis of functionally graded nanobeams in engineering applications such as nano-structural 

components, sensors, and actuators, where high sensitivity and optimal performance are critical. The developed 

PINN framework demonstrates its potential as a robust tool for addressing complex bending problems in materials 

with spatially varying properties. 

2. Mathematical modelling  

2.1. Two dimensional Functionally Graded Beam 

Figure 1 shows a size-dependent two-dimensional FG beam with geometric parameters, width b, thickness h and 

length L.  

 

 

Figure 1. Schematic figure of Two dimensionally FG nanobeam 

The material properties of the nano-beam are assumed to vary continuously along its length and thickness based 

on a power-law distribution. The Euler-Bernoulli theory of beams is assumed. In this study small deformation theory 
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is applied, implying that the analysis does not account for geometric nonlinearities. Axial displacement deformations 

are neglected in further explanation of this chapter. This study is limited to 2D FGM nano-beam, despite the 

literature which is mostly 1d FGM through length. However, 3d effects or complex geometries is neglected. 

The FG beam is composed of two distinct materials, i.e. metal and ceramic and the effective material properties, 

such as Young's modulus (E) and density (ρ), vary continuously along the length and thickness of the beam in 

accordance with the rule of mixture as [27, 28]: 
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where m and c sub index represent the metal and ceramic material, respectively. Moreover, non-negative 

parameters k,   serve as the power-law index, characterizing the material variation profile across the length and 

thickness and indicating microstructure of the 2D FG nano-beam. Power law indices, k and  , directly influence 

both modulus of elasticity and density of the beam. Figure 2 and Figure 3 show the effects of power low indices on 

the variations of Young’s modulus and density across the dimensionless length ( x
X

L
=

) and thickness ( z
Z

h
= ) of the 

beam. As shown in the following figures, properties of the beam start from ceramic part (
cE E=  and 

c =   ) at left-

bottom corner and gradually changes to metal at top-right corner.  

 

Based on the Euler-Bernoulli beam theory, one may consider displacement fields as: 
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Here U, V, W represent displacement components along the x; y and z directions, respectively and u and w are 

the axial and transverse displacement of a point on the center line of the beam. Consequently, the non-zero linear 

strains can be written as [27]: 
2
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Figure 2.Variation of modulus of elasticity vs. dimensionless length and thickness for various power low indices 
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Figure 3. Variation of density vs. dimensionless length and thickness for various power low indices 

2.2. Nonlocal Strain Gradient Theory 

In order to include size dependency into classical elasticity theory, various theories have been proposed by 

researchers. Among these theories, one may refer to the nonlocal strain gradient theory in which a combination of 

the effects of strain gradients and nonlocal interactions is considered. Based on this theory, the total stress can be 

expressed as [29]:  
(1)

xx
xx xx

d
t

dx


= −  

 
(4) 

in which 
xx denotes classical stress term and 

(1)

xx refers to the higher-order stress as: 
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where l is the material length scale parameter and shows the importance of strain gradient stress field [30], ea is 

the nonlocal parameter, L is the length of the beam and the nonlocal kernel function ( , , )x x ea  satisfies the 

conditions developed by Eringen [6]. For the sake of simplicity, Li et al [27] suggested that instead of Eqs. (5) and 

(6), the differential form of the equations can be used as: 
2 2(1 ( ) ) ( , )xx xxea E x z  − =  (7) 

2 2 (1) 2

,(1 ( ) ) ( , )xx xx xea l E x z  − =  (8) 

Combining Eqs. (4), (7) and (8), one can rewrite the total stress relation based on the nonlocal strain gradient 

theory as:  

 

 
2 2 2(1 ( ) ) ( , ) .( ( , ) )xx xx xxea t E x z l E x z   − = −  (9) 

 

 

It should be noted that Eq. (9) can be divided into two case studies; l = 0 and ea = 0 which respectively 

represents nonlocal continuum theory and strain gradient theory [31]. 

2.3. Governing equations  

Considering the Euler–Bernoulli and the nonlocal strain gradient theories together with Hamilton’s principle 
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within the two dimensional domain of the beam; 0 < x < L and
2 2

h h
z−   , one can derive the governing equations 

for the 2D FG nano-beams as [27]: 
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 (11) 

where q and f are the applied external distributed load in transverse and axial direction, respectively and N  

denotes the axial compressive force. The xxN is axial force resultant,
xxM is the bending moment resultant. 

Considering the Eq. (9) and the equilibrium equations, after some mathematical simplifications, it is possible to 

derive force and bending moment resultants of the FG beam as: 
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The procedure to obtain Eqs. (12) and (13) is obtained in Appendix A In which stiffness coefficients are defined 

as:  
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Where
11( )A x is tension-compression stiffness, 

11( )B x is tension-bending coupling term, 11( )D x is the bending 

stiffness. It should be noted that all these coefficients are functions of x and vary along the beam length. By 

substitution of the xxN and
xxM resultants into the equilibrium Eqs. (10) and (11),the governing equations for the 

size-dependent 2D FG beams based on the nonlocal strain gradient theory can be derived as: 
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The process for obtaining Eqs. (15) and (16) is outlined in  Appendix B. The Eqs. (15) and (16) are two coupled 

partial differential equations with variable coefficients which is the most general form of governing equation for a 

size dependent beam. It is possible to reach to the governing equation for special cases by simplifying this equation. 

For instance, by letting ea=l=0, the governing equation for 2D FG beam based the classical theory is obtained as:   
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Moreover, assuming that the material properties are homogeneous, the governing equation for homogeneous 

beam based on the nonlocal strain gradient theory can be obtained as: 
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Since the material properties are not uniform in the z direction, the axial-bending coupling term,
11( )B x is not 

zero resulting the axial and transvers deflection to be coupled, despite the homogeneous case. It is possible to shift 

the reference line from the center line of the beam to the physical neutral axis to decouple these deformations. To 

this end, one may use the method suggested by Abrate [32] and Luo [33] to define reference point as z z = + , 
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(22) 

 

In this new form, the deformations in the transvers and axial directions are decoupled and can be investigated 

separately. It is known that in the bending of beams, the axial displacement is negligible compared to the transverse 

displacement [34, 35], thus in continue only the transvers displacement is considered and studied.  

The bending moment resultant is also reducing to: 
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For the sake of generality, the following dimensionless parameters are defined as:  
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In which
00 0 cD I E= . The non-dimensional form of governing transverse equation of 2D FG beam based on the 

nonlocal-strain gradient theory can be written as:  
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The dimensionless bending moment resultant is also derived as: 

2 4 3
2 2 11

11 112 4 3xx

W W d W
m q d d

XX X X
=  

      − + +
    

 

 

(26) 

Utilizing the nonlocal strain gradient theory may lead to insufficiencies in conventional boundary conditions due 

to the higher order of the differential equations.  

Consequently, an additional boundary condition known as the non-classical boundary condition is introduced for 

use in nonlocal strain gradient models as [23]:  
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Table 1 provides other well-known conventional boundary conditions for free, simply supported and clamped 

edges. 

Table 1. Different types of classical boundary conditions 

Type of boundary condition Constrained items Number 
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Simply supported edge 0, 0xxW m= =  
(30) 

 

3. Solution methodology  

It should be noted that the Eq. (25) is a variable coefficient differential equation that, in general, is difficult, if 

not impossible, to solve analytically. Thus, application of the numerical method for solution of this equation seems 

necessary. 

In this study, the recently developed PINN, which is a mesh-free computational method, is employed for solving 

the governing differential equations. PINN uses unsupervised deep learning techniques to generate solutions by 

training a neural network on random data points within the domain mainly to approximate the governing ordinary or 

partial differential equation. It should be noted that PINN does not need any labeled data. Raissi et al. [36] have 

demonstrated the effectiveness of the PINN approach in tackling nonlinear partial differential equations such as the 

Burgers, Schrödinger and Allen-Cahn equations. Besides that, results of limited available studies in the literature 

proved the applicability of PINN for structural analysis of beams and plates [1, 37, 38]. 

The general form of the time-independent differential equation and boundary conditions on the domain can be 

considered as [1]: 
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B u x B x u

x x x x x x

    
= = 

      
,        on   

(32) 

 

in which D is a linear or nonlinear differential operator, u(xi) is the solution function to the PDE/ODE and xi is 

the general framework coordinates. Bk is the set of general boundary operator and ∂Ω is the domain's boundary 

which can be formed as combinations of any boundary condition such as Neumann, Dirichlet and Mixed BCs.  

Based on the universal approximation theorem, a feedforward neural network with one single hidden layer is 

enough to approximate any continuous function [39]. For complex and nonlinear functions, the number of neurons of 

that hidden layer should be increased to capture the whole feature of the considered function. Another approach 

called deep neural network (DNN) uses more hidden layers with fewer neurons instead of just one hidden layer with 

a high number of neurons [40, 41]. Based on the general idea of PINN, the unknown variable i.e. u(xi) is 

approximated by a neural network as: 

( ) ( ; , ) ( ; , ) : in outd dLu x u x W b x W b = →  (33) 

where N is an L-layer DNN (of L-1 hidden layer) with input vector x, output vector u and W, b are network 

parameters which are called weight matrix and bias vector, respectively. The number of neurons in the input layer, 

output layer and ith hidden layer are designed as din, dout and Nni, respectively. Various subsets of DNNs include 
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feedforward networks, convolutional neural networks and recurrent neural networks. Prior research has shown that 

feedforward neural networks (FFNN) are effective in solving PDEs/ODEs [42]. Feedforward neural network means 

that it is not a loop and its fully connected, in other words, every neuron is connected to the next one [39] and the 

data for each layer is derived from the preceding layer according to the nested equation employed in the feedforward 

neural network: 

( )1. , 1,...,i i i i iz W z b i L −= + =  
(34) 

At i=0, z0≡x is the model’s input and at i=L, zL≡u which is the model's output. Wi and bi as mentioned 

previously pertain to the weights matrix and biases vector of the ith layer, respectively. The activation function 

denoted by σ plays a crucial role in connecting the input and output of each layer, various activation functions are 

used like: Swish, logistic sigmoid, Exponential Linear Unit (ELU), the (tanh) hyperbolic tangent, Adaptive 

Piecewise Linear (APL) and the rectified linear unit [42]. In this investigation, the hyperbolic tangent (tanh) is used 

as activation function. 

The next step involves computing the derivatives of the network outputs with respect to the network inputs. In 

the context of PINNs, the input parameters—specifically the spatial coordinates in Cartesian coordinates—carry 

physical implication. Consequently, differentiating the network output with respect to these input variables also 

carries physical implications. Unlike traditional DNNs, where derivatives pertain to network parameters such as 

weights and biases during training, PINNs utilize automatic differentiation (AD), also known as algorithmic 

differentiation, to compute derivatives with respect to input parameters. AD has been increasingly integrated into 

various machine learning frameworks such as TensorFlow [43], PyTorch [44], Theano [45] and MXNet [46]. The 

subsequent step in PINNs involves training the network parameters by minimizing a suitable loss function that 

incorporates the underlying physics of the problem domain. 

 

3.1. Training procedure and hyper parameters  

In order to train the model, a group of random training points (xt) inside the domain (xd) and boundary (xb) are 

needed. Unlike other types of neural networks, PINN does not require enormous set of data and only spatial 

coordinates of training points are enough [1]. To train the NN, the mean squared error (MSE) loss must be 

minimized:  

( ; , ) ( ; , ) ( ; , )t D D d b b bL x W b L x W b L x W b = +  
 

(35) 

Where LD and Lb are the loss functions corresponding to the governing differential equation and boundary 

conditions, respectively and defined as:  
2

2 2

1 1 1 1

2

1
( ; , ) ; ,..., ; ,...,

1
( ; , ) ( , )

d

b

D d d

x xd d d

b b

x xb

u u u u
L x W b D x

x x x x x x x

L x W b B u x
x





    
=         

=





 (36) 

and ωD and ωb are the weights related to domain and boundary loss functions, respectively. In this study, weights 

for PDE and boundary conditions are considered equal. The outcome of the training process is the set of model 

parameters that minimize the loss function. Figure 4 shows the schematic of the PINN algorithm used for the 

solution of governing equation. Due to the nonlinearity and non-convexity of the defined loss function with respect 

to the model parameters, it is advisable to employ a gradient-based optimizer such as the Adam optimization scheme 

to minimize the loss function [1, 47].  
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Figure 4. Schematic of PINN framework for solution of governing equation 

In PINNs, the solution process involves tackling a nonconvex optimization problem rather than solving a system 

of algebraic or differential equations, which is typical in conventional numerical methods. Consequently, there is no 

guarantee of unique solutions [42]. To address this challenge, careful tuning of the model's hyper parameters is 

crucial.  In this study following parameters employed:  

• Hidden layer’s neurons (Nni): Nni =18 

• Hidden layer’s number (NH): NH =3 

• learning rate (LR): LR =0.001 

• activation function: tanh (hyperbolic tangent) 

• Optimization method: Adam  

• number of training points inside the domain (ND) and on boundary: ND =100 

Increasing the Nni, ND and epochs improves the accuracy of the results and required computational efforts and 

simulation time. Among available software packages for implementation of the PINN, in this study DeepXDE [42] 

as an easy-to-use PINN software package is employed. 

4. Result and discussion 

The results of bending analysis of two dimensionally FG nano-beams based on the nonlocal strain gradient 

theory are discussed in this section and the effects of material distribution and also the size dependency is 

investigated. The material parameters are extracted from Li et al. [27] to ease the comparison and validation process. 

In all examples, the nano-beam with following dimensional parameters is considered: 
617.6 10 ( )h m −= , 2b h= , 30L h=  

 

Table 2-Material’s property 
Materials Young’s Modulus E (GPa) Mass density ρ (kg/m3) 

Steel (metal) 210 7800 

Al2O3 (ceramic) 390 3960 

5. As the first validation attempt, Figure 5 shows the homogenous clamped-clamped beam deflection with 

various ζ values under uniform distributed load ( 10q = ). It is obvious that, PINN’s prediction agrees well 

with the exact solution. Moreover, results showed that the size dependency have important effect on the 

maximum deflections of the beam and by increasing material length scale parameter ζ, the maximum 

deflection decreases thus the bending stiffness of FG beams increases. 
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Figure 5. Dimensionless Homogenous beam deflection under uniform distributed load with clamped-clamped boundary 

condition for different values of material length scale parameter ζ , = q   

In another example, Figure 6 shows the simply supported homogenous beam deflection for various ζ values 

under sinusoidal distributed load. Figure 7.a-d show the corresponding loss function value for each ζ. The same fact 

is indicated that by increasing the length scale parameter the deflection is decreasing no matter what kind of 

distributed load is on the beam. Furthermore, the results from PINNs consistently demonstrate strong agreement 

with the exact solution, with the loss function decreasing rapidly to a small value. This rapid decrease indicates that 

PINNs can converge to an accurate solution after enough training iterations. 

 

Figure 6. Deflection of homogenous beam under sinusoidal load with simply supported - simply supported boundary 
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condition for different values of ζ, ( 10sin( )q x=  ). 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 7. a) Loss function value for ζ=0.09, b) loss function value for ζ=0.07, c) loss function value for ζ=0.03, and d) loss 

function value for ζ=0.01. 

Figure 8 shows the effect of nonlocality (τ) on deflection of homogenous beam under sinusoidal distributed load 

10sin( )q x=   with simply supported boundary condition. The results include the exact solution for comparison, 

showing good agreement with the predictions from PINNs. Consistent with prior studies, increasing the nonlocal effect 

renders the beam more compliant, leading to an increase in maximum deflection. 
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Figure 8. Deflection of homogenous beam under sinusoidal load with simply supported - simply supported boundary condition for 

different values of τ ( ζ =0.07).   

 

 

Figure 9. Deflection of axially FGM beam under uniform distributed load with simply supported-simply supported boundary 

condition for various power law index (k) values (here ζ =0.03 and = q ) 
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(a) 

 

(b)  
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(c)  

Figure 10.a. Loss function value for k=1, b) loss function value for k=2, and c) loss function value for  k=4. 

 

 

Figure 9 shows the deflection of axially FG nano-beam using nonlocal strain gradient beam under uniform 

distributed load. Results of BVP4C method in MATLAB are also used for comparison. Results showed that by 

increasing the power law index, the beam stiffness increases and consequently the deflection decreases. Again, there 

is a good agreement between the PINN predictions and the numerical solution even for this complex case. Figure 

10.a, b, c shows loss function value for the considered each power law index and again it is obvious that the loss 

function decreases quickly during the raining procedure. 

Nano-FG beam under a piecewise uniformly distributed load with simply supported ends is illustrated in Figure 

11. Half of the beam is under positive and the other half is under negative uniformly distributed load with the same 

amplitude.  

 

Figure 11. Nano-FGM beam with simply supported ends under piecewise uniformly distributed load, one half of beam is under 

positive load and the other half is under negative load. 

Figure 12 shows the deflection of an axially functionally graded nano-beam with different material index (k) 

values under piecewise uniformly distributed load as shown in Figure 11. The case of k=0, is equal to homogenous 

beam, thus the deformation is symmetrical with respect the beam midpoint. However, for FG beams with k≠0 the 

deflection is unsymmetric due to variation in material properties along the beam length. Results of Li et al. [27] are 

also included for comparison which showed a good agreement with the PINN predictions.  It should be noted that 
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the effects of variation of k on the beam deflection on the right section is more significant. It can be due to the lower 

stiffness of the metal side of beam (right side) compared to the ceramic section (left side).   

 
Figure 12. Normalized deformation of a simply supported FG beam with various values of the axially functionally graded index (k) 

(ζ=0.03 and a piecewise distributed force = q  applied at midpoint). For comparison the results of Li et al. [27] are presented 

 

 
Figure 13. Normalized deflection of a clamped–clamped FG beam with different k values under uniform distributed load ( = q  

and ζ=0.03), results are compared to Li et al. [27] 

 

In Figure 13 and Figure 14 the PINN and the reported results by Li et al. [27] for axial clamped FG nano-beam 

are compared. Moreover, numerical results are also included to make the comparison more reliable. In Figure 13 the 

influence of k for axially nano-beam is illustrated, the obtained results closely match those reported by Li et al. [27]. 

As its shown by increasing the power law index, the beam deflection decreases, that’s due to the fact that by 
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increase of power law index (k) the effective Young’s modulus increases and will cause higher stiffness. 

Figure 14 shows the deflection of axial FG nano clamped-clamped beam under uniform loading. Results of Li et 

al. [27] together with numerical solutions are also included which are in good agreement with the PINN predictions. 

Comparing the maximum deflection for the considered ζ, it is obvious that the beam stiffness increases by increasing 

the ζ which indicates that by increasing the value of external lengths of size-dependent nano-beams, results in 

decreasing the deflection.  

 

Figure 14. Normalized deflection of a clamped–clamped FG beam with various ζ values under uniformly distributed load ( = q ,  k=1), 

results are compared to Li et al. [27] 

The examples provided focused on homogeneous and axial FG nano-beams under various boundary conditions 

and loading scenarios. In all cases, the predictions made by PINNs closely matched the analytical or numerical 

reference solutions, demonstrating the accuracy of the proposed PINN approach. The following examples will 

investigate 2D FG nano-beams. 

As demonstrated in Figure 15, the effects of the material length scale parameter on the deflection of a Clamped-

Free 2D nano-FG beam under a uniformly distributed load is shown. The results indicate that increasing the material 

length scale parameter leads to hardening effects in the beam, resulting in a decrease in maximum deflection.  

In Figure 16 the bending moment of a 2D FGM nano-beam is investigated under a uniformly distributed loading 

and simply supported ends boundary condition, results of PINN are compatible with numerical method and agree 

well. It is shown that the bending moment like deflections decreases by increasing the value of ζ, therefore by 

choosing a proper material length scale parameter the value of bending moment and deflection is controlled.  

In Figure 17, the effects of the material length scale parameter on the deflection of a simply supported 2D nano-

FG beam under a sinusoidal load are investigated. The results indicate that increasing the material length scale 

parameter leads to hardening effects in the beam, resulting in a decrease in maximum deflection.  
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Figure 15. Normalized deflection of two dimensionally FGM nano-beam under uniformly  distributed load  with Clamped-Free 

boundary condition for different values of material length scale parameter (ζ) (k=2 , β=1 , τ=0.05 and q =  ) 

  

 

Figure 16.The bending moment of two dimensionally FGM nano-beam under uniformly  distributed load  with simply supported-

simply supported boundary condition for different values of material length scale parameter (ζ) (k= β=1 , τ=0.05 and = q ) 
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Figure 18 shows the effect of material distribution in the z direction (β) on the deflection of a 2D simply 

supported FG nano-beam under a sinusoidal load. As expected, due to asymmetry in the material properties along 

the length direction, the deflection pattern is not symmetrical with respect to the beam's midpoint. The maximum 

deflection occurs at a point on the right side of the midpoint. This is because the metal constituent on the right side 

of the beam has a lower elastic modulus, resulting in lower beam stiffness in that region. As β increases, the beam 

stiffness also increases, causing the maximum deflection to decrease and shift towards the center point. 

Figure 19 illustrates the maximum deflection of a simply supported 2D FG nano-beam under a sinusoidal load 

for different values of the length scale parameters (ζ) and nonlocal parameter (τ). The results show that the bending 

stiffness of the beam increases (deflection decreases) with an increase in ζ and a decrease in τ. In other words, 

increasing ζ has a hardening effect, while increasing τ has a softening effect on the stiffness of the beam. 

Figure 20 shows the effect of boundary conditions and the power-law index (k) on the maximum deflection of a 

FGM nano-beam under a sinusoidal load. For all considered boundary conditions, the maximum deflection 

decreases with an increase in the power-law index. In the case of a cantilever beam (C-F), as the applied load 

increases, the beam's deflection might unreasonably exceed the beam's length. To address this, the beam has been 

modelled with a reduced load to ensure that the deflection remains within a reasonable range Figure 20-b. However, 

for other boundary conditions (Figure 20-a), this adjustment is unnecessary. To better evaluate the deflection values 

in these cases, the beam has been modelled with a higher applied load. 

Additionally, it’s shown that boundary conditions have a significant effect on maximum deflection of beam. The 

beam with clamped boundary conditions has the lowest deflection due to the fixed points, while the clamped – free 

beam has the highest deflection because of free moving at the end of the beam. 

 

 

Figure 17. Normalized deflection of two dimensionally FGM nano-beam under sinusoidal  distributed load with simply supported - 

simply supported boundary condition for different values of length scale material parameter (ζ) (k=1, β=2, τ=0) 
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Figure 18. Normalized deflection of two dimensionally FGM nano-beam under sinusoidal  distributed load  with 

simply supported-simply supported boundary condition for different values of power law index of z direction (β) (k=2 and ζ=0.05, 

τ=0) 

 

 

Figure 19. Maximum deflection of a simply supported 2D FG nano-beam under distributed transverse load respected to ζ with 

various value of τ ( , k =1 and β=2). 
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(a) (b) 

Figure 20. Maximum normalized deflection of a FGM nano-beam as a function of the power-law index k with ζ=τ=0.05 , β=1 for a) 

simply supported–simply support (S-S), Simply support–clamped (S–C) and clamped-clamped (C-C) for higher loads ( 20sin( )q x= ). 

b) Clamped-Free boundary condition with smaller load 2sin( )q x=  

 

 

 

(a) (b) 

Figure 21. The effect of boundary conditions on bending moment of a nano-beam ( 20sin( )q x= , ζ=τ=0.05 , k=β=1 ) for a) 

simply supported–simply support (S-S), Simply support–clamped (S–C) and clamped-clamped (C-C) for higher loads 

( 20sin( )q x= ). b) Clamped-Free boundary condition with smaller load 2sin( )q x=  

 

Figure 21-a shows the bending moments Eq. (26) versus the length of the nano-beam for different boundary 

conditions under sinusoidal distributed loading which shows that for simply supported boundary conditions at both 

ends, the moment starts and ends at zero value due to satisfying the moment condition Eq. (30), but in general the 

moment will vary depending on the applied loads or geometry of beam. The same happens at the start point of 
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simply supported –clamped boundary conditions which is zero. For a clamped-clamped boundary condition, the 

boundary condition ensure that the bending moment is non-zero at both ends unless the beam is uniformly loaded 

without any variation. Figure 21-b illustrates the bending moment for cantilever nano-beam Clamped- Free 

boundary conditions, where the bending moment is zero at the free end boundary condition due to satisfying Eq. 

(28), The bending moment gradually decreases from the clamped end to the free end. 

Figure 22 represents the influence of the power-law index through length of the beam ζ for different variations of 

thickness power-law index β on the maximum deflection of a 2D FG nano-beam. Increasing β has a hardening 

effect, consequently decreasing the beam's deflection. Both power-law indexes cause decrease in beam 

dimensionless deflection which brings the fact that choosing proper power-law indexes the beam deflection can be 

controlled.  

 

Figure 22. Maximum normalized deflection of a simply supported-simply supported 2D FGM nano-beam versus ζ with various 

values of β (k=1,  𝛕 =0 and = q ). 

 

As demonstrated in Figure 23, under simply supported boundary conditions of both ends and uniformly 

distributed load, the bending moment Eq. (26) of a nano-beam is shown to be influenced by the power law index and 

non-local strain gradient parameters. It can be inferred that an increase in the power law index results in a decrease 

in the bending moment. As with deflections, the increase of material length scale parameter (ζ) results in decrease of 

the bending moment and also it can be implied that by decreasing the value of nonlocal parameter (τ), the bending 

moment decreases.  
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Figure 23. Maximum normalized bending moment of a simply supported-simply supported FGM nano-beam versus k with various 

values of ζ/τ ( = q , β=1). 

 

6. Conclusion  

In this paper, PINN is employed to analyze the bending behavior of a 2D FG nano-beam using nonlocal strain 

gradient theory. The material properties of the beam are considered to vary through the thickness and length, 

creating a two-dimensional FG beam. The governing equations were derived using Hamilton's principle and 

nonlocal strain gradient theory. Strain gradient and nonlocal parameters are included to simultaneously account for 

the importance of the strain gradient stress field and the effect of the nonlocal elastic stress field on deformation. 

The governing equation, a high-order variable coefficient differential equation, is solved using the PINN 

method. In this approach, a neural network approximates the beam deflection, and the network parameters are tuned 

to minimize the corresponding loss function. The PINN predictions are compared and validated against available 

reference solutions for homogeneous and axially FG nano-beam. The results demonstrate the accuracy and 

applicability of PINN for bending analysis of FG nano-beams. 

Furthermore, the effects of various parameters such as material distribution, boundary conditions, loading 

scenarios, length scale parameters and the nonlocal parameter on the bending behavior of the 2D FG nano-beam are 

investigated. The results show that changes in the through-length and thickness distribution of the material 

properties can affect the bending of the beam. Thus, these properties can be controlled and optimized for different 

engineering applications. 

Additionally, various types of loadings and boundary conditions are considered for the bending problem. The 

results indicate that increasing the material length scale parameter (ζ), power-law indexes (k, β), reduces the 

maximum deflection, thereby increasing the resistance of the small-scale beam against deflection. Conversely, 

increasing the value of the nonlocal parameter (τ) leads to an increase in deflection. 

The findings confirm the applicability of PINN for solving higher-order partial differential equations with 

variable coefficients, which are considered a complex class of differential equations to solve. This study addresses 

the existing literature gap concerning the application of the PINN method for nano-mechanics using nonlocal strain 

gradient theory, with a particular focus on bi-directional FGM beams. The utilisation of FGM nano-beams is 

predominantly observed in engineering applications that demand a high degree of sensitivity, such as MEMS/NEMS 

systems.   
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Appendix A 

The procedure to obtain Eqs. (12) and (13) is presented in this section. The force resultant and the bending 

moment of a FGM nano-beam is obtained from: 

xx
xx

N t dzdy=   (37) 

xx
xx

M zt dzdy=   (38) 

By substituting xx  from Eq. (3) into Eq. (9), txx will take the form as: 

2 2 2
2 2

2 2 2
(1 ( ) ) ( , )( ) ( ( , ) ( ))xx

u w u w
ea t E x z z l E x z z

x x x x x x x

      
− = − − −

      
 

(39) 

By completing some relevant mathematical simplifying on the Eq. (39): 
2 2 2 3 3 4

2 2

2 2 2 3 3 4

( , )
(1 ( ) ) ( , )( ) ( ) ( , )( )( )

xx

u w E x z u w u w
ea t E x z z l z E x z z

x x x x x x x x
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− = − − − + −

       
 

(40) 

Substituting Eq. (40) into Eqs. (37) and (38): 

  
2 2 3 3 4

2

2 2 3 3 4

2
2

2

( , )
( , )( ) ( ) ( , )( )( ) ( )xx

xx

u w E x z u w u w
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x x x x x x x
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x
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− − − + −
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 
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2 2 3 3 4
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x
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      
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= +  

  
  

(42) 

Substituting stiffness coefficients (Eq. (14)) into Eqs. (41) and (42), the force resultant and the bending moment 

of a FGM nano-beam is derived:  
2 2 3 4 2 3

2 2 11 11
11 11 11 112 2 3 4 2 3

( ) ( )xx
xx

N u w u w A u B w
N ea A B l A B

x x x x x x x x x
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(43) 
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(44) 

 

Appendix B. 

In this section the procedure to derive Eqs. (15) and (16) from Eqs. (12) and (13) is explained. By employing Eq. 

(10), (11) the Eqs. (12) and (13) can be expressed as: 
2 3 4 2 3

2 2 11 11
11 11 11 112 3 4 2 3

( ) ( ) ( )xx

u w u w A u B w
N ea f A B l A B
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(45) 
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(46) 

Now by substituting these equations into equilibrium Eqs. (10) and (11), the governing equations can be derived 

as: 
2 2 3 4 2 3

2 2 11 11
11 11 11 112 2 3 4 2 3

2 2 2 2 3 4 2 3
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(47) 
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