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Abstract 

This study presents a new exponential higher-order shear deformation 

theory (NEHSDT) to examine the flexural analysis of multi-layered 

laminated composite plates. The novel parabolic shear deformation function 

is developed to analyze the bending response of laminated plates. A new 

shear deformation theory eliminates the need for shear correction factors. 

The present theory gives an exact parabolic distribution of transverse shear 

stress over the thickness and fulfills the traction-free boundary conditions on 

the outer surfaces of multi-layered laminated plates. The governing 

equations are solved using the finite element method. In this finite element 

method, a nine-nodded isoperimetric element with seven degrees of freedom 

per node is formed especially for this purpose. Illustrative examples are 

presented to demonstrate the predictive capability of the proposed finite 

element method. The presented numerical results are compared with the 

existing results to illustrate the correctness and robustness of the finite 

element method. The proposed analysis is accurate, converges rapidly, and is 

valid for thin and thick laminated plates based on comparisons with earlier 

higher-order shear deformation theories. In addition, the present results 

may be taken as the benchmark for further studies. 
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1. Introduction  

Multi-layered structural composites such as sandwich and laminated plates are often utilized in engineering 

applications. Due to their wide range of applications, it is required to analyze multi-layered composite structures 

statically. Their applications are in aviation, marine, civil, rail routes, space structures, underwater submarines, polymer 

electronics, and different fields. These multi-layered composite materials can be used in harsh environments such as the 

deep sea to high elevations overhead. This extensive usage could be credited to the high stiffness/weight proportion and 
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increased density-to-weight proportion. The composite material is enabled by the optimal ply orientation and thickness 

variation of plies to incorporate into harsh environments. These structures might be presented to extreme functional 

circumstances, such as extrinsic, time-dependent influences. 

Consequently, it is pivotal to decide on the statics analysis of laminated plates and ensure that their excitation 

frequency is not greater than the natural frequencies. It is not a new topic to examine the linear static behavior of 

plates, remarkably isotropic rectangular plates. An in-depth analysis of free vibrations and bending under 

transverse loading for laminated plates are provided in the book by J M Whitney [1]. There have been a lot of 

publications recently about static analysis of rectangular and circular laminated plates  [2, 3] Expanded utilization of 

high-tech materials in basic designs requires an Advanced and exact model-based theory to precisely anticipate the 

structural behaviour. The benefit of two-dimensional theories over three-dimensional theories is that they lower the 

dimension of the expressions employed in mathematical modelling, resulting in a significant reduction in computation 

time Khare and Mittal [4]. The researchers have taken a lot of consideration in analyzing the laminated composite and 

sandwich plates for many years. They proposed several plate theories. From these theories, the zigzag (ZZ), equivalent 

single layer (ESL), and layer-wise (LW) theories are commonly utilized for the thin plates structural analysis. 

Traditional plate theories were first established for homogeneous plates and thereafter extended to orthotropic and 

anisotropic plates. 

The equivalent single-layer (ESL) [5, 6] and layer-wise (LW) [7]  theories were proposed based on the two-

dimensional characterization of structures to study plate as well as shell-type layered structures precisely and with less 

computational effort. ESL formulations are often less complex than LW formulations. They can be effortlessly executed 

in mathematical methods while giving exact displacements and stress results, particularly for thin and moderately thick 

laminated plates. The First ESL modeling was the classical laminated plate theory (CLPT). The CLPT is derived based 

on Kirchhoff's hypothesis. This theory is based on the transverse normality assumption and overlooks the transverse 

shear deformation [8]. After that, the first-order shear deformation theory (FSDT) was proposed according to Reissner 

[9] and Mindlin [10] which considers linear in-plane stresses and deformation and also relieve the normality constraint as 

well as accommodates constant transverse shear deflection. The plate's top and bottom surfaces have non-zero traction 

due to Higher-order shear deformation theories, including higher-order terms in Taylor's expansions of the 

displacements in the thickness coordinate, which were proposed to improve the performance of FSDT. HSDTs are later 

proposed, which assure shear stress-free boundary conditions at the outer surfaces and parabolic transverse stress 

fluctuation and provide precise stability analysis. The observations for thick laminates reveal that in-plane stresses are 

substantially better than those found by FSDT, although there are still inaccuracies compared to 3D models[11]. For the 

flexural analysis of cross-ply laminates, Idlib et al. [12] examined the CLPT  [13] with the TSDT and the parabolic shear 

deformation theory (PSDT) [14] HSDTs containing five field variables are the most common for multi-layered laminated 

composites. Other HSDTs featuring more than five field variables and are attributed to the following properties: ease of 

execution, inexpensive calculation, and higher precision. Moreover, increasing the sequence of variation for axial 

displacements along the thickness does not enhance the representation of the behaviour of multilayered laminates 

appreciably. Hyperbolic, logarithmic, exponential, trigonometric, and algebraic shear deformation theories are among 

the nonpolynomial shear deformation theories (NPSDTs), consisting of nonpolynomial functions. The first 

nonpolynomial function was carried out by Levy [15] using the sinusoidal function to analyze thick isotropic plates. 

Several researchers have recently employed NPSDTs for the static analysis of laminated and sandwich composite plates 

[16], [17]. Among the NPSDTs, as mentioned above, the correctness of Grover's [18]  inverse hyperbolic shear 

deformation theory (IHSDT) is also extensively documented in the literature [19]. The trigonometric function was 

carried out by Zenkour AM  [20] , Mantari JL et.al [21], Grover N et.al [22], Soldatos  [23] first employed a hyperbolic 

function to develop HSDT for composite plates. Hyperbolic function was later carried by El Meiche et al. [24], Akavci 

SS et al. [25], Grover N et al.  [18] [26] [27] The exponential function was first used by Karama et al.[28]  to develop a 

HSDT for composite beams. Later, Aydogdu [29], Mantari [30], Sarangan and Singh [31], and many others developed 

such exponential shear deformation theories. Reddy [32], Shimpi and Patel [33],Kim et al. [34], Mantari et al. [35] and 

many others contributed by presenting their algebraic transverse shear deformation theories.  

However, to the best of the author's knowledge, several areas of bending analysis utilizing NPSDTs, such as 

antisymmetric cross-ply, have not been fully addressed in numerous ways. As a result, it is critical to correct these 

inconsistencies in the published literature for NPSDT. Several review papers on sandwich plates and laminated 
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composite have been published in the literature by different academics, including  [36], [37] [38]. 

Many numerical approaches have been utilized in structural analysis. The finite element approach (FEM) is among 

the most widely used computational techniques for the examination of composite plates [39] [40, 41]. The FEM has 

unique benefits over other approaches when addressing complicated geometries and boundary conditions. Although 

conventional 3D finite elements may be used to evaluate laminated and sandwich plates, they may be computationally 

infeasible for modelling real-world conditions [42]. In FEM, the field is split into a definite number of elements. A 

limited set of variables determines an individual element's behaviour. The entire system may be solved as a collection of 

its elements using typical discrete problem approaches [43]. The main benefit of FEM is the discretization procedure. 

Fried et al. [44] proposed the smallest number of degrees of freedom for triangular elements to correctly account for 

shear stresses in thin plate bending. Dvorkin's Ph.D. thesis,[45] among other things, highlighted and clarified the shear 

locking problem more thoroughly. The displacement technique, which uses  continuity and continuity Hermite 

estimates are commonly used in the finite element method. The  On the other hand, finite element formulation is 

more often used due to its ease of implementation. Furthermore, the Hermite element is only supported by a few finite 

element systems. Only FEA Tool Multiphysics and Get FEM++  support Hermite elements among several easily 

available FE software[46]. Due to its widespread and deep-rooted mathematical basis, FEM is the most 

favoured technique for studying structural behaviour, as seen by the brief literature discussed above. To depict the 

bending, buckling, and vibration of structural composites in an efficient way, higher-order shear deformation theories 

are created to overcome the limits of classical laminated plate theory and first-order shear deformation theories. 

However, most of the sources mentioned above do not consider penalty constraints. Those who have thought about it 

haven't shown the impact of various penalty constraints. As a result, it's critical to research to determine the competence 

of the newly produced NEHSDT for stagnant analysis. The weak form of the governing equations is formulated using an 

energy technique. Generalized higher-order shear deformation theories (HSDT) are explored for kinematic modelling of 

the plate and then discretized using a nine-noded penalty-based C0 finite element.  

Recently many authors have work on variety of work on analysis of  laminated , FGM , and sandwich plates 

Motezaker, et al. [47] used Newmark and Galerkin,for dynamic analysis induced by earthquake load in concrete pipes. 

Kolahchi, et al. [48]studied optimal dynamic properties of laminated sandwich multiphase nanocomposite truncated conical 

shell using differential quadrature method. Hajmohammad, et al. [49] used hyperbolic shear deformation beam theory for 

dynamic analysis in beam element. Al-Furjan, et al. [50]studied experimental analysis for the mechanical properties of 

7075-T6 aluminum reinforced with SiC particles. Al-Furjan, et al [51] investigated wave propagation of micro-sandwich 

beams using refined zigzag theory . Kumar, et al. [52] used HSDT model for the nonlinear bending analysis of FGM 

plate. Nanocomposite piezoelectric-leptadenia pyrotechnica rheological elastomer-porous functionally graded materials 

micro viscoelastic beams at different strain gradient higher-order theories were studied for dynamic instability by Al-

Furjan, et al [53]. Al-Furjan, et al [54] implemented first order shear deformation theory for the numerical analysis to 

assess how much energy is absorbed by vibrations in a conical, three-layered panel that is situated on a viscoelastic 

substrate. Al-Furjan, et al [55] studied frequency, damping, bending, and buckling of an embedded sandwich nanoplate 

utilizing the boundary shape function differential quadrature hierarchical finite element technique and several plate 

theories, including enhanced zigzag theory. Kumar, et al. [56] examined bending analysis of bidirectional FGM plate using 

meshfree approach. Under quasi-static loading, the impact of the hole notched in GLARE and GFRP composites is 

investigated by Chu, et al [57]. The framework is solved using the Newmark technique and the differential quadrature 

method (DQM) in order to obtain the flexural moment and dynamic deflection by Al-Furjan, et al [58]. For the circular 

sandwich plates, frequency analysis is carried out by Chu, et al [59] in the pre- and post-buckling regions, which resulted 

from an in-plane thermal field. Al-Furjan, et al [60] examined wave propagation and vibration of corrugated smart 

sandwich nanobeam via exact solution approach. Wan, et al. [61] investigated the effects of various parameters on the 

forced and free vibration characteristics, as well as the post-buckling behavior of a rhombic plate situated on a 

viscoelastic torsional frictional substrate. Al-Furjan, et al [62] examined wave propagation in micro air vehicle wings 

featuring a honeycomb core, covered with porous functionally graded material Chu, et al.[63]and nanocomposite 

magnetostrictive layers. Chu, et al. [63]studied energy harvesting and dynamic behavior of SMA nano conical panel via 

DQ-IQ-Newmark methods . Wan, et al. [64] examined the supersonic flutter behavior and reliability of smart hybrid 

nanocomposite trapezoidal plates, taking into account various practical factors. 

https://www.sciencedirect.com/science/article/pii/S0029801821006946
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The present paper deals with providing enough numerical approaches with the best displacement model to aid in the 

design of a final laminated composite product. The majority of aerospace, space research, and defense organizations aim 

to create low-cost, highly durable products for real-world hazards. Case studies may also result in a lighter design of 

laminated plates used in high-performance systems where weight reduction is critical, such as aeronautical, spaceship, 

and missile constructions. An accurate, stable, and effective new parabolic HSDT is proposed to predict the flexural 

analysis of laminated plates in the present work. The convergence and validation studies of the new HSDT model for 

various problems are carried out. It is noticed that the results obtained utilizing the current theory are in close agreement 

with the three-dimensional Quasis results reported in the literature. 

2. Mathematical model design 

A rectangular laminated structural composite plate composed of multi-layers placed in a specific 

order ( )1 2 3/ / ..... / n    is utilized for analysis. The dimensions of the plate are length a, breadth b, and constant total 

thickness h. Fig.1 shows a cartesian coordinate system with the x-y plane coincident with the plate's central plane . 

 

Fig 1. Laminate geometry with reference axes and fiber orientation 

2.1. Displacement field model 

The Lagrange basis function, which requires 
0C continuity of the field variables, is used in most FEM model which 

utilizes displacement. Approximating the solution for 
1C continuity using the Hermite function has its individual set of 

challenges in terms of FEM code implementation [65][57]. Artificial field variables must be used to create the FEM with 

HSDT (as per Eq. (1)) using the Lagrange element, which reduces the needed continuity to 
0C . Penalty limits on the 

strain energy [66][58] shown in the next section compensate for this conversion. HSDT currently has seven field 

variables. Based on the above assumption. The displacement field of the present higher-order theory model can be 

written as 
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u, v, w are the function of x, y, z and 0 0 0, andu v w are functions of x and y. Where, u , v , and w  are the 

displacements of an arbitrary point in x, y, and z directions, respectively; 0u , 0v , and 0w  denote the midline 

displacements, respectively. x  And y  represent the shear deformation of the midplane normal about the y and x-axis, 

respectively. ( )f z  is a transverse shear strain function of a thickness coordinate (z). Polynomial or nonpolynomial 

shear deformation theories, such as trigonometric, hyperbolic, and logarithmic, are named after the function involved in 

the mathematical formulation. Researchers are continually seeking new theories to improve the accuracy and stability of 

their results. In this pursuit, the authors of this paper have developed new exponential higher-order shear deformation 

theory aimed at providing better solutions. The ( )f z (NEHSDT) satisfy the zero transverse shear stress boundary 

condition at the top and bottom surfaces of the plate, eliminating the need for a shear correction factor. There are several 
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works of literature are there who utilize Algebraic, Trigonometric, Inverse trigonometric, Hyperbolic and Inverse 

hyperbolic, Exponential, and Logarithmic transverse shear strain functions so as to get optimized, better-validated 

results during structural analysis, which is depicted in Table 1 where the newly proposed theory is expressed as 
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2.2 Strain-displacement relation 

Using the linear strain equation, the condition of strain at a given position is expressed by the equation:[85, 86] 
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The linear strain vector may be expressed by replacing the updated displacement formula from Eq. (2) in Eq. (3). 
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The following matrix structure is used to express lb  and ls . 
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2.3 Stress and strain relation 

The constitutive relations for any layer in the global coordinate (x, y) system due to the existence of an elastic 

symmetry plane of Kth layer, are of the form 

                                 
3 1 3 1 2 1 2 13 3 2 2

and
x x x xx x

Q Q   
− −

= =                                                               (8) 

Here ( xx , yy , xy , yz , xz ) are the stress and ( xx , yy , xy , yz , xz ) are the strain components of the thk  

layer in global coordinates, and ijQ  are the converted material constants from local coordinates at    angle around the z-

axis as illustrated in Fig.1. In any classic finite element textbook, the expression of ijQ  in terms of material constants in 

a global coordinate system can be obtained. 

As a result, the in-plane stress and transverse shear resultants are described this way: 
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(10) 

2.4 Variational Principle 

The governing differential equation for the static behaviour of composite laminate is obtained by the principle of 

virtual work for a given system, using the total Lagrangian approach, is given as: 

 

    0 0 0 0

TT
T T
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V A

w w w w
dV w PdA

x x y y
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          
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           

 

 

(11) 

The virtual strain energy is represented by the first term in Eq. (12) and is expressed in an alternative manner as: 

 ( ) ( ) ( )
TT

l l

V V

U dzdA Q dzdA    = =   
(12) 

 

 ( ) ˆ ˆ
T T

l l l l

V

U Z QZ dzdA  =   
(13) 
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The strain energy owing to artificial constraints is represented by the second and third terms in Eq. (12), and the 

overall formulation is 

 
0 0 0 0

TT

x x y y

V

w w w w
U dzdA

x x y y
       

          
= + + + + +       

           
  

(14) 

The virtual work done by the transverse mechanical load is represented by the final term of Eq. (10) and is stated as 

 ( )0 /2
,ext z h

A

W w P x y dA 
=

=   
(15) 

 

The transverse load applied to the top surface spatially distributed (z=h/2) is represented by /2( , ) |z hP x y = The 

external load being treated as a non-follower load for simplicity's sake. It will not vary when the plate deforms. 

3. FEM analysis 

In finite element method, a nine-nodded isoparametric element with seven degrees of freedom (DOF) per node is 

formed as shown in Figure 2. 

 

Fig 2. Nine-nodded Q9 Lagrange isoparametric finite element 

The laminate domain must be discretized into elements in the finite element (FE) approach. A nine-noded 

isoparametric element is chosen for its ability to accurately represent complex geometries and displacement fields. The 

element has nodes at the corners, midpoints of edges, and the center. Lagrangian quadrilateral isoparametric element are 

used to interpolate the geometry and field variables within the element. These shape functions ensure continuity and 

smoothness of the displacement field across elements. The continuum displacement vector within the element is 

discretized at any position such that. 
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(16) 

Where  7I  is the unit matrix of order seven and  iq  is the vector of nodal field variables at thi node, i.e. 

 
   0 0 0

T

i i i i xi yi xi yiq u v w    =  
(17) 

The following are the shape function formulas for the nine nodes illustrated in Fig.2: 
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( )( )2
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1
1 1

2
N   = − − −  

( )( )2 2

5 1 1N  = − − ;              

( ) ( )2

6

1
1 1

2
N   = − − + ( ) ( )7

1
1 1

4
N    = + − ; 

 ( )( )2

8

1
1 1

2
N   = − + −     ( ) ( )9

1
1 1

4
N    = + +  

Appendix A contains the complete formula for the linear strain component. Bending and shear stresses may now be 

expressed in nodal degrees of freedom using Eqs. (5) and (7), as follows 

 9

1

ˆ L L

lb bi i b

i

B q B q
=

= = ;             

9

1

ˆ L L

ls si i s

i

B q B q
=

= =  

Here  1 2 8 9

T
T T T Tq q q q q=  

(19) 

As a result, terms in the explicit expressions of 
L

bB  and 
L

sB  need the first Cartesian derivative of the shape function 

iN

x

 
 
 

. The following connection may be used to determine the first derivative of iN  (in Cartesian coordinate) in 

terms of derivative with respect to parametric coordinate (and) using the chain rule: 
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(20) 

Similarly, the strain-displacement matrix for Eq. (15) may be produced, and the virtual strain energy owing to 

the penalty can be expressed as: 

 ( )
TT

V

U q B B dzdA       =      
(21) 

3.1 System of equations 

The system of equations for flexural analysis under distributed transverse load is produced by substituting Eqs. (17) 

and (21) into Eqs. (13), (16), and (23), then omitting the virtual displacement vector ( )
T

q . 

 ( )L PK K q F+ =  
(22) 

 
( )( )T

L T L

L l l

V

K B Z QZ B dzdA=  ;            

T

V

K B B dzdA  
   =      

(23) 

Here,  PF  can be written in the following form  

   ( ),P

A

F P x y dA=  w  
(24) 

In which,  
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9

1

i i

i

q q
=

=w w ;      0 0 0 0 0 0iN=w  

(25) 

The overall stiffness is obtained once the linear stiffness matrices have been evaluated. 

 
LK K K= +   (26) 

3.2 Stress recovery technique over the surface 

Since the invention of the finite element technique, engineers have struggled to determine the best 

mesh size to achieve the needed precision. The stress-recovery approach [87] that was employed to create a continuous 

and optimized stress component is simply addressed in this paragraph. To precisely analyse the stresses, the super 

convergent patch recovery approach was created. The efficiency of the SPR technique is better than that of its 

counterparts, direct interpolation and continuous least square projection approaches, according to the literature [88] [46]. 

The SPR method is used exclusively to derive the in-plane distribution of stresses in this investigation. As seen in the 3D 

elasticity solution [66], accuracy is high while deriving the in-plane distribution of stresses for bending problems. 

However, because the current finite element model uses a continuous Lagrange element, only the displacement is 

determined to be accurate over the plate. But in most practical applications, the precise distribution of stresses is more 

critical than displacement. A stress-recovery approach must be employed in the later stage to achieve the exact in-plane 

variation of stresses to provide accurate stresses throughout the plate geometry. 

Furthermore, due to HSDT, the variation of transverse stresses xz and yz along the thickness anticipated by the 

current finite element approach is accurate. In addition, it is well documented in the literature that by integrating the 3D 

elasticity equilibrium equations, we can predict the precise transverse stress distribution [89]. Furthermore, the transverse 

stresses calculated by the constitutive relation using higher-order theory provide a reasonable estimate of transverse 

stress change with thickness. As a result, no thickness-direction recovery is employed in this investigation. The 

enhanced stress components are derived using the SPR approach by taking a least square projection of the calculated 

stress at Gauss-Legendre points on a patch. The term patch refers to a collection of elements with a vertex node in the 

middle. To begin, a 'patch' is defined as a localized group of elements that surrounds at least one inner node or is near a 

boundary node. As illustrated in Figs., a patch can comprise more than two elements and be classed as an internal or 

border patch. 

In the finite element approximation in which the shape function N has a complete expansion of order p, the enhanced 

stress field is considered to be a kind of polynomial in which the values of 
* vary as a polynomial of order (p – 1) to 

provide consistent improvement in stresses across the patch.  

The polynomial expansion described in Eq. (29) is used for modeling in this study. 

 * 2 2 2 2 2 2

0 1 2 3 4 5 6 7 8C xC yC x yC x C y C x yC x y C x y C = + + + + + + + +  (27) 

 

 *

i iC C = =M M  (28) 

Here, with the help of 
sa vx x x= − and 

sa vy y y= −  the unidentified coefficient which is derived for every stress 

component accounted inside a patch is iC . Here, sax  and vx indicates the x-coordinate of sampling and vertex points, 

respectively. 

While the newly developed NEHSDT and the finite element method offer significant improvements in accuracy and 

stability for the bending analysis of laminated plates, there are several limitations and potential challenges associated 

with their practical application in engineering problems. The NEHSDT can be mathematically complex, making their 

implementation in commercial FEM challenging. Engineers may need advanced knowledge of programming and 

numerical methods to develop custom solutions or modify existing software. While the NEHSDT have shown close 

agreement with 3D quasic solutions in theoretical studies, extensive validation and verification against experimental data 

are necessary to ensure their reliability in real-world applications. This process can be time-consuming and resource 
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intensive. 

It's worth noting that any acceptable polynomial function can be chosen based on the number of sample points and 

unidentified coefficients collected in a patch. As previously indicated, the unidentified polynomial coefficients are 

calculated by fitting the predicted stresses to a set of sample locations inside the patch in a least square technique. 
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c

T

cA d


= M M  and 

c

T

cB d


= M  
(32) 

The patch domain is denoted by the symbol c . The needed stress value at selected nodes (as shown in the fig) may 

be determined using Eq. (29) after solving for the unknown coefficient iC for every stress component. Because of the 

merging of patches in this patch recovery technique, certain nodes may have more than one value, as seen in Fig.2. As a 

result, plain aggregating is required to obtain a specific stress evaluation over the geometry. 

4. Numerical validations: Results and discussion 

The Lagrange basis function, which requires 
0C continuity of the field variables, is used in most displacement-based 

FE models. Approximating the solution for 
1C continuity using the Hermite role has its own set of challenges in terms 

of finite element code implementation. Artificial field variables must be used to create the finite element model with 

HSDT (as per Eq. (2)) using the Lagrange element, which reduces the needed continuity to 
0C Present analysis is 

focused on implementation of new higher order shear deformation theory with the novel parabolic shear deformation 

function is developed to analyse the bending response of laminated composite plates. The first section deals with 

convergence study. A validation study is conducted to demonstrate the user-defined MATLAB program's efficacy and 

accuracy. The deflection and stresses are normalized as: 
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4.1 Material properties  

Numerous analyses are carried out during present investigation with the material property as. 

Material- 1 
1 2 12 2 13 2 23 2 12/ 25, / / 0.5, / 0.2, 0.25E E G E G E G E = = = = =   

4.2 Boundary conditions 

During the numerical analysis in present study, the simply supported condition is considered as:  

SSSS: 0 0 0x xu w  = = = =  at 0,y b=  and 0 0 0y yv w  = = = =  at 0,x a= ; 

4.3 Convergence study 
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The problem of convergence, or an asymptotic behaviour of estimates of correctness of an achieved approximation 

solution as the finite element mesh grows infinitely thick, is a major topic in the theory of the finite element method. For 

the orthotropic laminated composite plate, the finite element convergence performance under the action of uniformly 

distributed load (UDL) and sinusoidal loading (SSL) condition for (0/90/90/0) laminate with SSSS1 simply supported 

loading condition are shown in Figure 3 (a and b). Figure 3 (a) shows the effect of variation of number of elements over 

normalised deflection and stress variation occurred in composite plate under UDL and Figure 3 (b) for SSL. From the 

figure it is clear that after 6 number of elements there is no variation in values of deflection and stresses found, and 

hence can say the values were get converged. So, for further study 6 numbers of element are selected. 
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Fig. 3 Convergence study 

4.4 Parametric study 

Figure 4 shows the effect of novel fuzzy function (r) parameter variation over normalised deflection of the composite 

plate. For the present investigation plate aspect ratio= 1 and thickness ratio=10 under SSSS boundary condition and 

shown in Figure 4 also elaborate the nature of bending and shear stress distribution in thickness direction with the 

variation of novel fuzzy function (r). The ‘r’ in the NEHSDT is a fudge factor whose value is optimised by an inverse 

method. A MATLAB code is developed to obtain the results. By using various values of ‘‘r”, deflection and stresses in 

laminated plates is determined, and error between the results of proposed theory and 3D solution in literature was 

minimized. The presented numerical results are compared with the existing results to illustrate the correctness and 

robustness of the finite element method. Figure 4 (a) shows with increasing the value of the fuzzy function parameter (r) 

value of the normalised plate deflection comes nearer to the 3D Quasis solution utilised by Tran and Kim [90] and 2D 

plate theory by Reddy and Liu [91]. Result shows that normalised deflection, bending and shear stress values are closely 

validated with the results presented in literature at the value of r = 1.6. Accuracy in the results contributed a lot when it 

comes into a large scale. If even infinitely improvement come through the theory/numerically implementation, it will 

serve the scientific community a lot. 

Figure 5 shows give an exact parabolic distribution of transverse shear stress over the thickness with the utilisation 

of novel parabolic shear deformation function. Result evaluated with the variation of fuzzy function parameter (r), and it 

is noticed that though r parameter is get varied, the parabolic nature of the shear stress distribution in thickness direction 

(z/h) does not violated. The shear stress distribution is maximum at the centre and zero at the end of the plate extreme 

surface which shows the uniformity of the plate. The present study intended to focus on the integrity of the new higher 

order shear deformation theory towards Parabolic shear deformation function satisfied all the necessary conditions 

required for the transverse shear function. The present NEHSDT approximately parabolic transverse shear deformation 

distribution and also displacement field satisfies the traction free boundary conditions at top and bottom surface of the 

plate and hence the requirement of shear correction factor vanishes. Hence, we have just satisfied all the necessary 

conditions for the development of a new transverse shear functions suitable for the analysis of laminated plate and by 

implementing it is notice that NEHSDT give the better results as compared to other functions in literature. 
The effect of algebraic, trigonometric, inverse trigonometric, logarithmic, exponential, hyperbolic functionalised 

plate theory over normalised plate deflection shown in Figure 6 (a, b) and Table 2 for stress variation along X, Y, XY 

and YZ direction.  To evaluate the result from algebraic, trigonometric, inverse trigonometric, logarithmic, exponential, 

hyperbolic theories the function is utilised from literatures mentioned in Tables 1 and further compared these results 
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with newly developed HSDT. 
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Fig. 4 Effect of fuzzy function (r) variation over (a) normalised deflection (b)  (c)  (d) (e)  
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Fig. 5 Exact parabolic distribution of transverse shear stress over the thickness direction 

 

For the present analysis four layered cross ply composite laminate of orientation (0/90/90/0) with span to plate 

thickness ratio = 10 under simply supported boundary condition were used. Figure 6 also define the nature of variation 

for normalised central deflection between above mentioned theories and newly developed HSDT with parabolic shear 

deformation function during validation with 3D elastic means 3D Quasis result reported by Tran and Kim [90] results. 

For the present investigation simply supported laminated composite plate (0/90/90/0) with plate thickness ratio 10 is 

assumed.  It is clearly observed that there is wide variation observed between algebraic, trigonometric, inverse 

trigonometric, logarithmic, exponential, hyperbolic functionalised plate theory evaluated on deflection and also 

compared with 3D Quasis result in the literature results. But the amount of deviation is goes on decreasing with the 

implementation of new HSDT with increment fuzzy parameter (r), and it is closely validated at the value of r=1.6.  

As we are aware that along with the uniformly distributed load it is always mandatory to study the effect of another 

type of loading over structural element. So, in further study sinusoidal loading is applied over the laminated composite 

plate. Figure 7 shows the comparison of different functional theories and presently utilised new HSDT with Quasis 3D 

[90] result for normalised central deflection occurs in composite plate. For the analysis laminated composite plate with 

ply orientation of (0/90/0), plate thickness ratio of 10 is used. Orthotropic material properties of the composite plate 

are, . The effectiveness of the 

presently implemented novel parabolic shear deformation theory shows close agreement of normalised central deflection 

with the Quasis 3D [90][90] theory, than any other functional theories. 

Along with the deflection validation for the effective structural analysis it is mandatory to analyse the stress variation 

in composite plate along x, y and through thickness direction manes xz. So, in figures 8, 9, and 10 the stress variation 

along x, y and xz direction are given. As shown in Figure 8, the percentage deviation observed in algebraic 

functionalised theory from Quasis 3D  are 1.4835, 1.4835, 1.4835, 1.4835, 0.5206, 3.8021 for A1, A2, A3, A4, A5, A6 

respectively. The deviation of trigonometric functionalised theory result from Quasis 3D one are 0.9289, 0.9289, 1.6697, 

1.4835, 0.3417, and 5.3422 for T1 to T6. Similarly in case of inverse trigonometric functionalised theory percentage 

deviation from Quasis 3D theory are 1.4835, 1.0536, 0.3417, 0.8766, 0.1989, and 0.1989 for IT1 to IT6.  The deviations 

of logarithmic functionalised theory result from Quasis 3D one are 2.04, 2.42, and 0.326 for L1 to L3. The deviation of 

hyperbolic functionalised theory result from Quasis 3D  one are 1.67, 1.11, 2.61, 2.04, 0.699, 0.342 for H1 to H6, and 

for exponential theory the percentage deviation are 0.38, 0.38, 0.38 for E1 to E3. But whenever observing the percentage 

deviation between Quasis 3D and presently used HSDT, it is 0.0721%, which is lowest among all the functional 

theories. 
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Fig. 6 Effect of various functions used in theories over normalised central deflection  
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Table 2 Evaluation of deflection and stresses utilising various theories. 

Theory NCD 
    

Quasis 3D [90] 0.7282 0.5541 0.3918 0.1913 0.2985 

Present r=1.6 0.7270 0.5570 0.3940 0.1680 0.3100 

 

A-1 0.715 0.546 0.389 0.153 0.264 

A-2 0.715 0.546 0.389 0.153 0.264 

A-3 0.715 0.546 0.389 0.153 0.264 

A-4 0.715 0.546 0.389 0.153 0.264 

A-5 0.727 0.557 0.394 0.168 0.311 

A-6 0.72 0.576 0.39 0.165 0.365 

A-7 0.715 0.546 0.389 0.153 0.264 

 T-1 0.72 0.549 0.391 0.158 0.279 

T-2 0.72 0.549 0.391 0.158 0.279 

T-3 0.715 0.545 0.389 0.153 0.264 

T-4 0.715 0.546 0.389 0.153 0.264 

T-5 0.727 0.556 0.384 0.168 0.309 

T-6 0.691 0.526 0.378 0.141 0.226 

 

IT-1 0.716 0.546 0.389 0.154 0.267 

IT-2 0.718 0.56 0.394 0.176 0.354 

IT-3 0.727 0.556 0.394 0.163 0.313 

IT-4 0.726 0.559 0.395 0.177 0.333 

IT-5 0.725 0.553 0.393 0.164 0.307 

IT-6 0.725 0.553 0.393 0.164 0.307 

 H-1 0.718 0.545 0.39 0.154 0.265 

H-2 0.718 0.548 0.39 0.157 0.275 

H-3 0.699 0.54 0.382 0.136 0.222 

H-4 0.71 0.543 0.387 0.149 0.252 

H-5 0.718 0.558 0.395 0.176 0.329 

H-6 0.727 0.556 0.394 0.164 0.319 

H-7 0.729 0.561 0.395 0.18 0.343 

Exponentia

l 

E-1 0.724 0.552 0.393 0.163 0.294 

E-2 0.724 0.552 0.393 0.163 0.294 

E-3 0.724 0.552 0.393 0.163 0.294 

E-4 0.729 0.561 0.395 0.177 0.335 

Logarithmi

c 

L-1 0.712 0.543 0.388 0.152 0.259 

L-2 0.707 0.541 0.386 0.147 0.246 

L-3 0.722 0.5523 0.393 0.167 0.313 
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Fig. 7 Comparison of different function utilised in present new HSDT with Quasis 3D [90][90] result for 

normalised central deflection 
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Fig. 8 Comparison of different function utilised in present new HSDT with Quasis 3D [90] result for normal 

stress in X-direction 

Similarly in Figure 9, the percentage deviation in  observed with the use of algebraic functionalised theory from 

Quasis 3D [90] are 0.7197, 0.7197, 0.7197, 0.7197, 0.5584, 0.4615 for A1 to A6 respectively. The deviation of 

trigonometric functionalised theory result from 3D elastic one are 0.2046, 0.2046, 0.7197, 0.7197, 2.0312, 3.6507 for T1 

to T6. Similarly in case of inverse trigonometric functionalised theory percentage deviation from Quasis 3D [90] theory 

are 0.7197, 0.5584, 0.5584, 0.8101, 0.3053, and 0.3053 for IT1 to IT6.  The deviations of logarithmic functionalised 

theory result from 3D elastic one are 0.9793, 1.5025, and 0.3053 for L1 to L3. The deviation of hyperbolic 

functionalised theory result from Quasis 3D [90] one are 0.46154, 0.46154, 2.56545, 1.2403, 0.8101, 0.5584 for H1 to 
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H6, and for exponential theory the percentage deviation are 0.3053, 0.3053, 0.3053, 0.8101 for E1 to E4. Whenever 

observing the percentage deviation between Quasis 3D [90] and presently used HSDT, it is 0.1022%, which is lowest 

among all the functional theories. 
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Fig. 9 Comparison of different function utilised in present new HSDT with Quasis 3D [90] result for normal 

stress in Y-direction 
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Fig. 10 Comparison of different function utilised in present new HSDT with Quasis 3D [90] result for 

normal stress in XZ-direction 

In a deflection and stress analysis it is necessary to evaluate the through thickness distribution of the stresses. 

Figure 10 shows the nature of variation as well as comparison of the shear stress with Quasis 3D [90] theory and 
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presently implemented parabolic HSDT. From the figure it is clear that as compared to any other functional theory, 

the percentage deviation between novel parabolic shear deformation theory and Quasis 3D [90]  theory is lowest 

which 3.4054% is. The average percentage deviation of algebraic, trigonometric, inverse trigonometric, logarithmic, 

hyperbolic, exponential from Quasis 3D [90] theory is 21.656%, 23.626%, 15.274%, 23.514%, 23.41% and 15.041% 

respectively. So, from Figures 8, 9, 10 it clearly understood the efficiency and effectiveness of the novel parabolic 

shear deformation theory. 

Conclusions: 

Present study is focused on new higher-order shear deformation theory (HSDT) to examine the flexural analysis of 

multi-layered laminated symmetric and non-symmetric composite plates. The present theory gives an exact parabolic 

distribution of transverse shear stress over the thickness and fulfils the traction-free boundary conditions on the outer 

surfaces of multi-layered laminated plates. The governing equations are solved using the finite element method. In this 

finite element method, a nine-nodded isoparametric element with seven degrees of freedom per node is formed 

especially for this purpose. Following conclusions are summarised from the study,  

1. Convergence and validation study shows the effectiveness and accuracy of the presently utilized model and 

method of investigation. 

2. The study is focused on justifying the effective implementation of new higher-order shear deformation 

theory (HSDT) with fuzzy parameter (r). 

3. It is clearly observed that there is wide variation observed between algebraic, Trigonometric, Inverse 

trigonometric, Logarithmic, Exponential, and Hyperbolic functionalised plate theory evaluated deflection 

and 3D elastic literature results. But the amount of deviation goes on decreasing with the implementation of 

new HSDT with fuzzy increment parameter (r), and it is closely validated at the value of r=1.6. 

According to this study, the current model accurately predicts the bending analyses of the laminated composite plate. 

It follows that the proposed computational method can be used to analyze the bending of thin and thick laminated plates 

with various fiber orientations. Future research can build on new HSDT model by incorporating additional complexities, 

such as dynamic loading conditions, multi-scale modeling, and non-linear material behavior. This will further enhance 

the accuracy and applicability of laminated composite plate analyses. The present theory may also extend to panel and 

shells problems  
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