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Abstract 

This manuscript introduces a semi-analytical and numerical solutions for the 

Benjamin Bona Mahony equation (BBME) in the form of convergent series. 

The BBME holds significance in diverse scientific and engineering 

applications.  Especially to study issues on shallow water waves, solitons and 

their importance in modern physics. The Fuzzy Homotopy Perturbation 

Transform Method (FHPTM) and Differential Quadrature Method (DQM) 

are utilized to obtain the solutions for the BBME. In DQM, grid point based 

on Shifted Legendre Polynomials (SLP) have been used to solve the BBME. 

Additionally, we address the uncertainty in the initial condition by 

representing it in terms of an interval. The interval BBME (iBBME) is 

subsequently tackled using the FHPTM providing both lower and upper 

interval solutions. The convergence of the interval solution is validated 

considering crisp case. The outcomes obtained through FHPTM for BBME 

are compared with the exact solution and results obtained in this study are 

exhibiting good agreement. The numerical outcomes by FHPTM are 

compared with results obtained by DQM.  Additionally, we presented the 

time fractional BBME and developed a fuzzy model for it, accounting for 

uncertainties in the coefficients associated with wave velocity. To analyze the 

behavior of the fuzzy time fractional BBME, and examined various 

numerical results using a double parametric approach. 

 

Keywords: Fractional BBME, Fuzzy solution, FHPTM, Interval solution, Double parametric form, 

Shallow water waves. 

 

1. Introduction 

Research on the diverse physical structures of nonlinear partial differential equations (PDEs) has garnered 

significant attention due to its relevance to important scientific phenomena. The BBM equation describes long wave 

propagation in oceans and coastal areas, helping understand wave dynamics, the behaviour of tsunamis and aiding in 
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hydraulic engineering for studying water wave behaviour in canals, rivers and designing structures like dams and 

flood and barriers. The BBME models the one-way propagation of small amplitude, long waves over shallow water 

surface in [1-3]. 

 

The generalized BBME (gBBME) is given by [4] 
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where ( , )x t  symbolizes the height measured from the average water surface and x  denotes the coordinate 

that moves the velocity of a linearized wave.  ,  and a  are constants, and n  is the nonlinearity parameter. This 

equation generalizes the classical BBME and is widely studied for its ability to describe nonlinear dispersive wave 

phenomena. 

In this study, we aim to reduce the gBBME to the specific form as follows [1, 5] 
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which corresponds to a particular case of the gBBME with specific choices for the parameters ,  , 0a =  and 

1n = . To achieve this, we analyze the coefficients of the nonlinear term  and compare them with the 

desired structure  
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 This equation is a specific case of the 

gBBME and is notable for its role in describing nonlinear wave dynamics with a cubic nonlinearity. 

As such, He’s semi-inverse technique is employed to formulate the solution of generalized BBME to obtain 

solitary solution in [1]. The BBME with boundary condition solved using a semi discrete approach, combined with 

the energy method in [3]. This approach helps establish the existence and uniqueness of solutions for such a 

problem. Wadati [5] introduced the BBME characterizes the one-way movement of small amplitude long waves on 

the surface of water in a channel. It is posited as an alternative to the Korteweg–de-Vries (KdV) equation. Wazwaz 

[6] focused on examining the physical structures of nonlinear dispersive versions of the BBME using the sin-cosine 

ansatz and the analysis reveals that these generalized forms yield various solutions including compactions, soliton 

patterns and plane periodic solutions. Micu [7] explored the boundary controllability characteristics of the linearized 

BBME. It is observed to be approximately controllable but lacks spectral controllability and a finite-controllability 

results and provide estimates for the norms of controls required in this case. Congy et al. [8] studied an asymptotic 

method to explore the prolonged dynamics of the smoothed step initial value problem or the dispersive Riemann 

problem associated with the BBME. Gavrilyuk et al. [9] presented a comprehensive investigation of the modulations 

linked to the BBME. In particular, the study discerns the boundary that distinguishes the hyperbolic and elliptic 

regions of the modulation equations. Johnson [10] investigated the stability of a four-parameter family of spatially 

periodic traveling wave solution of the generalized BBME under two types of perturbations. Ankur and Jiwari [11] 
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investigated new soliton solutions for the generalized BBME using the tanh-coth and exp-function methods. They 

then truncated the infinite domain to a finite interval and developed a Galerkin finite element algorithm to simulate 

the model. The factorization technique was used to analyze a specific class of traveling wave solutions of the 

generalized BBME in [12]. The solitary wave interactions are examined through the application of conserved 

quantities of BBME, as detailed in [13].  The factorization approach was applied to obtain solutions for BBME in 

[14]. Wazwaz and Helal [15] investigated nonlinear variants of the BBME, employing the tanh method and sine–

cosine method to derive a range of exact traveling wave solutions. 

The BBM equation has been previously solved successfully by many authors using various techniques in the 

crisp case. The FHPTM and DQM methods also addresses the crisp case The FHPTM deals with uncertain cases. It 

is worth noting that coefficients related to initial conditions may not always be crisp numbers, as they depend on 

velocity, which can have associated uncertain values. To tackle this, one can substitute these crisp numbers with 

intervals and triangular fuzzy numbers (TFN) to establish specific bounds. The BBME into iBBME can be 

effectively solved using the HPTM method, which often outperforms other semi-analytical methods in terms of 

accuracy and efficiency. 

This article provides the solution of BBM equation using HPTM. In this regard we review few works related 

homotopy methods which addressed nonlinear PDEs to show the effectiveness of HPTM. Karunakar and 

Chakravarty [16] focused on utilizing the HPTM to derive a convergent series-type solution for the fractional KdV 

equation. In [17], the HPTM was applied to determine interval bounds for the interval-modified Kawahara 

differential equation.  Rambabu and Karunakar [18] examined solutions for both the regularized long-wave equation 

and its modified version using HPTM, focusing on both crisp and uncertain scenarios to analyze the dynamics of 

shallow water waves.  In [19], they explored the solutions for the BBME, utilizing the HPTM to handle uncertainties 

in initial conditions by using interval representations for solving the iBBME. 

2. Preliminaries: 

nterval arithmetic operations: 

An interval is defined as a subset of the real numbers  such that  [ , ] / ; ,L U L U L LZ Z t Z t Z Z Z=     

If  1 2 1 2[ , ],[ , ]i i j j  be the intervals, the arithmetic operations are as follows [20-22]: 
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Triangular fuzzy number (TFN): A fuzzy number  , ,T l c uZ Z Z Z =    is referred to as a TFN if its membership 

function is represented 
TZ  as follows [18, 20, 21], 
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Single Parametric form: Any interval number of the form , [ , ]l uZ Z Z Z Z = =   may be represented in the 

parametric form as [23] [24-27],  , 2Z Z Z Z Z = = +   where 
2

Z Z
Z

−
 =  and 0 1  . 

Doble Parametric form:  Any fuzzy number of the form  , ,T l c uV V V V=  can be written in the parametric form 

as[20, 21] [23],   , 2TV V V V V= = +  , where ( ) ( )  , , , , 0,1
2

l c l u c u

V V
V V V V V V V V V   

−
= + − = + −  =  . 

Riemann-Liouville (RL) fractional integral:  
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The Riemann-Liouville (RL) integral of fractional order 0q   for a function ( ) , 1t C   − is defined as 

follows [28], 
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Caputo fractional derivative (CFD): 

The CFD of a function ( )t , is defined as [28], 
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Laplace transform (LT): 

The Laplace transform (LT) of a piecewise continuous function ( )t  defined on the interval ( )0,  is 

expressed as follows [29], 
0
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3. Description of implemented Fuzzy Homotopy Perturbation Transform Method 

FHPTM is a semi analytical approach that combines the Laplace transform (LT) approach and homotopy 

perturbation method (HPM), which is known as Laplace FHPTM. 

To illustrate the basic idea of FHPTM [18, 20, 21, 23, 27, 30, 31], we examine a generic nonlinear PDEs with the fuzzy 

source term as ( , ; , ),G x t      

( , ; , ) ( , ; , ) ( , ; , ) ( , ; , ),D x t C R x t N x t G x t          + + =                                                                                     (2)                                                                    

 subject to initial conditions,  

      ,                                                                                        (3)                                                                                       

where 
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 is the linear operator,  is the fuzzy linear operator whose order is less than that of ,  is 

the fuzzy nonlinear operator.   

The HPTM approach comprises two phases.  Initially, LT is applied to both sides of equation (2). In the 

subsequent step, He’s polynomials are utilized by homotopy to decompose the nonlinear component present in the 

given equation.  The coefficients C , which are associated with the initial conditions or the given equation, are not 

always precise numerical values. This is because they often depend on several experimentally errors, which may 

introduce uncertainty or imprecision. To manage this uncertainty, the coefficient C  can be replaced with intervals 

or TFN, allowing for the establishment of bounds using a parametric approach. Specifically, C  can be represented 

as TFN, and by applying the  -cut technique, equation (2) can be derived. 

Using the LT to both sides of equation (2) we obtain, 

       ( )( , ; , ) 2 ( , ; , ) ( , ; , ) ( , ; , ) .L D x t L C C R x t L N x t L G x t                  = − +  − +         
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Using the LT and the assuming D  is of 2nd order differential operator, we get   
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By using inverse LT on both sides of equation (4), 
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here, the function ( , ; , )x t    generated by the first three terms on the right side of (4). 

Exploring the solutions with embedded parameters [0,1]p  as 

0
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Using He's polynomials, the nonlinear term  
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 where He’s polynomials ( )rH   are given by [20, 21, 27, 32] 
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For a detailed understanding of the generation of He’s polynomials (8) through the HPM concept, readers are 

encouraged to refer to [33] and reference there in. By integrating the LT with the HPM and incorporating equation 

(6) and (7) into equation (5), the following expansion can be derived as  
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Comparing the coefficients of identical powers of ' 'p  on both sides of (9) yields,  
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The solution of (2) is  

0 1
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4. Solution of the BBME:                                                           

4.1. Application of HPTM to the BBME 

Consider the BBM equation (1) subject to the initial condition [1] [5] 

 ( ) 2,0 sech
2 2

v v
x x

 
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                                                                                      (11)  

The exact solution of equation (1) is given as [1] 
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here,  denotes velocity of a linearized wave. 

Applying the Laplace Transform on both sides of equation (1) we obtain 
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Using inverse LT on both sides of the equation (12) gives  
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Using the HPM on equation (13), we obtain  
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      He's polynomials  are the several non-linear term  in [23, 27, 33] 
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A comparison of the coefficients of comparable powers of 'p' on both sides of (14) yields.  
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The solution of the BBME (1) as   is approximating to  is   

0 1
1

( , ) lim ( , ) ( , ) ( , )r
p

x t x t x t x t   
→

= = + +                                                                                                     (16)  

4.2. Application of DQM to the BBME 

 

In this section, DQM is applied to the BBME (1) at 6, 1 = =  to calculate the solutions at grid points based on 

SLP. Firstly, we need to represent the derivative terms as approximate sums, except for the derivatives with respect 

to t . 

Hence, replacing ( , )x mx t  by 
1

( , )
N

m n n

n

a x t

=

  and ( , )xxx mx t  by 
1

( , )
N

m n n

n

c x t

=

  in equation (1), we get a set of 

ODEs, 

( , ) 6 ( , ) ( , ) ( , ) 0,t m m x m xxx mx t x t x t x t   + + =  

1 1

( , ) 6 ( , ) ( , ) ( , ) 0
N N

t m n m n n m n n

n n

x t x t a x t c x t    

= =

 
= − − = 

 
                                                                                 (17) 

Subject to initial conditions, 

( ) 2,0 sech , 1,2,3,
2 2

m m

v v
x x m

 
= =  

 
                                                                                                       (18) 

where 0.5v =   

Now, we solve the BBME with the given initial condition using the DQM for nodes 5,7, 9N and= . 
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First, the grid points , 1,2,3, 5mx m =  are the roots of  

5 4 3 2

5 5( ) 252 630 560 210 30 1 0,P x x x x x x= − + − + − =  and may be obtained as 

1 2 3 50.046910, 0.230765, 0.5000000, 4 0.769235, 0.953090.x x x x x= = = = =  

Next, the weighted coefficients of the derivatives found using equations (1) and (17) are follows  

5 5

10.134081 15.403904 8.087087 3.920798 1.103533

1.920512 1.516706 4.805501 1.857116 0.488833

0.602336 2.870776 0.000000 2.870776 0.602336

0.488833 1.857116 4.805501 1.516706

1.103533 3.920798 8.087087 15.40

a 

− − −

− − −

= − −

− −

− −

1.920512

3904 10.134081

 
 
 
 
 
 
 
 

 

By substituting the weighted coefficients 
5 5 5 5 5 5 5 5 5 5,a c a a a    =   into equation (17) and using the fourth-order 

Runge-Kutta Method (RKM), we solved the system of nonlinear ODEs (17) along with initial conditions. The 

results are presented in the table. Next, we consider 7N =  to determine the solution of the BBM equation (1) using 

the DQM. Here, we obtain seven grid points , 1,2,3, 7mx m = . These grid points correspond to the roots of the 

SLP of order 7. 
7 6 5 4 3 2

7 7( ) 3432 12012 16632 11550 4200 756 56 1 0,P x x x x x x x x= − + − + − + − = Therefore, the nodes 
mx are 

1 2 3 4 5 6 70.025446, 0.129234, 0.297077, 0.500000, 0.702923, 0.870766, 0.974554.x x x x x x x= = = = = = =  

Following the same procedure as described above using equations (1) and (17), we can determine the weighted 

coefficients 
7 7a 

. Substituting these weighted coefficients along with  
7 7 7 7 7 7 7 7c a a a   =    and the 7 grid points 

mx  into equation (17) gives a nonlinear system of ODEs. The results obtained from solving this system of ODEs 

using the RKM are presented in the table. 

Next, the grid points ( )N mP x  for 9N =  may be obtained by following the previously mentioned procedure as 

follows 

9 8 7 6 5 4 3 2

9 9( ) 48620 218790 411840 420420 252252 90090 18480 1980 90 1 0,P x x x x x x x x x x= − + − + − + − + − =  

These grid points correspond to the roots of the SLP of order 9 are 

1 2 3 4 5 6

7 8 9

0.015919, 0.081984, 0.193314, 0.337873, 0.500000, 0.662126,

0.806686, 0.918016, 0.984080.

x x x x x x

x x x

= = = = = =

= = =
 

The weighted coefficients 
9 9a 

 are determined using equations (1) and (17) and substituting these coefficients along 

with 
9 9 9 9 9 9 9 9c a a a   =    and the 7 grid points 

mx  into equation (17) gives a system of ODEs is obtained and 

solved using the RKM, with the results presented in the table 3, 4 and 5. 

 

5. Formulation of iBBME: 

This section focuses on exploring the solution to the iBBME. Here, the initial condition (11) is treated as an 

interval number, acknowledging that its coefficients are influenced by several parameters that may not always be 

precise or fixed. This approach allows for the inclusion of uncertainty in the model, accommodating situations 

where the parameters may vary within specified intervals rather than being represented by exact values. 

Taking the initial condition (11) as an interval number 2( ,0) sech , [0.4,0.6]
2 2

Z Z x
x Z

 
= =  

 
. 
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The governing BBM equation (1) can be transformed into the interval form     

3

3
, , , , 0.

t x x
         

  
       + + =         

                                                                                                (19)                                                                                                           

Solving the interval PDE to determine the solution of the iBBM equation (19) is a challenging task. Numerous 

studies in the literature have explored the solution of interval differential equations using various numerical and 

semi analytical approaches as discussed in [18, 20, 21, 23, 25, 27, 34].  The following section provides a convergent 

solution in series form for the iBBM equation (19) by employing FHPTM and parametric approach [19, 24, 34]. 

6.    Application of FHPTM to iBBME: 

In this section, we once again utilize FHPTM to tackle the iBBME, considering the specified interval condition as 

the interval condition. 

If 1v =  in equation (11) then we considering the interval initial condition as    

2( ,0) sech , [0.4,0.6],
2 2

Z Z x
x Z

 
= =  

 
                                                                                                         (20) 

if 0.5v =  in equation (11) then now we considering the interval initial condition as    

  2( ,0) sech , [0.10,0.40].
2 2

Z Z x
x Z

 
= =  

 
 

This innovative method capabilities of interval arithmetic to address uncertainties inherent in the problem. By 

methodically expanding the solution with respect to a parameter that is velocity, FHPTM delivers precise 

approximations, surpassing the limitations of conventional method in certain scenarios. Expressing the interval 

initial condition (20) in parametric form as, 

                                                         
2 ( 2 )( 2 )

( ,0; ) sech .
2 2

Z Z xZ Z
x


 

 + + 
=  

 
 

                             

As mentioned earlier, upon establishing the connection to equation (14), we achieve 

3
1

3
0 0 0

1
( , ; ) ( ,0; ) 6 ( ) ( , ; ) .r r r

r r r

r r r

p x t x p L L p H p x t
s x

      
  

−

= = =

     
= − +          

                                            (21) 

Comparing the coefficients of corresponding power of the variable  on both sides of equation (21) 

( )
3

1 1

1 0 03

1
: ( , ; ) 6 ( ) ( , ; ) ,p x t L L H x t

s x
    −

  
=− +  

  
 

( )
3

1 1

1 0 03

1
: ( , ; ) 6 ( ) ( , ; ) ,p x t L L H x t

s x
    −

  
=− +  

  
  

               
1 2 2( 2 ) ( 2 )1 ( 2 ) ( 2 )

6 sech sech
2 2 2 2

Z Z x Z Z xZ Z Z Z
L L

s x

  −

       +  + +   +     =    
              

 

                  
3

1 2

3

( 2 )1 ( 2 )
sech

2 2

Z Z xZ Z
L L

s x

−
    +  + 
   +  

        

.  
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3

5 3 5

2 2 2
6sinh 2sinh 3sinh

2 5 5 2 5 5 2 5 5

cosh cosh cosh
2 2 2

x x x

t
x x x

            
+ + +          

          = − +
      
      

      

                                          

( )
3

2 1

2 1 13

1
: ( , ; ) 6 ( ) ( , ; )p x t L L H x t

s x
    −

  
=− +  

  
, 

               

2 2

1 1 2 1 2 1 2 1
1222

6 4 3 4 35 12 1 2 1 1

4 3 4 7 6

3 15 15 15
3

2 2315231 525 21

2 8 8 4

m m m m m m m m
m

m m m m mm mm m m m mt

m m m m m

  
− + − +  

  = − + + +
 
 
 
 

 

                

3

2

1 1 1

6
8 9 8

22

1 2 1

6 3 7 9

6sinh 2sinh 3sinh
2 2 2

3sinh
2

315sinh
17 60 2

2 8 8

x x x
m m m

x

m m mx

m m mt

m m m m

       
       

         − +        
    

+ − − + + 
 
 
 
 
 
 

 

 here,  

2 6 4 4

1 2 3 4 5

2 8 5

6 7 8 9

2
, sinh , cosh , cosh , sinh ,

5 5 2 2 2 2

cosh , cosh , cosh , cosh .
2 2 2 2

x x x x
m m m m m

x x x x
m m m m

        
= + = = = =       

       

       
= = = =       

       

              

              

The solution of the iBBME is   

0 1
1

( , ; ) lim ( , ; ) ( , ; ) ( , ; )r
p

x t x t x t x t       
→

= = + +                                                                                        (22) 

7.    Formulation of time fractional BBME and its fuzzy model: 

This section focuses on investigating the solutions to the time fractional BBME and its fuzzy counterpart. In this 

context, the velocity  in the initial condition (11) is considered a TFN, as its coefficient is influenced by several 

parameters that may not always be exact. We use the HPTM to address both the time fractional BBME and the 

fuzzy time fractional BBME under the given initial condition (11), where the velocity is represented as an uncertain. 

The time fractional BBME may be derived from equation (1). 

3

3
0,q

tD
x x

 
 

  
+ + = 

  
                                                                                                                                   (23)                                                                                                                             

where , (0,1]q

t q
D q

t


= 


 is the time fractional order of ( , ; )x t q  and 1q = then the initial condition is equation 

(20).  
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The fuzzy initial condition may be expressed from equation (11) 

2( ,0) sech , [0.5, 1, 1.5]
2 2

V V x
x V

 
= =  

 
                                                                                                        (24)                                                                 

The governing time fractional BBME (23) can be expressed in an uncertain form as follows 

3

3
0,q

tD
x x

 
 

  
+ + = 

  
                                                                                                                                (25)                                                                                                                           

where  ( , ; , , )x t q    is fuzzy valued function. The proposed HPTM is intended to handle the uncertainty present in 

the problem. Using a parametric approach, the initial condition (24) can be expressed in the following parametric 

form 

   2 ( 2 )( 2 )
( ,0; , , ) sech ,

2 2

V V xV V
x q


  

 + + 
=  

 
 

                                                                                           (26) 

where 
( ) ( )( )

 
1

, , 0,1
2 2

u l
V V V V

V


 
− − −

 = =   

As discussed in the previous section, the methodology applying FHPTM to equation (25) utilizes the fuzzy 

initial condition provided in equation (26). 

8.    Numerical simulation and discussions: 

8.1. Results in crisp case 

This section displays the numerical outcomes of BBME (1) obtained through the HPTM utilizing data 

6, 1, 1t = = =  and 1v = . DQM utilizing data 6, 1, 0.1t = = =  and 0.5.v =  

Table 1, presents numerical results for specific values of , 1x t = and 1v =  in equation (11). It is clear from Table 

1 that the HPTM is efficient and closely approaching the actual solution. Additionally, it is worth mentioning that 

the HPTM demonstrates rapid convergence of the solution. It may be clearly seen that after the value of 18x = , 

both term-wise and actual numerical results are same. 

Table 1: Comparison of term-wise numerical outcomes of equation (1) at different values of , 1x t = . 

 4th term solution 

of ( , )x t  

5th term solution 

of ( , )x t  

6th term solution 

of ( , )x t  

Exact solution 

of ( , )x t  

0 0.375000 0.380642 0.380642 0.393224 

2 0.405300 0.404659 0.404486 0.393224 

4 0.087407 0.087589 0.087607 0.090353 

6 0.012669 0.012687 0.012688 0.013296 

8 0.001731 0.001733 0.001733 0.001820 

10 0.000235 0.000235 0.000235 0.000247 

12 0.000032 0.000032 0.000032 0.000033 

14 0.000004 0.000004 0.000004 0.000005 

16 0.000001 0.000001 0.000001 0.000001 

18 0 0 0 0 

20 0 0 0 0 
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Table 2:  Comparison of term-wise numerical outcomes of equation (1) at different values of , 10t x =  

 

 

4th term solution 

of ( , )x t  

5th term solution 

of ( , )x t  

6th term solution of 

( , )x t  

Exact solution 

of ( , )x t  

0 0.000090 0.000090 0.000090 0.000090 

0.1 0.000099 0.000099 0.000099 0.000100 

0.2 0.000110 0.000110 0.000110 0.00011 

0.3 0.000120 0.000120 0.000121 0.000122 

0.4 0.000130 0.000133 0.000133 0.000135 

0.5 0.000141 0.000142 0.000147 0.000150 

0.6 0.000155 0.000157 0.000159 0.000165 

0.7 0.000170 0.000171 0.000173 0.000182 

0.8 0.000186 0.000187 0.0001889 0.000202 

0.9 0.000209 0.000210 0.000215 0.000223 

1 0.000234 0.000236 0.000238 0.000246 

 

From Table 2, it is observable that as the number of terms increases, the numerical results convergence towards the 

exact solutions for a fixed values of 10x =  and various time t  and 1v =  in equation (11). As the error decreases, it 

becomes apparent that the solutions are converging. Table 3, 4, and 5 present the absolute errors of the BBM 

equation using HPTM and DQM based on SLP at different nodes ( 5,7,9N = ), with 0.5v =  and 0.1t = . It is 

evident that the errors of the BBM equation increase as  x  values increase for nodes 5,7,9N =  when using DQM 

based on SLP.  A comparison between the errors of the BBM equation using DQM and HPTM approaches indicates 

that HPTM is more efficient and superior to DQM. Specifically, the errors of the BBM equation using HPTM 

decrease and nearly vanish for corresponding nodes at 5,7,9N = . 

Table 3:  Comparison of Absolute errors in DQM and HPTM at 0.1, 0.5t v= =  for  grid points.  

x  Errors in DQM Errors in HPTM 

0.046910 0.000089 0.000006 

0.230765 0.000575 0.000067 

0.500000 0.002316 0.000060 

0.769235 0.001915 0.000052 

0.953090 0.002316 0.000043 

 

 

Table 4:  Comparison of Absolute errors in DQM and HPTM at 0.1, 0.5t v= =  for 7 grid points. 

x  Errors in DQM Errors in HPTM 

0.025446 0.000011 0.000070 

0.129234 0.000283 0.000070 

0.297077 0.000748 0.000064 

0.500000 0.001280 0.000060 

0.702923 0.001764 0.000055 
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      Table 5:  Comparison of Absolute errors in DQM and HPTM at 0.1, 0.5t v= =  for 9 grid points.  

x  Errors in DQM Errors in HPTM 

0.015919 0.000032 0.000070 

0.081984 0.000154 0.000070 

0.193314 0.000464 0.000069 

 

0.337873 0.000859 0.000067 

 

0.500000 0.001281 0.000060 

 

0.662126 0.001670 0.000057 

0.806686 0.001983 0.000051 

0.918016 0.002199 0.000045 

0.984080 0.002317 0.000042 

   

0.870766 0.002114 0.000048 

0.974554 0.002303 0.000043 



210 Rambabu Vana et al. 

 

 

Fig. 1. Three-dimensional view of term-wise and exact solutions of equation (1). 

In Fig. 1, numerical finding of the term-wise solutions and exact solution for the BBME (1) are displayed at 

different values of ,t x  and 1v =  in equation (11). It may be noted from the 4th, 5th, 6th term solutions and exact 

solutions of BBME that the water wave ( , )x t  is almost same. It is noticeable that the convergent solution of 

BBME is achieved as the number of terms increases. Particularly, after the 3rd term, there is no change in the wave 

hight. This suggest that a minimum of six terms is necessary to obtain a convergent solution for the present problem. 

While the required number of terms may vary for other problems but an increase in the number of terms generally 

leads to convergent solution. In Fig. 2, Numerical outcomes obtained from the HPTM and exact solutions for the 

BBME (1) are shown for various x  values with 0.25,0.50,0.75,1t =  and initial condition 0.5v =   in equation (11). 

The comparison reveals that the solution ( , )x t  obtained from the HPTM results closely matches to the exact 

solutions of BBME (1).  

 

(a) at 0.25t =                                                     (b) at 0.50t =  
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(c) at 0.75t =                                                        (d) at 1t =  

Fig. 2. Comparison of HPTM and exact solution of equation (1) at different time t . 

 

 
Fig. 3. HPTM solutions at different values of  

 

    
Fig. 4. Comparison of two-dimensional view of term-wise and exact solutions of ( , )x t . 
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Fig. 5. Absolute errors in HPTM solution of BBME 

Fig. 3 displays the HPTM solution of the BBME at different values of 0.25,0.50,0.75,1v = . It may be observed that 

the peak of the solitary wave increased as the velocity ( v  in equation (11)) is increased. It may be clearly seen in 

Fig. 2 that there is no significant difference in the peak of the solitary wave as time increases for 

0.25,0.50,0.75,1t =  but the peak of the solitary wave increases with increasing velocity. Further, we generated 

numerical results using 2D-dimensional plots to illustrate term-wise solutions and compare these results with the 

actual solution. It is evident that term-wise solutions convergent to the exact solution of the BBME (1) at different 

values of , 1x t =  and 0.5v =  in equation (11) as shown in Fig. 4. Specifically, our numerical outcomes from the 3 rd 

term solution to the 6th term solution closely approximate the exact solution. Consequently, the sub-plotting in Fig. 4 

highlights clear results for x values from -1.5 to -1.3. Fig. 5 demonstrates that the first six terms are sufficient to 

achieve a convergent solution for the current BBME (1).  With the increasing number of terms from first to six, the 

absolute error is decreases, virtually approaching zero. This illustrates the convergence, accuracy and reliability of 

HPTM solution (16) at 1t =  and 0.5v =  in equation (11).  
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Fig. 6. Comparison of DQM and exact solutions of BBM equation 

 

The comparison between the exact solution and the DQM solution has been computed for the nodes 5,7,9N = , the 

corresponding solution plots are depicted in Fig. 6. It may be noted that the DQM results closely approximate the 

exact solution. Fig. 7 illustrates the absolute errors in the DQM solution at nodes N=5, 7, and 9. It is evident from 

this figure that as the number of nodes in the DQM solution increases, the error decreases rapidly and its 

approaching zero.  

 

 
Fig. 7. Absolute errors in DQM solution of BBM equation 
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Fig. 8. Comparison between HPTM, DQM and exact solutions of BBM equation. 

 

 

Fig. 8, depicts a comparison plot of the results obtained by HPTM with the numerical results from DQM based on 

SLP at nodes N = 5, 7, and 9. From this figure, it can be confirmed that the HPTM results exactly match the exact 

results of the BBME, while the DQM results only approximately match the exact solution of the BBME. From this, 

it may be concluded that HPTM provides better results than DQM. 

 

8.2. Results and discussion on impressive parameters 

In a similar manner, we can determine the solutions for the upper, centre and lower bounds of the interval based 

iBBME. The comparison results corresponding to interval solutions with the precise and crisp solution of BBME 

obtained when substituting 10, 6, 2,2,6,10x = − − −  are presented in Table 6. 

Table 6. Comparison of numerical solutions of iBBME with exact solution of BBME. 

 

 

Lower band solution 

of 

( , )x t  

Centre solution of 

( , )x t  

Exact solution 

of ( , )x t  

Crisp solution 

of ( , )x t  

Upper band 

solution of 

( , )x t  

-10 0.000030 0.000038 0.000033 0.000038 0.000045 

-6 0.001680 0.002075 0.001820 0.002075 0.002462 

-2 0.0111336 0.09191 0.090353 0.09191 0.219878 

2 0.27065 0.404487 0.393224 0.404487 0.590921 

6 0.009828 0.012689 0.013296 0.012689 0.015720 

10 0.000188 0.000235 0.000246 0.000235 0.000282 

 

Table 6, presents a comparison between numerical solutions of iBBM equation and the exact solution of BBM 

equation across different spatial points. For each point, lower band, center, crisp, and upper band solutions of the 

iBBM are given alongside the exact BBM solution, allowing for a detailed look at the iBBM’s accuracy. Near the 
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boundaries  10x = −   and 10x = , all values are small and align closely with the exact solution, indicating minimal 

differences. Closer to the center, particularly around 2x = −   and 2x =  , the values increase, with the upper and 

lower bands showing greater spread, which may indicate increased variability or non-linear behavior in the solution. 

Overall, this table illustrates the iBBM’s accuracy across points, with the largest differences observed around  

2.x =  

      
Fig. 9. Comparison of the FHPTM solution for the iBBME and BBME. 

 

 

 
Fig. 10. Comparison of the FHPTM solution for the iBBME and BBME. 

 

In Fig. 9, the lower, center and upper water wave elevation of the iBBME (19) are shown. These numerical 

findings obtained using FHPTM are compared with the actual solutions of the BBME (1) at 1t =  and 0.5v =   in 

equation (11) within the intervals [0.10, 0.40]Z = .  It is clearly observed that the actual and crisp solution of BBME 

(1) closely approach to the center solution of iBBME (19). In Fig. 10, the lower, centre and upper water wave 

elevations of the iBBME (19) are depicted. These numerical outcomes by FHPTM are matching with the exact 

solutions of the BBME (1) at 1t =  and 1v =  in equation (11) and for an interval  [0.4, 0.6]Z = . It is observed that 

the precise and accurate solution of BBME closely aligns with the centre solution of iBBME. Fig. 11, displayed the 
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centre solution of iBBME and the exact solutions of BBME. Notably, at various time level t , the water wave 

elevation  remains nearly same. It is observed that an increase in the wate wave height for each solution as the time 

t is increased. 

 

 
 

                                           
Fig. 11. Comparing the current solution and exact solution of BBME with the centre solution of iBBME. 

8.3.  Results and discussion on time fractional BBME and its fuzzy model 

This section discusses the numerical results of the time fractional BBM equation (23) and the time fractional 

Fuzzy BBME (25). Equation (22) addresses the crisp case, while uncertainty in the initial condition has been 

considered in equation (25) as a TFN. 

Table 7. Comparison of numerical solutions of BBME of different time fractional order with exact solution of 

BBME at  1t =  . 

x ( , ; )x t q  at 

0.2q =  

( , ; )x t q  at 

0.4q =  

( , ; )x t q  at 

0.6q =  

( , ; )x t q  at 

0.8q =  

Exact solution   

( , ; )x t q  

-10 -0.0001 0.0000 -0.0000 0.0000 0.0000 

-8 -0.0007 0.0003 -0.0001 0.0003 0.0002 

-6 -0.0049 0.0024 -0.0004 0.0021 0.0018 

-4 -0.0341 0.0158 -0.0022 0.0150 0.0133 

-2 -0.1599 0.0389 0.0035 0.0919 0.0904 

0 0.0000 -0.1250 0.0000 0.3806 0.3932 

2 0.1599 0.0389 -0.0035 0.4045 0.3932 

4 0.0341 0.0158 0.0022 0.0876 0.0904 

6 0.0049 0.0024 0.0004 0.0127 0.0133 

8 0.0007 0.0003 0.0001 0.0017 0.0018 

10 0.0001 0.0000 0.0000 0.0002 0.0002 
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                      (a) 0.5t =   and 0.5v =                                  (b) 0.5t =   and 1v =  

 
                   (c) 1t =   and 0.5v =                                             (d) 1t =   and  1v =  

Fig. 12. Comparing the current solutions ( , ; )x t q  of equation (22) and exact solution of BBME. 

 

 

                              
                                                         (a) 1t =  and  1x =  

      
           (b)  1t =   and  0.5q =                                              (c)  3x =   and  0.7q =   

Fig. 13. TFN plots for FHPTM solutions ( , ; , , )x t q    of equation (25). 
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               (a)  1t =   and  0.2q =                                           (b)  1t =   and  0.4q =  

 
           (c)  1t =   and  0.8q =                                                    (d)  1t =   and  1q =  

Fig. 14. 3D view of TFN plots for FHPTM solutions ( , ; , , )x t q    of equation (25). 

 

 

 
                               (a)  0.5t =                                                              (b) 0.5q =  

Fig. 15. 3D view of TFN plots for FHPTM solutions ( , ; , , )x t q    of equation (25). 

 

  In Table 7, we compare the numerical solutions of the BBME at different time fractional orders with the exact 

solution at 1t =  . Using the initial condition from equation (11) with 1v = , the table shows the numerical solutions 

( , ; )x t q  for 0.2,0.4,0.6,0.8q =  alongside the exact solution ( , )x t . At  10x = − , the numerical solutions for 

0.2,0.4,0.6,0.8q = and the exact solution are all close to zero, indicating minimal deviation. As   increases, the 

differences between the numerical solutions and the exact solution become more significant. For instance, at 

2x = − , the values for 0.2,0.4,0.6,0.8q =  are -0.1599,0.0389,0.0035 and 0.019 respectively, while the exact 

solution is 0.0904. At 0x = , the numerical solution for  0.6q =   is -0.1250, which deviates significantly from the 

exact solution of 0.03932. As x  increases further, the solutions gradually converge back towards the exact solution, 

with smaller deviations observed at 10x = . These comparisons illustrate the impact of the fractional order q  on the 

numerical solutions of the BBM equation. The deviations from the exact solution vary across different values of x  

and q  , demonstrating the sensitivity of the numerical solutions to changes in the time fractional order. 

 

Figure 12 illustrates a comparison between the numerical solutions ( , ; )x t q  of the BBME (22) and the exact 

solution of the BBME. The figure includes results for different time fractional orders q  (0.2, 0.5, 0.7, and 1) and 
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demonstrates how closely the numerical solutions align with the exact solution ( , ; )x t q  at 0.5,1t = . As q  

increases, the numerical solutions converge more closely to the exact solution, showcasing the accuracy and 

reliability of the proposed method for various fractional orders. The initial condition used is given in equation (20) 

with 0.5,1v = . 

Fig. 13 presents TFN plots for FHPTM solutions ( , ; , , )x t q     of equation (25), showcasing how the solutions 

vary under different parameter conditions. In Figure 13(a), for  1t =  and  1x =  with varying q  values (0.2,0.5,0.7 

and 1), the TFNs exhibit changes in width and peak positions as q  increases. Figure 13(b) illustrates the solutions 

for 1t =  and 0.5q =  with varying  values , showing a significant decrease in the width of the TFNs 

and a leftward shift in their peaks as  increases. Finally, Figure 13(c) displays the TFN plots for  3x =  and 0.7q =  

with different t  values (0.5,1.2 and 1.7), where higher t values result in wider TFNs and a rightward shift in their 

peaks. These figures collectively illustrate the wave dynamic of the TFN solutions in response to changes in the 

parameters q , x  and t . 

Fig. 14 displays 3D views of TFN plots for the FHPTM solutions ( , ; , , )x t q     of equation (25). These plots 

illustrate the behavior of fuzzy solutions at a fixed time 1t =  with varying parameter q . Specifically, Fig. 14(a) 

corresponds to  0.2q = ,  Fig. 14(b) to 0.4q = , Fig. 14(c) to 0.8q = , and Fig. 14(d) to  1q =  .  In each plot, the 

pink surface represents the lower bound of the TFN, while the blue surface represents the upper bound. As q   

increases, the separation between these bound’s changes, highlighting the sensitivity of the fuzzy solutions to the 

parameter q . These visualizations aid in understanding how q  influences the fuzzy dynamics of the system 

described by equation (25). 

Fig. 15 showcases 3D views of TFN plots for FHPTM solutions ( , ; , , )x t q    of equation (25) and  illustrates 

the TFN plots at 0.5t = , highlighting the lower and upper bounds at different q  values: magenta for the lower 

bound solution  at 0.3q = , blue for the upper bound solution at 0.3q = , red for the lower bound at 0.7q = , green 

for the upper bound  solution at 0.7q = , cyan for the lower bound solution at 1q = , and yellow for the upper bound 

solution at  1q = . In Fig. 15(b), the TFN plots at 0.5q =  are shown, focusing on the lower and upper bounds at 

various t  values: magenta for the lower bound solution at 0.3t = , blue for the upper bound solution  at 0.3t = , red 

for the lower bound solution at 0.7t = , green for the upper bound at 0.7t = cyan for the lower bound at 1t = , and 

yellow for the upper bound at 1t = . These plots visually represent the behavior of the FHPTM solutions across the 

specified ranges of t and q . 

9. Conclusion 

 

In this research, we effectively addressed the nonlinear BBME using a semi analytical approach, resulting in 

a convergent series solution. Utilizing FHPTM, we derive a series solution for the BBME. Numerical solutions 

of the BBME have been obtained at selected grid points using DQM based on SLP. The numerical outcomes 

obtained from our approach exhibit accuracy as evidenced by the figures presented. Through a comparison with 
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actual solution, we observed that the numerical results align well, indicating a good agreement. The obtained 

results confirm that the solutions of the BBME obtained by FHPTM are in good agreement with DQM results . 

The numerical results observed that the behaviour of the water wave forming at different velocities affects the 

peak height of the shallow water wave, depending on the velocity of the solitary wave. The numerical findings 

indicate that both methods are easy to implement, effective and reliable. Subsequently, we incorporated the 

initial condition coefficient within an interval framework, leading to the transformation of the BBME into 

iBBME. This transformation resulted leads to the iBBME. Once again FHPTM was employed to solve the 

iBBME. Furthermore, we have successfully presented and analyzed the time fractional BBME within the 

framework of a fuzzy model, addressing the uncertainties associated with wave velocity coefficients. Our 

approach incorporated a double parametric strategy to investigate the behavior of the fuzzy time fractional 

BBME. 
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